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Summary 
Geological carbon sequestration seems one of the promising options to address, in the near 
term, the global problem of climate change, since carbon sequestration technologies are in 
principle available today and their costs are expected to be affordable. Whereas extensive 
technological and economic feasibility studies rightly point out the large potential of this 
‘clean fossil fuel’ option, relatively little attention has been paid so far to the detrimental 
environmental externalities that the sequestering of CO2 underground could entail. This 
paper assesses what the relevance might be of including these external effects in long-term 
energy planning and scenario analyses. Our main conclusion is that, while these effects are 
generally likely to be relatively small, carbon sequestration externalities do matter and 
influence the nature of future world energy supply and consumption. More importantly, 
since geological carbon storage (depending on the method employed) may in some cases 
have substantial external impacts, in terms of both environmental damage and health risks, 
it is recommended that extensive studies are performed to quantify these effects. This 
article addresses three main questions: (i) What may energy supply look like if one 
accounts for large-scale CO2 sequestration in the construction of long-term energy and 
climate change scenarios; (ii) Suppose one hypothesizes a quantification of the external 
environmental costs of CO2 sequestration, how do then these supposed costs affect the 
evolution of the energy system during the 21st century; (iii) Does it matter for these 
scenarios whether carbon sequestration damage costs are charged directly to consumers or, 
instead, to electricity producers? 
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1. Introduction 
 
Today, overwhelming evidence exists that mankind is modifying the Earth’s environment and is 
provoking an increase of the average global atmospheric temperature and the associated 
detrimental effects of regional and local climate change (IPCC, 2001). In order to minimize the 
risks induced by substantial climate change (UNFCCC, 1992), carbon dioxide concentrations 
should be stabilized, preferably during the 21st century and probably at a level not exceeding 
much more than twice the pre-industrial level (IPCC, 1996). Adaptation to the consequences of 
climate change will almost certainly be necessary. “Geotechnical engineering” of the 
atmosphere, to counteract the radiative effects of increased levels of greenhouse gases, is 
probably undesirable. Removal of carbon dioxide from the atmosphere through the employment 
of biological sinks may likely contribute to only a limited extent to mitigating climate change. 
Thus, reducing anthropogenic greenhouse gas emissions substantially below the levels that 
would be implied by a “business-as-usual” scenario is imperative. In order not to exceed a 
doubling of the atmospheric carbon dioxide concentration, global carbon emissions from fossil 
fuel combustion in 2050 must not exceed those in 1990, and should decrease to about a third of 
1990 levels by the end of the century (see, for example, Fetter, 1999). Given current and likely 
near-term future energy consumption increases and corresponding emission evolution patterns, 
this challenge is large. 

The challenge, however, can be met. Many different measures must be exploited 
simultaneously to realize it, among which a control of global population growth, decreasing 
levels of energy use per unit of Gross Domestic (World) Product (GDP or GWP), and decreasing 
levels of carbon emissions per unit of energy use. Whatever means may to some extent 
contribute to alleviating the global warming problem, most specialists view a (partial) 
decarbonisation of energy use a necessity. For decreasing the carbon intensity of energy 
consumption, no panacea exists. Hence, all non-carbon emitting options should probably, for the 
moment at least, remain part of an energy mix as diversified as possible. Among these are very 
different (both conventional and still relatively unconventional) energy resources, such as 
hydropower, nuclear energy, renewables and decarbonised fossil fuels. Hydropower possesses a 
number of environmental drawbacks and is unlikely to be expandable so as to maintain its 
current relative share in an increasing world energy supply. Nuclear energy’s future is unclear, 
since it faces a variety of problems related to radioactive waste, reactor accidents, nuclear 
proliferation, economic competition and public perception (Sailor et al., 2000). Renewables 
(such as wind, solar and biomass energy) seem promising in many respects, but when and to 
what extent they can significantly contribute to global energy supply remains to be seen, 
impeded for the moment by relatively high costs and/or large land-use or resource requirements, 
and because it is unresolved whether renewables can be effective in ascertaining energy supply 
security (Turner, 1999). Therefore, expanding the decarbonisation of fossil fuels to options 
beyond a transition from carbon-intensive fossil fuels (coal and oil) to carbon-poor ones (natural 
gas) is currently receiving enhanced attention (Reichhardt, 1999; EIA/DOE, 2004; IEA/OECD, 
2000a and 2000b; IEA-GHG, 2004). 

The decarbonisation of fossil fuels through carbon dioxide capture and sequestration in 
the ocean or deep underground could contribute significantly to reducing anthropogenic 
greenhouse gas emissions (Marchetti, 1977; Parson and Keith, 1998; UNDP, 2000; Gielen, 
2003). Technologies for both pre- and post-combustion carbon dioxide capture in power stations, 
as well as pre-combustion capture fuel cell applications, are available and have already been 
demonstrated, notably through their use for a number of other industrial purposes (Hendriks, 
1994; Williams, 1998). Technologies for carbon dioxide transport, via pipelines or with tankers, 
and for its compression or solidification, needed for storage, are all known in principle. Whereas 
deep-ocean storage is still at a relatively early stage of development and is likely to remain 
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controversial, it has been shown that geological carbon sequestration is feasible and probably 
acceptable today (Herzog et al., 2000). The Earth’s geological storage capacity, in depleted 
natural gas and oil fields, aquifers and coal-beds, is likely to be large (Socolow, 1997; Bachu and 
Gunter, 1999; Lako, 2002). Carbon storage might, already in the short term, play an important 
role in mitigating global warming and protecting mankind against the detrimental regional and 
local effects of climate change (UNDP, 2000; IPCC, 2001). Therefore, energy analysts start 
presently to include carbon capture and storage alternatives in abatement scenarios for their 
integrated assessments of climate change. Still, insufficient attention has so far been paid to 
possible external environmental effects of carbon storage.1 This paper attempts to contribute to 
filling the gap existing in this respect in the current literature. 

In section 2 of this article we recapitulate what we think could be some of the major 
environmental externalities of geological carbon sequestration. Leaving a detailed technology 
externality calculation for future research, in section 3 we postulate some rationalized hypotheses 
concerning the order of magnitude of possible environmental impacts, in terms of external costs, 
of CO2 sequestration. In section 4 we present our analysis results regarding the nature of long-
term energy and climate change scenarios if one accounts for CO2 sequestration (i), if one 
incorporates external costs of geological carbon storage (ii), as well as concerning the way in 
which damage costs are included in energy models, i.e. whether they are charged to energy 
consumers or, instead, to electricity producers (iii). Section 5 provides our major conclusions, 
describes a few recommendations and lines for further research, and discusses possible 
implications of our findings for policy making vis-à-vis future large-scale geological carbon 
sequestration. 
 
2. Environmental externalities of geological carbon sequestration 
 
Whereas the prospective benefits of carbon sequestration are significant, notably because it 
possesses the potential to catalyse a transition to a hydrogen economy, a number of important 
questions related to environmental hazards and safety risks remain (for a taxonomy of the 
various risks involved with geological carbon storage and potential impacts, see also van der 
Zwaan et al., 2001; Wilson et al., 2003). In scientific, political and non-governmental 
communities, a closer inspection of these external effects now starts to receive momentum.2 At 
present, information about the potentially detrimental external environmental effects of carbon 
sequestration is far from complete. Uncertainties associated with negative sequestration impacts 
– that ideally ought to be addressed before carbon storage is employed at a large scale – abound, 
and their nature and extent are insufficiently understood. Without attempting to be exhaustive, 
we indicate below some of the geological storage externalities that we suspect could play a role 
in the future. We do not try to assign probabilities to these various potential impacts, or to 
quantify the uncertainties dominating their significance, given the lack of our current 
understanding of carbon sequestration external impact mechanisms. However inadequate our 
present knowledge about the external effects of carbon storage may be, we do not judge that this 
inadequacy is reason for not trying to include external costs in energy policy analyses. Instead, 
we postulate in the next section some hypotheses on these environmental impacts (means lacking 
for the moment to do better), which we rationalize and that could thus be considered crude 
'guesstimates' to at least some extent. Subsequently, in section 4, we include them in our 
scenarios. 

                                                           
1 The IPCC (Working Group III), in an envisaged Special Report on Carbon Dioxide Capture and Storage, is 
currently in the process of assembling a comprehensive overview of carbon storage options, including their 
detrimental environmental impacts. 
2 For a presentation on views and preoccupations of environmental NGO's regarding CO2 capture and storage, see, 
for example, www.ipieca.org/downloads/climate_change/Oct03_workshop/3_Anderson.ppt. 
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Deep geological carbon storage can acidify water present at large depths underground. 
Natural gas and oil fields have a proven containment integrity record for millions of years. Still, 
storing carbon dioxide in such fields (once depleted, or while depleting) could have an 
acidification impact on underground waters. In a similar way, water in deep underground 
aquifers could undergo acidifying effects by CO2 injection (Chen et al., 1999). In both cases, 
groundwater pollution of nearby freshwater aquifers may result, if the containment of the 
aquifers into which CO2 is injected is breached. This could affect the quality of drinking water, if 
the latter is obtained from sources fed by the polluted groundwater. Enhanced Coal-Bed Methane 
(ECBM) recovery and Enhanced Oil Recovery (EOR) carbon storage can in principle pose 
similar groundwater pollution effects (Wong et al., 1999; Liu et al., 1999). A related problem is 
that the process of reservoir fluid/gas displacement by CO2 insertion, and the resulting 
modification of the hydrodynamic properties of underground geological layers, can have a 
negative impact on the water extraction potential of certain sources. Perhaps more importantly, 
as a result of CO2 injection in geological layers, their integrity could be disturbed. In the case of 
aquifers this could lead to the brine they contain migrating to other layers in contact with 
freshwater aquifers serving as source for drinking water. 

As a result of underground carbon sequestration, structural changes could occur in 
geological formations, as well as modifications of the thermodynamic properties – and even 
dissolution – of underground geological layers. Both such geological modifications and the CO2 
injection process itself could involve seismic activity or soil cave-ins, with uncertain 
aboveground impact, depending both on site and option chosen.3 Altered chemical properties of 
geological formations as a consequence of carbon sequestration, or the build-up of localized high 
pressures, could affect the stability of the geological layers above. Resulting from a large range 
of possible geo-chemical reactions of carbon dioxide with underground geological structures, 
cocktails of gases can be formed, the bearings of which to either the underground or 
aboveground environment (including plants, animals and humans) are largely unknown today. 
All these matters can affect or have pervasive consequences on habitat conditions. 

It is not improbable that carbon dioxide gas could gradually - and without being noticed - 
migrate and slowly leak from where it is stored (Ha-Duong and Keith, 2003). This threat ranks 
high among the potential risks of geological carbon storage, since it could seriously hamper its 
suitability as global warming mitigation alternative. Since natural gas has long been stored in 
geological formations, one could draw a parallel and conclude that long-term secure 
sequestration of carbon dioxide seems feasible. Given that the physical and chemical properties 
of CO2 are different from those of CH4 (the latter being chemically more inert than the former), 
however, it may not be guaranteed that its artificial storage underground retains integrity forever. 
Especially regarding options other than depleted gas and oil fields, such as aquifers and coal 
beds, long-term storage effectiveness aspects are uncertain. Migration times vary according to 
the sequestration option considered, and depend on the characteristics of the geological 
formation of the site specified (NITG, 2004). The leakage time frame that typifies each option 
and site, and the compatibility of that time frame with global warming mitigation efforts 
(determined by the features of the natural carbon cycle), is determinant for the option’s 
suitability to preclude or postpone presumed climate change effects. 

Probabilities for catastrophic well blowouts (e.g. during injection) may be exceedingly 
small and the associated risks negligible in comparison to those involved with carbon seeps, but 
the eventuality that artificially stored carbon dioxide gas could escape rapidly, in large amounts 
at once, may not be left unmentioned. Sudden carbon releases could in principle have global 
warming effects - if large enough - as well as severe accidents with human casualties. Although 
the hazards involved are likely to be only local and temporary, they could be pervasive. However 
                                                           
3 Note that, inversely, carbon dioxide sequestration could be employed to restore (re-pressurize) natural or artificial 
surface soil cave-ins, e.g. resulting from pressure decreases generated by fossil fuel mine/field depletion. 
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inappropriate a comparison may be between artificially stored CO2 and amounts built up in some 
natural cases, a frightening phenomenon remains the natural disaster that occurred in Cameroon 
in August 1986. Carbon dioxide welled up from deep in Lake Nyos, and was responsible for 
killing, by asphyxiation, 1,700 people and their livestock (Holloway, 2000). This concerned a 
very unique and unfortunate case, different in many ways from CO2 stored underground by Man, 
but it should not be fully neglected, and shows that one has in principle to be weary of 
unexpected potential risks.4 Accidental releases of CO2 should also be considered regarding 
high-pressure CO2 transportation, which would become part of the carbon sequestration solution. 
CO2 pipelines exist already, and specialists ascertain that their safety record can be considered 
better than that of natural gas pipelines. Multiple safety devices are built-in throughout the 
various stages of CO2 transportation methods, but risks for personal accidents as a result of 
pipeline defaults and sudden CO2 releases, e.g. for workers involved in network maintenance or 
for people living in the vicinity of pipelines or CO2 compression installations, are not zero. If 
CO2 transportation via pipelines is operationalized at large scales, such risks will augment 
accordingly. Land-use issues may then also increasingly play a role of significance. 
 
3. Damage costs 
 
How does one go about quantifying the qualitative observations made above regarding the 
potential externalities of geological carbon sequestration? In principle, to evaluate the impact and 
damage cost of any pollutant, one needs to carry out an “impact pathway analysis”, tracing the 
passage of the pollutant from the place where it is deposited or emitted to the affected 
population. The principal steps of such an analysis involve (1) a specification of the amounts 
disposed or emitted, (2) a calculation of the dispersion of the pollutants, (3) a calculation of the 
impact of these pollutants, and (4) the monetary valuation of the costs of these impacts. The 
impacts and costs must then be summed over all impact types and receptors of concern. For the 
fossil fuel chain including carbon sequestration, part of the damage cost arises from combustion 
in power plants (corresponding to the pollutants that are not captured but emitted into the 
atmosphere), while the other part arises downstream from power generation, that is, as a result of 
the environmental externalities of geological carbon sequestration. For most energy resources, 
such analyses of environmental damages have been performed in the ExternE (External costs of 
Energy) Project series of the European Commission (see e.g. ExternE, 1998). The ExternE 
studies, however, have so far not included calculations on externalities resulting from geological 
carbon sequestration. The scientific knowledge required for externality calculations for carbon 
sequestration, e.g. regarding migration of carbon-induced products through underground layers, 
is still largely absent. Without data on geological chemical diffusion, these calculations cannot 
be performed, and even if they were available today, it would fall beyond the scope of this paper 
to perform these (extensive and detailed) calculations here. 

Still, however, we think it may be insightful to perform an energy scenario analysis 
including not only carbon sequestration technologies, but also the external costs that could be 
associated with them. Lacking either theoretical or experimental data regarding external impacts, 
we have chosen to make some hypothetical assumptions concerning their costs. By including 
these in our scenario analysis, we hope to trigger work directed towards the proper calculation of 
external costs of carbon storage, or at least towards a more careful, but perhaps still crude, 

                                                           
4 In the case of Lake Nyos, CO2 rises up from deep volcanic activity and via groundwater beneath the lake dissolves 
in the lake’s lower water layers. Lake Nyos does not turnover, however, so that CO2 gas saturates the bottom water 
until some trigger (e.g. a storm or earthquake) provokes the deep water to suddenly move upward. This resulted in 
1986 in CO2 coming out of solution in large quantities, and erupting, like champagne uncorked, into an 80 m high 
jet of water and CO2. The CO2 gas, heavier than air, subsequently rolled down the hills in a large cloud, 
asphyxiating everything it found on its way. 
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estimation of them. Deriving rough but reasoned guesses of what external costs of carbon 
sequestration could be would allow getting better feeling for their consequences for energy-
climate modelling, as well as for their policy relevance. For the moment, however, we cannot do 
much more than simply postulating a set of numbers. We will, nevertheless, attempt to somewhat 
justify our 'manna-from-heaven' figures in this section. Thus, while avoiding to undertake a 
detailed geological carbon storage externality calculation à la ExternE – we will leave such work 
to future research activities – we attempt to somewhat validate our hypothetical quantification of 
the (order of magnitude of the) external costs associated with the environmental impacts of CO2 
sequestration. 

For this justification, we rely on the numbers generated by Rabl and Spadaro (1999), 
which are based on ExternE (1998), for the externalities resulting from the use of the three fossil 
fuels based on technologies employed during the 1990s and 2000s. For these two time periods, 
the Rabl and Spadaro (1999) figures are quoted in table 1. We use these, as well as their 
comparison with the corresponding numbers for renewables and nuclear energy, as reference for 
our hypothetical figures on coal, oil and gas externalities for the 2010s and thereafter. For the 
latter time period we assume that geological carbon sequestration is added to the use of fossil 
fuels. Our postulated estimates for the damage costs, involved in fossil fuel use, of carbon 
sequestration are also presented in table 1. The figure of 0.2 ¢/kWh hypothesized for the external 
geological storage costs for fossil technologies in the 2010s is assumed neither to vary over the 
technology considered nor over time from 2010 onwards. The main reason is that externality 
costs at large, and our postulates in particular, are subject to great uncertainties and may vary by 
even an order of magnitude depending on the option under consideration. Since these 
uncertainties are dominant, we merely perform a "suppose that... what then...?" analysis with 
these fixed and constant figures.5 
 

Damage costs 
(¢/kWh) 

 
Total 

 
PM10, SO2, NOx 

Global 
Warming 

CO2  
Sequestration 

 
Coal 1990s 

 
13.3 

 
10.5 

 
2.8 

 
- 

 
Coal 2000s 

 
3.8 

 
1.1 

 
2.7 

 
- 

 
Coal 2010s 

 
1.3 

 
0.6 

 
0.5 

 
0.2 

 
Oil 1990s 

 
10.0 

 
8.2 

 
1.8 

 
- 

 
Oil 2000s 

 
3.2 

 
1.4 

 
1.8 

 
- 

 
Oil 2010s 

 
1.3 

 
0.7 

 
0.4 

 
0.2 

 
Gas 1990s 

 
2.8 

 
1.6 

 
1.2 

 
- 

 
Gas 2000s 

 
1.5 

 
0.3 

 
1.2 

 
- 

 
Gas 2010s 

 
0.6 

 
0.2 

 
0.2 

 
0.2 

 
Table 1. Damage costs for fossil fuel chains in the EU. Carbon sequestration is included in 2010. 

Note that production cost of base load electricity in the EU is in the range of 2.5 to 5 ¢/kWh. Source: ExternE 
(1998), for 1990s and 2000s, and author’s hypotheses, for 2010s and thereafter. 

                                                           
5 For future work we intend to perform a proper sensitivity analysis, in which we vary our externality assumptions 
over e.g. an order of magnitude and analyse the effect of this variation on our scenario results. Within the present 
knowledge of uncertainty concerning these figures, we do not judge it sensible to distinguish between different 
external sequestration costs for e.g. gas and coal, although natural gas usage emits only about half of the carbon 
dioxide of coal power generation. 
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In postulating the figures of table 1 for the damage costs of coal, oil and natural gas with 

2010 technologies, we have made the following assumptions. First, it is unlikely that all external 
costs in the two first categories can be avoided: not all particulate matter (PM10, of size smaller 
than 10 µ), SO2, NOx emissions, on the one hand, and global warming (mainly as a result of CO2 
emissions), on the other hand, will be eliminated when pollution removal and carbon capture are 
applied. This explains why non-zero figures remain for these two entries for 2010 technologies.6 
Second, it is supposed that in 2010 damage costs due to particulate matter, SO2 and NOx will be 
further reduced to about 50% of current damage costs, given the improvement in capture 
technologies that still takes place. Third, it is assumed that in 2010 damage costs due to global 
warming will be reduced, through carbon capture and sequestration, to about 20% of current 
costs, given that 80% GHG emission reduction can probably be implemented relatively soon and 
cost-effectively (Hendriks, 1994). Technologies that can reach capture levels that near the 100%-
level exist (IGCC seems the most likely route forward for new power plants, which reduces 
emissions at the plant by easily 95%): but we want to be realistic in that not all greenhouse gas 
emissions are likely to be avoided completely anytime soon, mainly for economic reasons. 

Furthermore, the damage costs of carbon sequestration are expected not to exceed the 
range of those for renewables and nuclear energy. The latter have been calculated to be about 
0.2 ¢/kWh (Rabl and Spadaro, 2000).7 We think it is reasonable to make conservative 
assumptions regarding the damage costs of carbon capture and sequestration – resulting from e.g. 
carbon dioxide dissipation, sudden releases of carbon dioxide, acidification of underground 
water, and the chemo-geophysical modification of underground geological layers – in which 
their level does not surmount (and is at most of the same order of magnitude as) the average 
damage costs of renewables and nuclear energy. Two main arguments can be given to back this 
assumption. 

First, like with nuclear energy, the use of fossil fuels with carbon sequestration involves 
the geological storage underground of by-products of the energy chain (for the nuclear case, see, 
for example, Milnes, 1985). But that is probably where the comparison stops: for radioactive 
nuclear waste one has relatively small quantities of highly toxic products, whereas for carbon 
sequestration one has very large quantities of CO2 with low toxicity. Indeed, the magnitude of 
material disposed is vastly less for nuclear energy and the material is vastly more dangerous than 
with fossil fuel use with carbon storage. For both, one multiplies a big number by a small one, 
but it is unlikely that the result of it equals in these two (inverse) cases. One cannot claim, 
therefore, that the corresponding costs could be the same, or even of the same order of 
magnitude. The nature of the products involved is too different, especially considering the health 
effects of chemically active reactants, for carbon storage, vis-à-vis those of radioactive 
substances, in the case of nuclear energy. Chemical acidification is likely to be much less 
hazardous to the environment and harmful to humans than radioactive contamination. Hence, 
damage costs for carbon sequestration are probably smaller than those for nuclear energy, that is, 
for radioactive waste disposal. Estimates for the latter (however controversial these might be) 
can be considered a pessimistic upper bound for guesses of the former, thereby justifying our 
conservative choice of 0.2 ¢/kWh for carbon storage damage costs. 

                                                           
6 Of course, in the case of SO2 emission reductions, almost all SO2 can technically be removed with either amine or 
IGCC systems (for PM10, NOx and CO2 it is more difficult to achieve total removal). But it will not easily be 
considered cost-effective to reach such close-to-zero limits. 
7 For wind and PV, high and low estimates fall within a width of some 0.1-0.2 ¢/kWh, while for biomass damage 
costs amount to about 0.1-0.6 ¢/kWh, depending on the technology chosen. For nuclear energy, damage costs are 
distinguished between short-term and long-term, amounting to values below 0.1 and around 0.2 ¢/kWh, 
respectively. On average, therefore, a value of 0.2 ¢/kWh seems to be reasonable for the damage costs of these 
renewable and fission alternatives. 
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Our second argument derives from our assertion that the total costs of electricity 
(including all external costs) for different energy technologies will perhaps become the most 
important determinant for the permissible (internal and external) costs of sequestration. If 
external costs are to be internalised (this is now official EU policy), and if external costs for 
carbon sequestration prove to be – and remain – much higher than those for renewables 
(supposing that at least some renewable energy options will reach competitive break-even with 
fossil fuels including carbon storage in the not too distant future), carbon sequestration will not 
see the daylight on any large scale because of a lack in economic interest. Wind power, for 
example, is at present becoming competitive at various locations, while on average still being 
more costly to generate than conventional (fossil-fuelled) electricity. It can be reasonably 
expected that wind energy production costs continue to decrease over the coming years, while its 
external costs may remain about 0.2 ¢/kWh. Other renewable energy resources, such as PV, are 
still considerably more expensive than fossil-based electricity, but are also expected to continue 
to be subject to economic learning. Capturing, transporting and sequestering CO2 may increase 
competitive fossil energy production costs by a factor of two, when e.g. about 80% of the CO2 
released is avoided. In other words, competitive costs of fossil-based power production including 
sequestration may approximate renewable energy production costs over the decades to come, so 
that - on the basis merely of production costs - a comparable electricity price results for these 
two distinctive alternatives. But this does not yet account for damage costs. Damage costs of 
carbon sequestration may then surely not exceed the (renewable) 0.2 ¢/kWh level of external 
costs, in order for carbon sequestration to remain competitive with these cheap renewable 
options (and given that fossil fuels with carbon sequestration still involve some of the remaining 
external costs other than those related to sequestration). We assume that those carbon 
sequestration technologies will emerge that are both environmentally attractive and are able to 
survive in competitive markets, which justifies our choice for the above quoted (conservative) 
upper-bound values of external sequestration damage costs. 
 
4. Long-term energy scenarios 
 
If in the future the energy system is going to be subjected to stringent climate constraints, the use 
of coal for power generation will be put into disadvantage, even in comparison to its fossil-fuel-
based counterparts (oil and natural gas). Clearly, when ambitious global warming goals are to be 
met, the role of coal in our energy mix should be significantly reduced. Scenario analyses 
demonstrate that coal indeed loses importance under these conditions. With much of its 
emissions being avoided through carbon capture and storage, however, this picture dramatically 
changes: coal can largely continue to play the important role it does today. But with coal 
retaining a large share of global energy consumption, a proper analysis should be performed of 
its full external environmental impact, not only in terms of the generation of mining wastes and 
its continued contribution to global warming and local air pollution, but also in terms of the 
possible damage effects of geological carbon sequestration. What is the effect of including 
damage costs for carbon sequestration on the construction of long-term energy supply scenarios? 
To answer this question, we have used the MARKAL model. Before presenting our modelling 
results, the main features are described of the MARKAL version we employed. 
 
4.1 The MARKAL model 
 
MARKAL is a commonly used bottom-up model for energy system analysis based on cost 
optimisation. The model algorithm has been expanded over the years, resulting today in a 
number of possible extensions that can be employed in combination and in conjunction with the 
basic version. But its major characteristics remain: it is an ideal-market cost-minimisation 
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decision model with rational behaviour, perfect information and perfect foresight, that optimises 
and matches the supply and demand sides of energy for the entire modelling timeframe under 
consideration.8 The version often used nowadays for policy analysis studies is the one with 
endogenised technological learning and price elasticities. Its geographical coverage is Western 
Europe (WEU), that is, the 15 EU countries anno 2003, expanded with Norway, Switzerland and 
Iceland.  This area is treated as a single region, so there is no specific country dis-aggregation. 

The emissions considered for this study are the CO2 emissions from both fuel combustion 
and industrial processes. Emission removal is considered both through carbon sequestration in 
geological storage options and via uptake by land use, agriculture and forestry. The model 
distinguishes 6 geological CO2 storage options: aquifers, Enhanced Oil Recovery (EOR), 
Enhanced Coal Bed Methane (ECBM) recovery (2 different options, at different depths) and 
depleted oil and gas fields (2 options: on-shore and off-shore). They are each characterised by 
specific data on storage potential, injection and storage costs, and the rate of energy recovery (for 
EOR and ECBM). Costs related to transportation, from the site where CO2 is captured and 
compressed to the injection point, are also included. For the capture of CO2 from large point 
sources 21 technologies are modelled: 10 in the electricity sector (coal, oil and natural gas 
based), 6 in industry (mainly in ammonia, iron and steel production), and 5 in the fuel conversion 
sector (in the production of hydrogen from fossil fuels).9 Figure 1 illustrates the basic 
functioning of MARKAL, with the supply side at the left, the conversion and transformation 
phases in the middle, and the end use at the right. 

Some features, assumptions and limitations of MARKAL deserve additional attention. 
The model does not incorporate trade, changes in import-export balances of electricity, rebound 
or other feedback effects at the macroeconomic level resulting from price changes, e.g. induced 
by the incorporation of external costs. Assumptions with respect to implementation barriers of 
technological options, as well as various socio-political considerations, can be inserted, but have 
not been regarded as relevant for this study. Although MARKAL may cover other pollutants and 
other greenhouse gases (GHGs) than CO2, within the context of the present study the analysis 
has been restricted to carbon dioxide only (accounting presently for about 80% of all GHGs in 
Western Europe). This implies that only the global warming and sequestration parts of the 
external costs of table 1 have been considered for our energy scenario inspection. For older 
technologies from the 1990s, these represent only the smaller part of total external costs. For 
recently and future installed technologies, however, the global warming impacts are expected to 
involve generally the largest among the three sources of external costs. Since the emphasis in the 
current analysis lies on the effects of the inclusion of CO2 sequestration external costs in 
electricity production, it is the cost difference as a result hereof that matters mostly (rather than 
the absolute value of remaining external costs). 
 

                                                           
8 It is a linear programming bottom-up energy technology model, using GAMS and a linear solver (CPLEX or 
OSL). The time frame by the model version used covers the 1990-2100 period, and the programme is solved in 10-
year steps. The database linked to the use of MARKAL contains about 70 different demand categories at the end-
use-side, and in total more than 900 energy technologies at the supply-side (involving both existing and future 
options). 
9 Note that for the analysis presented in this paper, no carbon sequestration à la the Sleipner project is included, that 
is, in which CO2 is captured from natural gas field exploitation and subsequently re-entered in underground layers. 
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Figure 1. Flow diagram of MARKAL with carbon capture and sequestration. The upper (dark 
green) arrow indicates that some storage activities have energy recovery as co-benefit. 

 
Cost reductions of technological options are assumed to evolve through learning curves. 

This assumption implies that the unit investment cost of a particular technology, or a particular 
technology component (such as a gas turbine or gasifier), decreases with increasing installed 
capacity. Learning curves are based on observed phenomena in the past, and applied in our 
MARKAL version to future technological cost developments. A fixed ratio (the progress ratio) 
exists between investment cost reductions and every doubling of cumulative installed capacity. 
For relatively mature technologies, progress ratios typically lie between values of 0.90 and 0.95, 
meaning a cost reduction of 10% and 5% respectively per doubling of installed capacity. 
Promising new technologies may have progress ratios as low as 0.70. In our MARKAL model, 
most learning technologies or components are found in the electricity production sector, while 
some appear in other sectors such as transport, and upstream oil and gas industries. 

A weak point of traditional MARKAL models is that changes in prices do not affect 
demand, that is, demand is exogeneously defined. In recent years, the MARKAL algorithms 
have been extended to include price-dependent demand levels. Of the two approaches that have 
been developed (MARKAL-MACRO (see Hamilton et al., 1992) and MARKAL-Elastic-
Demand (MARKAL-ED, see Loulou and Lavigne, 1996)), we use the latter, mostly because of 
the significant differences that exist between the two in computer calculation times.10 
MARKAL-ED is a partial equilibrium model in which the common exogenously defined 
demand relations have been replaced by price-driven demand functions. Energy demand 
decreases as a result of increasing energy and product service prices. A main advantage of the 
model is that it is still based on linear equations, allowing rapid calculations. With non-linear 
demand equations, with current machines and calculation capacity at least, it would not be 
possible to run our complex WEU model. Figure 2 shows the (simplified) equilibrium that is 
achieved in traditional MARKAL models. Figure 3 shows the equilibrium that is achieved in the 
model version we use, with elastic demands. 

 
 

                                                           
10 Note that both MARKAL-MACRO and MARKAL-ED are attempts to bridge the worlds of bottom-up versus top-
down modelling. For example, these models constitute a first step towards allowing for the study of welfare effects 
with the bottom-up approach, through a calculation of changes in consumer plus producer surplus. 
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Figure 2.  Supply (S and S') and demand (D) price-quantity equilibrium in traditional MARKAL 
models. EQ=EQ' indicates the equilibrium quantity (Q); SP and SP' are the shadow prices (P). 
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Figure 3.  Supply (S and S') and demand (D) price-quantity equilibrium in our MARKAL-ED 
model for Western Europe. EQ and EQ' indicate the equilibrium quantities (Q);  

SP and SP' are the shadow prices (P). 
 

As depicted in both figures 2 and 3, all supply and demand curves are linearized in 
MARKAL (typically a 20-step function), allowing the use of a linear algorithm to solve the 
programme. Supply curves are derived from the database of supply options and their 
characteristics. In traditional MARKAL models (figure 2), energy demand is independent of its 
price, so that the demand function is a vertical line. In MARKAL-ED (figure 3), the demand 
decreases if the price increases, so that the demand function is a curve with a downward slope. 
Equilibrium between supply (S) and demand (D) is reached in point EQ, which is the same for 
both figures in the base case calculation without GHG emission penalties. If GHG penalties are 
introduced, the supply curve moves upward, because all emissions in the supply chain are 
penalised (S changes to S'). In the case of fixed demand (figure 2), this has no consequences for 
the demand (EQ=EQ'). However, shadow prices increase (from SP to SP') in both figures. In the 
case of elastic demand (figure 3), demand decreases and a new equilibrium price and quantity 
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are achieved, below the EQ' prices and quantities in the case of fixed demand (figure 2). The 
precise form of the demand function used in our analysis, applied to all energy resources and 
technologies, is: 
 

Di,p/Di,b = (Pi,p/Pi,b)ei 

 
in which: 

 
Di,p  =  demand for energy i after introduction of GHG penalty 
Di,b  =  demand for energy i in the base case 
Pi,p  =  energy price i after introduction of GHG penalty 
Pi,b  =  energy price i in the base case 
ei  =  price elasticity for energy i 

 
While it is known that price elasticities may diverge considerably (see, for example, 

Franssen 1999), even within a single demand category, we have assumed that all elasticities in 
our model are fixed at a value of -0.5. Long-term demand elasticities typically lie within bounds 
between -0.1 and -2.5. Still, most long-term demand elasticities usually range from -0.1 to -0.5. 
Our value of -0.5 is considered to represent an upper limit for the impact of demand elasticities, 
given the fact that our model also simulates other demand reduction and increase effects (e.g. 
through endogenised technological learning). The high value for elasticities is compensated by 
e.g. rather stringent limitations on the rate at which energy demand may vary. 
 
4.2 Results 
 
Before looking in detail into the consequences of adding damage costs for CO2 sequestration in 
our model, we attempt to answer the first question we pose ourselves: how does energy 
production change if one includes carbon sequestration technologies in long-term scenarios? We 
look at the energy system, and the electricity generation scheme in particular, as calculated both 
before and after the introduction of carbon sequestration technologies. Two sets of scenarios are 
presented, to illustrate the effect of adding CO2 sequestration options. The first set (figures 4a 
and 4b) includes a base case and a CO2 reduction scenario, as derived before CO2 sequestration 
was included in the MARKAL database. The base (or reference) case is a business-as-usual 
scenario, without the imposition of a climate constraint. The reduction case illustrates a 
stabilisation scenario by 2100 at 550 ppmv atmospheric carbon dioxide concentration, modelled 
through a cumulative limit on the total amount of emissions between 2000 and 2100, the year in 
which the required maximum concentration level is reached. The second comparative scenario 
set (figures 5a and 5b) involves the same two (business-as-usual, respectively stabilisation) 
scenarios, but this time with sequestration technologies included (but still without external 
damage costs). All four figures show the total amount of electricity production (in TWh) by 
means of production (fuel source). For each of them, the price-elastic version of MARKAL is 
used for the stabilisation scenario, in order to avoid rigid demand levels under a severe climate 
objective. 
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Figure 4a. Electricity production by energy source in the base case scenario (no carbon 
sequestration technologies included).11 
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Figure 4b. Electricity production by energy source in the climate-constrained scenario (no 
carbon sequestration technologies included). 

 
From figure 4a, one observes that in the reference case renewables (mainly wind and 

some biomass) emerge early, and subsequently remain almost constant at a relatively modest 
share. Hydropower remains roughly stable, while nuclear energy decreases slightly. The use of 
natural gas increases significantly, but by far the largest increase occurs in the production of 
electricity through cheap coal technologies. From 2030 onwards, the major production source is 
coal through the advanced type Integrated Gasification Combined Cycle (IGCC). In the 
550 ppmv stabilisation case, depicted in figure 4b, both the total production decreases and the 
production mix changes. The decrease in energy demand, and thus production, results from the 
use of elastic demand curves, and is induced by an increase in energy prices that allows meeting 
                                                           
11 Note that this and following figures should be interpretable in black-and-white: the energy contributions in the graph appear in 
the same order, from top to bottom, as in the corresponding explanatory box. Still, they remain most illustrative in full colour. 
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the climate constraint. Nuclear energy remains available because it involves zero carbon 
emissions. Hydropower remains roughly stable: it has no room for expansion within Western 
Europe, so it cannot contribute more to power production. Under the climate constraint, coal 
disappears completely, even with the advanced IGCC technology, while wind and solar energy 
increase substantially. To compensate for the increased power production from intermittent 
renewables like wind and solar energy, biomass and natural gas use also increases. 
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Figure 5a. Electricity production by energy source in the base case scenario (with carbon 
sequestration technologies). 
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Figure 5b. Electricity production by energy source in the climate-constrained scenario (with 
carbon sequestration technologies). 

 
From figure 5a, one sees that even without climate constraint it becomes worthwhile to 

invest in coal with CO2 capture rather early in time, while oil and natural gas based electricity 
production with capture remains marginal throughout the entire simulation period. The reason 
for the use of coal with carbon capture to become profitable is that the CO2 captured is used for 
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ECBM. Through the recovery of methane by the injection of CO2 in coal beds, it becomes cost-
effective to invest in coal power plants that include carbon capture and sequestration, in addition 
to the vast use of coal through IGCC. Otherwise, figures 4a and 5a differ little from each other. 
Note that one may judge it remarkable, and even unlikely, that ECBM will make carbon capture 
profitable without carbon constraints; in our case it appears as an opportunity largely as a result 
of our parametric assumptions on fuel prices. As can be seen from figure 5b, in the climate-
constrained scenario, allowing for geological carbon storage implies that coal remains an 
electricity option for the rest of the century at a fairly constant share (and coal is not phased out 
like in figure 4b). Coal with carbon capture is developed to a large extent, especially during the 
last decades of the 21st century. Again, the reason is that CO2 is injected in coal seams to extract 
methane, which on its turn is fed into the energy system. In this stabilisation case, compared to 
the stabilisation scenario without carbon capture, coal-based electricity production with CO2 
capture replaces some of the renewables (biomass and solar energy). Again, one observes that 
overall electricity supply in figure 5b is lower than in 5a. The reason is that in the 550 ppmv 
stabilisation case, a reduction has to be realised of up to 40-60% of annual carbon emissions by 
the end of the century. This reduction will affect seriously energy prices, and hence end-use 
behaviour, demand and production. A fixed price-insensitive demand would over-estimate future 
energy use under severe climate constraints, and also pose a heavier burden on the energy system 
as a whole in meeting these constraints. 
 

If one applies the external costs from table 1 to electricity production costs, and assumes 
0.2 €ct/kWh external costs for all other production options (renewables, nuclear and 
hydropower), it is not surprising that both the overall production level and the electricity 
production mix changes. The differences between scenarios with and without external costs 
prove important. For our purpose, most interesting is to look at the results in two external cost 
cases, namely with and without CO2 sequestration costs. Figure 6 illustrates (in the BAU case) 
how the introduction of global warming external costs influences the total production of 
electricity, as well as the nature of the resulting production mix. The figure depicts in particular 
how the share (or rather, contribution) of some energy resources decreases (options that result in 
bars above the 0-line) and the share of others increases (bars below the 0-line).12 As can be 
derived from the difference between the bars above and below the x-axis, the total power 
production is lowered slightly as a result of incorporating external global warming costs 
(between 0.5 and 2.0%). As can be seen from the figure, in terms of the production mix, the use 
of coal with conventional technologies is reduced, but the part lost is mainly replaced by the use 
of coal through IGCC. Also the use in production of natural gas and wind is increased modestly. 
The use of nuclear energy is slightly increased in the short term, but loses in importance in the 
longer run, according to our modelling results. 
 

                                                           
12 Note that in figures 6, 7 and 8, we want to present the effect (on electricity supply, resulting from including external costs) in 
terms of the reduction of contributions from different energy resources, so that decreases appear as positive columns (and vice-
versa). 
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Figure 6. Overall and energy-specific reduction in electricity production  
after applying global warming external costs (BAU case). 

 
Figure 7 displays the changes induced when, in addition to global warming external 

costs, also external costs for CO2 sequestration are applied (again for the BAU case). First of all, 
one observes that the total change in electricity generated (all externalities in comparison to 
global warming externalities only) is relatively small, about an order of magnitude smaller than 
in the case of figure 6 with the introduction of global warming costs only (in comparison to no 
external costs). Both in the cases of no inclusion of external costs and the incorporation of global 
warming external costs only, the use of coal with carbon capture and sequestration was able to 
develop to some (rather small) extent. When also sequestration external costs are accounted for, 
coal-based production with CO2 capture loses part of its share, as can be seen from the bars 
above the 0-line in figure 7. The share lost is mostly replaced by coal based on IGCC and the use 
of natural gas (and to a lesser extent also biomass). Overall (and understandably), the shift of 
technologies results in a total production level that is lower than in the case with only global 
warming external costs, the difference being on average 4 TWh/yr. This reduction comes on top 
of an average reduction of 35 TWh/yr after the inclusion of global warming external costs only. 
Thus, the inclusion of external costs for CO2 sequestration has a further dampening effect on 
power generation, while the price difference between various electricity generation sources 
becomes less pronounced. As can be seen from figure 7, the overall electricity production 
reduction is largest at the end of the time horizon, and lowest in the very beginning. This means 
that, while the effects of including external sequestration costs are felt during the entire 
modelling time frame, the effects are significantly larger at the end of the 21st century than when 
they start being applied. This is a specific feature of our version of the MARKAL model used. 
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Figure 7. Additional overall and energy-specific reduction in electricity production  
after also including CO2 sequestration external costs (BAU case, producer-side). 

 
For both figures 6 and 7, the external costs are implied at the producers level as add-on to 

the fuel cost used as input in power plants. However, two variants can be considered, one where 
the external costs are distributed over power producers by adding it to fuel costs (as done for 
figures 6 and 7), and one where the external costs are distributed over the end-users as add-on to 
electricity prices. In the second case, the system not only optimises demand, but does so while 
taking into account increased delivery prices of electricity as set by producers. This, naturally, 
results in a lesser demand, and, as a consequence, a lower level of production. The difference, 
like in the first case, in total power generation (in a business-as-usual scenario) between with and 
without (global warming plus carbon sequestration) external costs lies in the order of 40 TWh/yr, 
or about 2% of total production. As a matter of fact, since the overall reduction in demand as a 
result of additionally including carbon sequestration is about 8 TWh/yr on average in the second 
case, the production level change as a result of the inclusion of all externalities lies this time 
slightly above 40 TWh/yr. The detailed results are depicted in figure 8. One sees that the features 
observed in this (consumer) case are roughly similar to the ones as found in the first (producer) 
case (compare figures 7 and 8). For example, coal-based power production including carbon 
sequestration is partly substituted by IGCC coal power production, the latter becoming more 
attractive due to the smaller impact of external sequestration costs on the output price of 
electricity. Also natural gas based production profits from the changed difference in production 
costs per kWh, and increases its share. If IGCC technologies gain in importance, it indeed seems 
logical that the use of natural gas should do so too, given the comparability of these two 
technologies. 



 18

-150

-100

-50

0

50

100

150

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

TW
h

other
biomass

solar

wind

hydro
nuclear

gas with CO2 capture

gas

oil with CO2 capture
oil

coal with CO2 capture

coal igcc

coal

 
 

Figure 8. Additional overall and energy-specific reduction in electricity production  
after also including CO2 sequestration external costs (BAU case, consumer-side). 

 
A comparison of both base-case variants of figures 7 and 8 – with external costs 

accounted for via either fuel input for power plants or for the end-users of electricity – shows 
that in an optimisation model like MARKAL the difference between these two distribution 
systems induces little change. This could be expected, because the model optimises 
simultaneously the supply and demand side, while taking into account price-elasticity effects on 
the demand side. Also, the model does not take into account behavioural effects, but merely 
takes a rational approach to meet constraints and to cope with cost increases, so that no large 
differences are to be expected between the two cases. Nevertheless, some small effects were 
found. These are hard to explain because of the complex interactions and competitions between 
technologies and energy carriers. For example, applying external costs to output power prices 
generates a little bit more coal IGCC electricity, and a little less biomass and natural gas. In this 
case, there is also a little less hydropower in the earlier periods; the system uses its maximum 
hydropower potential only in the case when externality costs are charged on fuel as input to 
power generation. 

Figures 6, 7 and 8 all present our comparison results in the BAU scenario. For the 
550 ppmv stabilisation case, the introduction of external costs for global warming and CO2 
sequestration has been briefly inspected as well. In most respects, our findings are very similar as 
in the BAU case. Including carbon sequestration externalities induces, likewise – whether 
accounted for at the production level or at the level of end use – an overall production that is on 
average slightly lower than in the case without these sequestration externalities. Also in the 
production mix there are changes similar to the ones encountered in the base case. Coal-based 
production with CO2 capture decreases over the whole time frame, while IGCC and natural gas 
show a slight increase in production, especially over the first few decades. Also other production 
means gain in interest in this case (predominantly later in time), among which solar, biomass and 
hydro energy. Of course, like previously observed, the shifts in the production mix remain 
modest compared to the overall production level. While the shifts in the stabilisation case are 
perhaps slightly larger than in the base case, they show a very similar trend, indicating the 
robustness of our analysis results. 
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We end by presenting analysis results through which some final findings can be derived 
regarding both the effect of including externalities and the difference between the producer and 
consumer cases: the evolution over time of the amount of sequestered carbon dioxide and the 
total (remaining) amount of emitted CO2. The amount of sequestered CO2 is, of course, 
influenced by the inclusion (or not) of external costs. Figure 9 shows the annual amount of 
geologically stored CO2 for each of the different scenarios assessed so far. As observed earlier, 
carbon sequestration already appears in the base case where no climate constraint is imposed. 
But the amount of CO2 sequestered becomes significantly larger when a stringent climate policy 
is introduced. In both cases, the incorporation of external costs, either with or without 
sequestration externalities, lowers the amount of carbon sequestered in the long run. Including 
additional sequestration externalities lowers the amount of carbon sequestered further in 
comparison to the case where these externalities are not included. In the base case, it does not 
matter whether one charges these externalities at the producers or consumers side, while in the 
stabilisation scenario one can discern a small difference as a result of using these different 
accounting schemes. 

Applying global warming external costs has the largest impact: a total cumulative 
reduction of sequestered carbon dioxide of 150 Mton in the base case and 420 Mton in the 
550 ppmv stabilisation case (hence, over the 21st century modelled, on average 1.5 and 
4.2 Mton/yr, respectively). Also adding sequestration external costs reduces the cumulative 
amount of carbon sequestered further with 190 Mton and 300 Mton (1.9 and 3.0 Mton/yr) for the 
base and 550 ppmv cases respectively. Applying external costs on end-users or fuel input 
involves a change in the amount of carbon sequestered, in the 550 ppmv case, of the same order 
of magnitude as the change incurred as a result of whether or not including carbon sequestration 
externalities. Overall, with an accounting for environmental externalities, sequestration becomes 
less part of the solution to meet climate change targets, while demand reduction, energy switches 
and technological change take a more important role. This illustrates the significant sensitivity of 
our model to price changes, even when these are small. 
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Figure 9. Total annual amount of sequestered carbon dioxide in Mton/yr. 
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As can be seen from figure 9, the inclusion of external global warming costs significantly 

lowers the amount of carbon sequestered in the long run. At first sight, this result may appear 
counter-intuitive, as one would perhaps expect the higher the damage provoked by carbon 
dioxide, the larger its sequestration. The mechanism driving the result, however, is: accounting 
for external costs implies in practice an increase of the costs (for either producers or consumers) 
- and hence in principle a decrease in attractiveness - of using fossil fuels as input for power 
plants. This implies that other energy options may play an enhanced role, or that the overall 
demand for electricity decreases due to the cost increase of electricity through the inclusion of 
external global warming costs. With the internalisation of climatic external costs, the use of 
important emitters of greenhouse gases, such as fossil-fuelled power plants, is most heavily 
affected, in the sense that gains are obtained in terms of avoiding detrimental greenhouse gases, 
but higher costs are incurred as a result of implementing carbon capture processes (that are 
unlikely to ever become 100% efficient). In our scenario analysis, it appears that the gains in 
terms of carbon emission mitigation through carbon capture are not high enough, or the 
additional involved costs for fossil fuels too elevated, in comparison with non-fossil options that 
are free of carbon emissions. A lowering of total energy production, and consequently of carbon 
emission and sequestration, and/or an increase in e.g. electricity from renewables might explain 
why we find lower carbon sequestration when including external global warming costs. 

The inclusion of external costs makes a difference as well in terms of the overall carbon 
dioxide emission path, the impact being slightly larger in the base case than in the 550 ppmv 
case (see figure 10, in which external costs are accounted for at the level of the fuel input to 
electricity production). In the former case, carbon emissions are lowered over the entire time 
frame considered, as a result of including these externalities, with little difference as to whether 
one includes carbon sequestration external costs or not. In the latter case, a shift in time occurs in 
the calculated emission path, while the overall cumulative amount of emitted CO2 (calculable 
through an integration over the area under the emission evolution curve) remains approximately 
the same. Again, there is little impact on the calculated emission level from an inclusion or not of 
external costs resulting from carbon sequestration. Obviously, a sharp decline in emissions 
results (in comparison to the base case) when one imposes the 550 ppmv carbon concentration 
constraint. As can be seen from figure 9, this decrease in emissions coincides with an increase in 
the amount of carbon sequestered underground. As we can see from a comparison between 
figures 9 and 10, in 2100 the amount of sequestered carbon dioxide is about the same as the 
remaining level of carbon dioxide emissions. 
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Figure 10. Total amount of remaining CO2 emissions. 
 
 
5. Discussion, conclusion and recommendations 
 
Given the preceding presentation of our main results, the prime conclusion of this analysis is 
that, while external environmental effects of carbon sequestration are generally likely to be 
relatively small, these externalities matter, and influence the nature of future world energy 
supply and consumption significantly enough to pay due attention to them. More importantly, 
since geological carbon storage (depending on the method employed) may in some specific cases 
have very substantial external impacts – in terms of both environmental damage and health risks 
– it is recommended that extensive studies are performed to quantify these effects. As explained, 
the numbers postulated in table 3.1 do not involve any detailed calculation. The proper way to 
proceed would be to determine more precise data for all damage costs of geological carbon 
sequestration. Ideally, a complete impact pathway analysis would be performed, along the lines 
for other energy resources and technologies of the EU ExternE project (see, e.g., ExternE, 1998). 
We thus recommend that external damage cost calculations for carbon sequestration are included 
in the next phase of ongoing ExternE analyses. Also the fossil fuel cycle including carbon 
capture and sequestration should be analysed according to the method by which its effects are 
calculated in terms of emissions, dispersion, impact and the total monetary value of this impact, 
resulting in an overall environmental damage cost in terms of $(or €)-cents per kWh. As long as 
detailed calculations remain absent, and until the moment that appropriate calculations will have 
been performed, we think that the numbers presented in table 3.1 can be considered rough but 
reasonable guesstimates. 

In the beginning of this article we posed ourselves three main questions. The first one – 
on the nature of energy supply if one accounts for CO2 sequestration in the construction of long-
term energy scenarios – we have addressed by the presentation of the scenario results as 
produced with MARKAL-ED. The second question concerned the inclusion of hypotheses 
regarding the level of external costs, and the effect hereof on the calculation of long-term energy 
scenarios. As mentioned, the effect is unlikely to be very large. It certainly does not seem to be 
negligible, however, so that we judge it necessary that detailed calculations are performed for a 
proper quantification of the external environmental costs of large-scale CO2 sequestration. Once 
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such calculations have been made, the question of how these costs may affect the construction of 
long-term energy and climate change scenarios – which we answered at a first and preliminary 
approximation – can be revisited. Responding to our third question: it does not seem to matter 
significantly whether carbon sequestration damage costs are charged directly to energy 
consumers or, instead, to electricity producers. Surely in comparison to the inclusion of external 
global warming costs, the effect of choosing either of these two accounting schemes is small. 
The effect is expected to be of the order of magnitude of the incorporation of external costs for 
carbon sequestration. 

It is commonly expected that without the imposition of a climate constraint the use of 
coal will be continued, and even considerably expanded, during the entire 21st century. Among 
the reasons are that coal is relatively cheap and readily available in large quantities at many 
locations the world over, notably in various large developing countries. Because of its polluting 
nature, however, both regarding local air pollution and as important contributor to global 
warming, the use of coal will probably be slowly discontinued over the decades to come when 
stringent climate objectives are to be met. An important conclusion of our analysis is that the role 
of coal probably remains important, even under a strict climate constraint, if carbon capture and 
sequestration is implemented on a large scale. Other research has come to similar conclusions 
(see, for example, McFarland et al., 2002), the main reason being that, among the three fossil 
fuels, carbon capture is most easily implemented for coal technologies, thus allowing its 
continued use when reductions of carbon emissions are aimed at. Another finding, not reported 
so far in the literature, is that coal power plants may be simultaneously operated for both 
electricity generation and the production of CO2 to be employed for methane extraction. Through 
the use of ECBM, natural gas (the cleanest of all fossil fuels) is then produced as by-product of 
the carbon dioxide injection process in coal seams, and can thereby be advantageously fed back 
into the energy system. If external damage costs for global warming are included, these findings 
remain roughly unchanged, the only difference being that coal with IGCC technologies (which 
will increasingly gain importance over the decades to come irrespective of the scenario assumed) 
is further favoured to the debit of conventional coal technologies. If also carbon sequestration 
damage costs are included, a small change can be observed from the use of coal plus carbon 
sequestration to the use of, predominantly, natural gas. 

Some further analysis has resulted in preliminary answers regarding a number of other 
questions, not reported in section 4, such as what the origin of the total sequestered amount of 
CO2 is. It proves that in both the base case and the climate-constrained scenario, the geologically 
stored CO2 mainly originates from two sources: coal power generation and fuel conversion (that 
is, the production of hydrogen). Coal power generation is in both scenarios the most important 
source of sequestered CO2. As we have seen, accounting for external costs induces changes in 
the electricity production mix. If external carbon sequestration costs are included in the analysis, 
especially mixes that include options with CO2 capture and storage change. This affects, 
naturally, the composition of the sources of CO2 capture. From our preliminary analysis, 
however, it follows that the effect of this inclusion is not very large, probably because of the 
relatively small expected external sequestration cost level. It may still be worthwhile to explore 
this subject matter further. 

Where will CO2 be sequestered? Again, we have not fully explored this question yet, but 
some preliminary study suggests that coal beds become the main recipient of CO2, since this 
sequestration method, through ECBM, involves the beneficial recovery of methane. This finding 
is surprising, since ECBM is currently not seen as one of the most evident options for carbon 
storage. It results from our various modelling assumptions regarding (fuel) prices, and needs to 
be further investigated. Even in a base case scenario, ECBM is mostly followed by EOR, 
because of the advantageous oil recovery it implies. In a climate-constrained case higher 
sequestration levels should be attained, so that one is likely to observe an exhaustion of both the 
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ECBM and EOR potentials. This implies that storage in aquifers, as well as in depleted oil and 
natural gas fields, starts being employed by the end of the modelling horizon. Biological sinks 
are only likely to play a modest role throughout the entire 21st century. As shown from a quick 
inspection of the matter, the inclusion of external costs affects the sequestration options chosen 
in the system. The impact, however, does not seem to be very significant: in all cases, ECBM 
remains the predominant favourite and is used as first storage option, given the interesting option 
of energy recovery, while EOR comes second in line and appears later in time. Storage in 
aquifers and depleted oil and gas fields remains, it seems, a backstop solution. Since non-
negligible effects of external cost internalisation on the nature of carbon sequestration recipients 
are observed, especially in the 550 ppmv stabilisation scenario, this constitutes a window for 
further research. 

Among the other topics for future research is an analysis of welfare effects. In 
MARKAL, the surplus of consumption and production means can be interpreted as some 
measure of the welfare level of the economic system. For the short term, the imposition of a 
climate constraint and the inclusion of environmental externalities in energy costs involve a loss 
of this welfare measure. As a result of these conditions, the energy system evolves in a way 
different than without them, so that in the long run the welfare loss implications may not be 
trivial. The marginal cost of electricity, to be paid by consumers, is one of the determinants of 
the welfare (loss) level. This electricity cost is affected by both the climate constraint and the 
inclusion of externalities. External costs are thought to typically increase the marginal cost of 
electricity by 1.0 to 1.5 €cent/kWh, in the base case scenario. For the 550 ppmv climate-
constrained scenario, the picture is more complex, as a result of the interplay between shifting 
investments and the presence of learning phenomena. Also this matter may be subjected to future 
research. 

It is likely that geological carbon sequestration is going to be applied on a large scale 
over the decades to come. Among the various reasons is the fact that this allows continuing the 
present use of fossil fuels and that of their supporting infrastructures. However, carbon storage is 
neither a sustainable nor a renewable energy option: “true” renewables remain preferable over 
the longer run. The long-term deployment of renewables, however, might be negatively affected 
by the development of carbon sequestration today. It is therefore important, in both the scientific 
and policy-relevant discussion around this matter, that possible external environmental impacts 
of carbon sequestration are not discarded, in the same way as externalities of renewables should 
not be left out in assessments of their potential and desirability. In the discussion around carbon 
sequestration, the energy price paid for the carbon capture and storage process should also be 
included, as should be the observation that it prolongs the fossil fuel époque (fossil fuels 
remaining constrained by their limited abundance), with all the detrimental side-effects the 
continued use of carbon-based energy may entail. Although geological carbon storage is 
inherently not renewable, carbon sequestration could be considered a useful solution to bridge 
the 21st century, and create the time needed to let real renewable and sustainable energy sources 
evolve into competitive alternatives. It may thus prove a suitable technology for the development 
of paths leading to the sustainable use of energy. 
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