Youssef, Slim Ben

Working Paper
R&D in Cleaner Technology and International Trade

Nota di Lavoro, No. 17.2004

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Youssef, Slim Ben (2004) : R&D in Cleaner Technology and International Trade, Nota di Lavoro, No. 17.2004, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/117896

Standard-Nutzungsbedingungen:
Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.
Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.
Sofern die Verfasser die Dokumente unter Open-Content-Lizzen (insbesondere CC-Lizzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
R&D in Cleaner Technology and
International Trade

Slim Ben Youssef

NOTA DI LAVORO 17.2004

JANUARY 2004

CCMP – Climate Change Modelling and Policy

Slim Ben Youssef, LAREQUAD and Faculté des Sciences Economiques et de Gestion de Mahdia

This paper can be downloaded without charge at:

The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXXXX

The opinions expressed in this paper do not necessarily reflect the position of Fondazione Eni Enrico Mattei
R&D in Cleaner Technology and International Trade

Summary

We consider a dynamic three-stage game played by two regulator-firm hierarchies to capture the scale and technological effects of opening markets to international trade. Each firm produces one good sold on the market. Firms can invest in R&D in order to lower their fixed emission/output ratio and are regulated with costly public funds. We take the context of sufficiently high market sizes and investment cost parameters. Opening markets to international trade yields more investment in R&D, more production and a lower emission ratio. When the market size is low enough and the investment cost parameter is high enough, pollution in common market is higher than in autarky. International trade reduces the social welfare.

Keywords: R&D, Cleaner technology, Common market, Social welfare

JEL Classification: D62, F12, O32

Address for correspondence:

Slim Ben Youssef
Faculté des Sciences Economiques et de Gestion de Mahdia
Université de Tunis El Manar
Boite Postale No 248
2092 El Manar 2
Tunisia
E-mail: slim.benyoussef@gnet.tn
1. Introduction

This paper studies the combination of the scale and technological effects of opening markets to international trade by means of a dynamic model where there is a possibility to invest in research and development (R&D) while supposing the existence of positive marginal social cost of public funds. We show that opening markets to foreign competitors may increase pollution and always decreases the social welfare.

The relation between free trade and pollution can be explained by three main effects. The scale effect linking pollution to the scale of production and it is expected that international trade increases production and therefore pollution. The composition effect admits that certain dirty industries could relocate in countries with more lenient regulations. The technological effect refers to the possibility that international competition may encourage the innovation and diffusion of cleaner technologies to reduce the pollution intensity.

Copeland and Taylor (1994) develop a static two-country general equilibrium model to isolate the scale, composition and technique effects of international trade on pollution. They show that trade liberalization may raise world pollution. Let’s notice that even if they isolate the technique effect, they don’t consider the possibility of investment in cleaner production technology because they suppose that it’s available and is characterized by abatement possibilities. Antweiler et al. (2001) have conducted empirical tests using data on sulfur dioxide concentrations and have shown that free trade reduces pollution. Reppelin-Hill (1999) empirically demonstrates that a cleaner technology (the electric arc furnace) is diffused more quickly in countries having more open trade regimes. However, these three last papers haven’t proved any result concerning the welfare effects of free trade.

Karp et al. (2001) show that autarky is likely to Pareto-dominate free trade in the long run when the environment is fragile, and the result is reversed when the environment is resilient. Walz and Welisch (1997) highlight that welfare-maximizing governments of exporting countries prefer free trade even if countries subsidize their local industries indirectly through ecological dumping. Péchoux and Pouyet (2003) show that, under incomplete information, international competition generated by the common market
enables regulators to reduce the informational rents captured by firms, thereby reinforcing the need to open the markets to international competition.

The most important difference of our approach with respect to the above literature is that firms have the possibility to invest in R&D to lower their emission/output ratio, and we think that the better way to model the investment in cleaner technology is a dynamic model in which the production and innovation decisions are taken at different dates. Our approach is motivated by the fact that in many industries pollution is function of production with no abatement possibilities, and the only way to reduce the pollution intensity is to change the production process i.e. to invest in R&D.

We consider a symmetric three-stage game played by a pair of regulator-firm hierarchies. In the third stage, each firm produces one good sold on the market. In the second stage, firms can invest in R&D in order to lower their fixed emission/output ratio. In the first stage, regulators propose non-cooperatively their contracts which should be accepted by their respective firms while giving the socially optimal levels of production, pollution and R&D. We study the full information context and suppose the existence of positive marginal social cost of public funds ($\lambda > 0$). Our objective is to compare the optimal equilibrium values in autarky and common market.

Let's notice the important role played by the positive marginal social cost of public funds because if it's nil the equilibrium values in autarky and common market are equal. In our complete information context, the presence of positive λ means that each regulator gives, in its social welfare function, a higher weight to the profit of its firm with respect to the consumer surplus and the damages caused by pollution. So, when markets are opened to international trade, competition of firms on the common market incites each regulator to increase its production to get a higher share of the common market and this forces them to decrease their emission ratio by increasing their R&D level to have less pollution with respect to the status quo in innovation. However, since the marginal cost of innovation is increasing, the R&D level doesn't rise in a sufficiently quantity which might increase pollution. Consequently, international competition increases production and innovation which might reduce the profit of firms and increase pollution, thus, always reducing the social welfare.
The paper has the following structure. Section 2 presents the basic model when markets are separated. Section 3 treats the case of a common market. Section 4 compares the equilibrium values given by the autarky and common market regimes, and section 5 concludes. Finally, an appendix gathers all the proofs of propositions.

2. Separate markets

Our symmetric model consists of two countries and two firms. Firm i located in country i is a regional monopoly and produces good i in quantity q_i sold in the domestic market with the following inverse demand function: $p_i = a - 2q_i, a > 0$. The size of each market is therefore $a/2$.

As firm i is a regional monopoly that pollutes the domestic environment, it should be regulated. The regulator can use three types of instruments: a subsidy per-unit of R&D to induce the socially optimal levels of R&D and emission/output ratio, an emission tax per-unit of pollution to induce the socially optimal levels of production and pollution, and a lump sum tax on profit to extract all the profit of the firm because of the positive marginal social cost of public funds. However, computations are very difficult with this first method of regulation. Indeed, the regulator must choose the socially optimal emission tax and subsidy in the first stage given the reaction of the firm which will choose its optimal levels of R&D and production in the second and third stages, respectively. Since our primary objective is to compare the socially optimal equilibrium values of production, innovation, pollution and social welfare in autarky and common market, we consider a second method of regulation which considerably eases computations.

In the first stage, each regulator proposes to his firm a contract (q_i, x_i, T_i) where q_i is the level of production that firm i must produce, x_i is the level of R&D that must be attained by the innovation activity of the firm, and T_i is a monetary transfer inducing the firm to accept this contract. The value of T_i is as such that the net profit of the firm will be at least equal to its reservation utility level which we assume to be equal to zero. When the monetary transfer is positive, the firm receives a subsidy, and when it’s negative, the firm
pays a tax. In the second stage, firms invest in R&D, and in the third one, they produce the contracted quantities.

The production process generates pollution and firms can invest in R&D in order to decrease their fixed emission/output ratio. The level x_i of R&D costs kx_i^2, where $k>0$ is an investment cost parameter.

Denoting the marginal cost of production by $\theta>0$, the profit of firm i is

$$\Pi^a_i = p_i(q_i)q_i - \theta q_i - kx_i^2,$$

and its net profit is $U_i = \Pi^a_i(q_i, x_i) + T_i$.

By normalizing the emission/output ratio to one without innovation, the pollution ratio of firm i is: $e_i = 1 - x_i$, $0 < x_i < 1$.

The emission of pollution of firm i is thus: $E_i = e_i q_i$.

Damages caused to country i are purely local: $D_i = \alpha E_i$, where $\alpha>0$ expresses the sensitivity of consumers to the quality of the environment.

The production of q_i engenders a consumer surplus in country i equal to

$$CS^a_i = \int_0^p p_i(t)\,dt - p_i(q_i)q_i = q_i^2.$$

Denoting the marginal social cost of public funds by $\lambda>0$, the consumer welfare of country i is:

$$W^a_i = CS^a_i(q_i) - D_i(q_i, x_i) - (1 + \lambda)T_i.$$

The social welfare of a country is equal to the consumer welfare plus the net profit of the domestic firm:

$$S^a_i = W^a_i + U_i = CS^a_i(q_i) - D_i(q_i, x_i) + (1 + \lambda)\Pi^a_i(q_i, x_i) - \lambda U_i.$$

In our complete information setting, each regulator i maximizes his social welfare with respect to q_i, x_i and U_i under the rationality constraint of firm i. We allow ourselves to express the regulator’s problem in function of U_i rather than T_i because these latter are one-to-one related. Since the reservation utility level of firms is assumed to be equal to zero, the regulator chooses the monetary transfer so that the net profit of his firm is nil ($U_i = 0$). Therefore, the social welfare of country i becomes:

1. We suppose that there is no R&D spillovers between firms because we are able to compare the social welfare in the two market regimes only when this parameter is very small. See d’Aspremont and Jacquemin (1988) for more on this topic.

2. In this paper, we ignore the possibility of transboundary pollution.

3. See Laffont (1994) for more on this.
Expression (1) shows that a higher weight is given to the profit of the domestic firm in the social welfare function, with respect to the consumer surplus and the damages caused by pollution.

The first order condition of the third stage is:

\[
\frac{\partial S_i^u}{\partial q_i} = 0
\]
(2)

The resolution of (2) yields:

\[
q_i^u(x_i) = \frac{\alpha x_i + (1+\lambda)(a-\Theta) - \alpha}{2(1+2\lambda)}
\]
(3)

From expression (3), we have:

\[
\frac{\partial q_i^u}{\partial x_i} = \frac{\alpha}{2(1+2\lambda)} > 0 \quad \text{and} \quad \frac{\partial q_i^u}{\partial \lambda} = 0
\]
(4)

Therefore, the quantity produced by a firm increases with the increase of its own R&D level because it reduces its emission/output ratio, and doesn't depend on the R&D level of the other firm because there is no interaction between the two hierarchies.

The first order condition of the second stage is:

\[
\frac{dS_i^u}{dx_i} = \frac{\partial q_i}{\partial x_i} \frac{\partial S_i^u}{\partial q_i} + \frac{\partial S_i^u}{\partial \lambda} = 0
\]
(5)

At the equilibrium, by using (2), equation (5) is simplified and, by using (3), its symmetric solution is:

\[
x_i^u = \alpha \frac{(1+\lambda)(a-\Theta) - \alpha}{4(1+\lambda)(1+2\lambda)k - \alpha^2}
\]
(6)

To insure that the numerator of (6) is positive, we need that:

\[
(1+\lambda)(a-\Theta) > \alpha \Leftrightarrow a > \Theta + \frac{\alpha}{1+\lambda}
\]
(C.1)

Therefore, our results are true when the market sizes are high enough. Otherwise, regulators will choose not to innovate nor to produce.

We also need that \(1 - x_i^u > 0 \Leftrightarrow k > \frac{\alpha(a-\Theta)}{4(1+2\lambda)}\)
(C.2)

4 We look for the symmetric equilibrium because the model is symmetric and computations are easier.

5 Alternatively, we can require that the numerator and denominator are both negative. However, this last condition will be incompatible with the concavity condition of the second stage.
Conditions (C.1) and (C.2) insure the second order condition of the second stage and the positivity of the optimal levels of R&D and production.

3. International trade

When firms produce perfect substitute goods sold in both countries, the inverse demand function becomes: \(p = a - (q_i + q_j) \).

The firms profits are: \(\Pi_i^{cm} = p(q_i + q_j)q_i - \Theta q_i - k \alpha_i^2 \).

The total consumer surplus is equally divided between the two symmetric countries:

\[
CS_i^{cm} = \frac{1}{2} \left[\int_0^{q_i+q_j} p(t) dt - p(q_i + q_j)(q_i + q_j) \right] = \frac{1}{4} (q_i + q_j)^2
\]

As in autarky, firms have a zero net profit and the social welfare of country \(i \) is:

\[
S_i^{cm}(q_i, q_j, x_i) = CS_i^{cm}(q_i, q_j) - D_i(q_i, x_i) + (1 + \lambda) \Pi_i^{cm}(q_i, q_j, x_i)
\]

(7)

The first order condition of the third stage is:

\[
\frac{\partial S_i^{cm}}{\partial q_i} = 0
\]

(8)

Resolving (8), we get:

\[
q_i^{cm}(x_i, x_j) = \frac{[(3 + 4 \lambda) x_i - (1 + 2 \lambda) x_j] \alpha + 2(1 + \lambda)(1 + \lambda)(a - \Theta) - \alpha}{2(1 + \lambda)(2 + 3 \lambda)}
\]

(9)

From (9), we have:

\[
\frac{\partial q_i^{cm}}{\partial x_i} = \frac{(3 + 4 \lambda) \alpha i}{2(1 + \lambda)(2 + 3 \lambda)} > 0 \quad \text{and} \quad \frac{\partial q_i^{cm}}{\partial x_j} = \frac{- (1 + 2 \lambda) \alpha j}{2(1 + \lambda)(2 + 3 \lambda)} < 0
\]

(10)

When a firm increases its level of R&D, this enables it to produce more because its emission/output ratio is lowered. When the rival firm increases its level of innovation, this lowers its pollution ratio and therefore can produce more, forcing the initial competing firm to reduce its production.

The first order condition of the second stage is:

\[
\frac{dS_i^{cm}}{dx_i} = \frac{\partial q_i}{\partial x_i} \frac{\partial S_i^{cm}}{\partial q_i} + \frac{\partial q_j}{\partial x_i} \frac{\partial S_j^{cm}}{\partial q_j} + \frac{\partial S_j^{cm}}{\partial x_j} = 0
\]

(11)

The second order condition of the second stage is verified at the equilibrium iff:

\[
k > \frac{7 + 21 \lambda + 16 \lambda^2}{4(1 + \lambda)^2 (2 + 3 \lambda)^2} \alpha^2
\]

(C.3)
Using (8), (9) and (10), the symmetric solution of (11) is:

\[
x_i^{cm} = \frac{(4 + 11\lambda + 8\lambda^2)(1 + \lambda)(a - \Theta) - \alpha k}{4(1 + \lambda)^2 (2 + 3\lambda)^2 k - (4 + 11\lambda + 8\lambda^2)\alpha^2}
\] (12)

We also need that \(1 - x_i^{cm} > 0 \iff k > \frac{(4 + 11\lambda + 8\lambda^2)(a - \Theta)\alpha}{4(1 + \lambda)(2 + 3\lambda)^2}\) (C.4)

Conditions (C.1) and (C.4) imply that the optimal R&D level is positive.

The symmetric expression of (9) is:

\[
q_i^{cm} = \frac{1}{2 + 3\lambda} \left[\alpha x_i^{cm} + (1 + \lambda)(a - \Theta) - \alpha \right]
\] (13)

4. Separate markets versus common market

The following results are verified under conditions (C.1) to (C.4) which imply that \(a\) and \(k\) are high enough.

Let’s remark that if \(\lambda\) is nil, then expressions (3), (6), (12) and (13) show that the optimal values in autarky and common market are equal.

Proposition 1. The optimal R&D level and production are higher under common market than under separate markets whereas the emission/output ratio is lower.

Competition on the common market leads to a higher level of production because of the strategic substitutability of goods in the profit functions of firms. Such a raise in production is accompanied by a decrease in the emission ratio realized by increasing the level of R&D to cause less damages to the environment with respect to the status quo in innovation.

Proposition 2. When \(a\) is sufficiently low and \(k\) is sufficiently high, pollution in common market is higher than in autarky.

Opening markets to international trade increases production. To avoid major damages, regulators also increase the R&D level but not in a sufficient amount because R&D expenditures increase rapidly with the innovation level. Thus, pollution, which is the
product of the emission/output ratio and production, increases when markets are opened and when \(a \) is low enough and \(k \) is high enough.

It is therefore expected that, under these conditions, the social welfare decreases when markets are opened to international trade.

Proposition 3. Opening markets to international trade reduces the social welfare.

When markets are opened to international trade, both the level of production and R&D increase. The result may be a decrease of the profit of firms, particularly because the marginal cost of innovation is increasing, and a rise of pollution which lead to a diminution of the social welfare.

6. **Conclusion**

This model captures the scale and technological effects and tries to know the impact of opening markets to international trade on production, R&D, pollution and social welfare.

We consider a dynamic and symmetric three-stage game played by two regulator-firm hierarchies in presence of costly public funds. Each firm produces one good sold on the market and can invest in R&D to lower its fixed emission/output ratio.

Free mobility of goods between countries leads to both more investment in R&D and production, and to a lower emission ratio. When the market sizes are sufficiently low and the investment cost parameter is sufficiently high, international trade leads to an increase of pollution. The social welfare is always greater when markets are separated than when there is a common market. Indeed, when markets are opened to international trade, production and innovation increase which may reduce the profit of firms and increase pollution, thus, reducing the social welfare. Let’s point out that all these results are valid when the market sizes of countries and the investment cost parameter are high enough.

A possible extension of this work is to introduce asymmetric information between the regulators and their respective firms concerning their production costs or R&D activity. Incomplete information may change our final result because competition of firms on the common market may reduce their informational rents and therefore increases the social
welfare. Another extension, which could imply difficult computations, is to consider the existence of transboundary pollution between countries.

Appendix

A) Proof of Proposition 1

Using expressions (6) and (12), we show that \(x_i^{cm} - x_i^a > 0 \), which implies that \(e_i^{cm} < e_i^a \).

Since \(x_i^{cm} > x_i^a \), from expressions (3) and (13), we also have \(q_i^{cm} > q_i^a \).

B) Proof of Proposition 2

Consider the function \(f(x_i) = (1 - x_i) [\alpha x_i + (1 + \lambda)(a - \theta) - \alpha] \).

We have: \(f'(x_i) > 0 \iff x_i < x^1 = \frac{2\alpha - (1 + \lambda)(a - \theta)}{2\alpha} \).

If \((1+\lambda)(a-\theta)<2\alpha\), then \(f'(x_i) > 0 \), \(\forall x_i < x^1 \) with \(x^1 > 0 \).

Using the expressions of \(x_i^{cm} \) and \(x^1 \), we show that:

\[
x_i^{cm} - x^1 < 0 \iff k > k^1 = \frac{(4 + 11\lambda + 8\lambda^2)\alpha^2 (a - \theta)}{4(1 + \lambda)(2 + 3\lambda)^2 [2\alpha - (1 + \lambda)(a - \theta)]}
\]

Therefore, if \((1+\lambda)(a-\theta)<2\alpha \iff a < \theta + \frac{2\alpha}{1+\lambda} \) and \(k > k^1 \), then \(0 < f(x_i^a) < f(x_i^{cm}) \), implying that:

\[
E_i^{cm} = \frac{f(x_i^{cm})}{2 + 3\lambda} > \frac{f(x_i^a)}{2 + 3\lambda} > \frac{f(x_i^a)}{2(1 + 2\lambda)} = E_i^a
\]

Thus, when \(a \) is low enough and \(k \) is high enough, opening markets to international trade increases pollution.

C) Proof of Proposition 3

Using expressions (1) and (7), the equilibrium social welfare of country \(i \) can be written as:

\[
S_i = -(1 + 2\lambda)(q_i(x_i))^2 + [\alpha x_i + (1 + \lambda)(a - \theta) - \alpha]\big[q_i(x_i) - (1 + \lambda)k x_i^2
\]

Using expressions (3) and (13):

\[
S_i = d\big[(\alpha x_i + (1 + \lambda)(a - \theta) - \alpha)^2 - (1 + \lambda)k x_i^2
\]
where $d^a = \frac{1}{4(1 + 2\lambda)}$ in autarky, and $d^{\text{cm}} = \frac{1 + \lambda}{(2 + 3\lambda)^2}$ in common market. It's easy to verify that $d^a > d^{\text{cm}}$.

Consider the function $g(x_i) = \frac{1 + \lambda}{(2 + 3\lambda)^2} [\alpha x_i + (1 + \lambda)(a - \Theta) - \alpha]^2 - (1 + \lambda)kx_i^2$.

Using conditions (C.1) and (C.2), $g'(x_i) < 0 \iff x_i > x^2 = \frac{[(1 + \lambda)(a - \Theta) - \alpha]k}{(2 + 3\lambda)^2 k - \alpha^2}$.

Using the expression of x_i^a, we show that $x_i^a - x^2 > 0$.

We have: $S^{\text{cm}} = g(x_i^{\text{cm}}) = d^{\text{cm}}[\alpha x_i^a + (1 + \lambda)(a - \Theta) - \alpha^2] - (1 + \lambda)k(x_i^a)^2 < S_i^a$.

Therefore, opening markets to international trade reduces social welfare.
References

NOTE DI LAVORO PUBLISHED IN 2003

PRIV 2.2003 Ibolya SCHINDELE: Theory of Privatization in Eastern Europe: Literature Review
PRIV 3.2003 Wietze LISE, Claudia KEMFERT and Richard S.J. TOL: Strategic Action in the Liberalised German Electricity Market
KNOW 5.2003 Reyer GERLAGH: Induced Technological Change under Technological Competition
ETA 6.2003 Efrem CASTELNUOVO: Squeezing the Interest Rate Smoothing Weight with a Hybrid Expectations Model
SIEV 7.2003 Anna ALBERINI, Alberto LONGO, Stefania TONIN, Francesco TROMBETTA and Margherita TURVANI: The Role of Liability, Regulation and Economic Incentives in Brownfield Remediation and Redevelopment: Evidence from Surveys of Developers
NRM 8.2003 Elissaios PAPYRAKIS and Reyer GERLAGH: Natural Resources: A Blessing or a Curse?
CLIM 9.2003 A. CAPARRÓS, J.-C. PEREAU and T. TAZDAÏT: North-South Climate Change Negotiations: a Sequential Game with Asymmetric Information
KNOW 10.2003 Giorgio BRUNELLO and Daniele CHECCHI: School Quality and Family Background in Italy
CLIM 11.2003 Efrem CASTELNUOVO and Marzio GALEOTTI: Learning By Doing vs Learning By Researching in a Model of Climate Change Policy Analysis
KNOW 12.2003 Carole MAIGNAN, Gianmarco OTTAVIANO and Dino PINELLI (eds.): Economic Growth, Innovation, Cultural Diversity: What are we all talking about? A critical survey of the state-of-the-art
KNOW 15.2003 Tuzin BAYCAN LEVENT, Enno MASUREL and Peter NIJKAMP (lx): Diversity in Entrepreneurship: Ethnic and Female Roles in Urban Economic Life
KNOW 16.2003 Alexandra BITUSIKOVA (lx): Post-Communist City on its Way from Grey to Colourful: The Case Study from Slovakia
KNOW 17.2003 Billy E. VAUGHN and Katarina MLEKOV (lx): A Stage Model of Developing an Inclusive Community
KNOW 18.2003 Selma van LONDEN and Arie de RUIJTER (lx): Managing Diversity in a Glocalizing World Coalition Theory Network

PRIV 20.2003 Giacomo CALZOLARI and Alessandro PAVAN (lx): Monopoly with Resale
PRIV 22.2003 Marco LiCalzi and Alessandro PAVAN (lx): Tilting the Supply Schedule to Enhance Competition in Uniform-Price Auctions
PRIV 23.2003 David EttINGER (lx): Bidding among Friends and Enemies
PRIV 24.2003 Hanna VARTIAINEN (lx): Auction Design without Commitment
PRIV 26.2003 Christine A. PARLOUR and Uday RAJAN (lx): Rationing in IPOs
PRIV 27.2003 Kjell G. NYBORG and Ilya A. STREBULAEV (lx): Multiple Unit Auctions and Short Squeezes
PRIV 28.2003 Anders LUNANDER and Jan-Eric NILSSON (lx): Taking the Lab to the Field: Experimental Tests of Alternative Mechanisms to Procure Multiple Contracts
PRIV 30.2003 Emiel MAASLAND and Sander ONDERSTAL (lx): Auctions with Financial Externalities
ETA 31.2003 Michael FINUS and Bianca RUNDSHAGEN: A Non-cooperative Foundation of Core-Stability in Positive Externality NTU-Coalition Games
KNOW 32.2003 Michele MORETTO: Competition and Irreversible Investments under Uncertainty
PRIV 33.2003 Philippe QUIRION: Relative Quotas: Correct Answer to Uncertainty or Case of Regulatory Capture?
KNOW 34.2003 Giuseppe MEDA, Claudio PIGA and Donald SIEGEL: On the Relationship between R&D and Productivity: A Treatment Effect Analysis
Alessandra DEL BOCA, Marzo GALIOTTI and Paola ROtha: Non-convexities in the Adjustment of Different Capital Inputs: A Firm-level Investigation

Matthew GLANCHT; Voluntary Agreements under Endogenous Legislative Threats

Narjess BOUBAKRI, Jean-Claude COSSET and Omrane GUEDHAMI: Postprivatization Corporate Governance: the Role of Ownership Structure and Investor Protection

Rolf GOLOMBEK and Michael HOEL: Climate Policy under Technology Spillovers

Slim BEN YOUSSEF: Transboundary Pollution, R&D Spillovers and International Trade

Carlo CARRARO and Carmen MARCHIORS: Endogenous Strategic Issue Linkage in International Negotiations

Tino GOESCHL and Timothy SWANSON: On Biology and Technology: The Economics of Managing Biotechnologies

Katrin MILLOCK and Céline NAUGES: The French Tax on Air Pollution: Some Preliminary Results on its Effectiveness

Bernardo BORTOLOTTI and Paolo PINOTTI: The Political Economy of Privatization

Elbert DJIKGRAAF and Herman R.J. VOLLEBERGH: Burn or Bury? A Social Cost Comparison of Final Waste Disposal Methods

Jens HORBACH: Employment and Innovations in the Environmental Sector: Determinants and Econometric Results for Germany

Lori SNYDER, Nolan MILLER and Robert STAVINS: The Effects of Environmental Regulation on Technology Diffusion: The Case of Chlorine Manufacturing

Lori SNYDER, Robert STAVINS and Alexander F. WAGNER: Private Options to Use Public Goods. Exploiting Revealed Preferences to Estimate Environmental Benefits

László A. KO CZY and Luc LAUWERS (lx): The Minimal Dominant Set is a Non-Empty Core-Extension

Matthew O. JACKSON (lx): Allocation Rules for Network Games

Ana MAULEON and Vincent VANNETELBOSCH (lx): Farsightedness and Cautiousness in Coalition Formation

Matthew HAAG and Roger LAGUNOFF (lx): On the Size and Structure of Group Cooperation

Taiji FURUSAWA and Hideo KONISHI (lx): Free Trade Networks

Halis Murat YILDIZ (lx): National Versus International Mergers and Trade Liberalization

Santiago RUBIO and Alistair ULPH (lx): An Infinite-Horizon Model of Dynamic Membership of International Environmental Agreements

Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO: ICT, Clusters and Regional Cohesion: A Summary of Theoretical and Empirical Research

Giorgio BELLET TINI and Gianmarco I.P. OTTAVIANO: Special Interests and Technological Change

Ronnie SCHÖB: The Beginning of Organic Fish Farming in Italy

Alberto PETRUCCI: Taxing Land Rent in an Open Economy

Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of Global Climate Policy Architectures

Edi DEFRANCESCO: The Beginning of Organic Fish Farming in Italy

Eddy DEFRANCESCO: The Beginning of Organic Fish Farming in Italy

Klaus CONRAD: Price Competition and Product Differentiation when Consumers Care for the Environment

Paulo A.L.D. NUNES, Luca ROSSETTO, Arianne DE BLAEIJ: Monetary Value Assessment of Clam Fishing Management Practices in the Venice Lagoon: Results from a Stated Choice Exercise

ZhongXiang ZHANG: Open Trade with the U.S. Without Compromising Canada’s Ability to Comply with its Kyoto Target

David FRANTZ (lx): Lorenzo Market between Diversity and Mutation

Ercole SORI (lx): Mapping Diversity in Social History

Liljana DERU SIMIC (lx): What is Specific about Art/Cultural Projects?

Natalya V. TARANOVA (lxii): The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case

Kristine CRANE (lxii): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration

Kazuma MAITOBA (lxii): Global Dialogue- Transformation through Transcultural Communication

Catarina REIS OLIVEIRA (lxii): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal

Sandra WALLMAN (lxii): The Diversity of Diversity - towards a typology of urban systems

Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities

Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas
KNOW 79.2003 Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change

ETA 80.2003 Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation

IEM 81.2003 Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets

CLIM 82.2003 Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation

CLIM 83.2003 Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?

CLIM 84.2003 Reyer GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes

CLIM 85.2003 Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing? The cross-country evidence

KNOW 86.2003 Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno

SIEV 87.2003 Lucas BRETSCHGER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments

CLIM 89.2003 Marzio GALEOTTI: Economic Development and Environmental Protection

CLIM 90.2003 Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?

CLIM 91.2003 Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries

ETA 93.2003 Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium

CTN 94.2003 Parkash CHANDER: The γ-Core and Coalition Formation

IEM 95.2003 Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components

IEM 96.2003 Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices

KNOW 98.2003 John CROWLEY, Marie-Cécile NAVES (lxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities

KNOW 100.2003 Alaknanda PATEL (lxiii): Cultural Diversity and Conflict in Multicultural Cities

KNOW 101.2003 David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood

KNOW 102.2003 Sébastien ARCAD, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii): Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City

CLIM 103.2003 Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime

CLIM 104.2003 Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements

CLIM 105.2003 Anil MARKANDYA and Dirk T.G. RÜBBELKE: Ancillary Benefits of Climate Policy

NRM 106.2003 Anne Sophie CRÉPIN (lxiv): Management Challenges for Multiple-Species Boreal Forests

NRM 107.2003 Anne Sophie CRÉPIN (lxiv): Threshold Effects in Coral Reef Fisheries

SIEV 108.2003 Sara ANIYAR (lxiv): Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example

NRM 110.2003 Anastasios XEPAPADEAS and Catarina ROSETA-PALMA(lxiv): Instabilities and Robust Control in Fisheries

NRM 111.2003 Charles PERRINGS and Brian WALKER (lxiv): Conservation and Optimal Use of Rangelands

CTN 113.2003 Carlo CARRARO, Carmen MARCHIORI and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties

CTN 114.2003 Guillaume HAERINGER and Myrna WOODERS: Decentralized Job Matching

CTN 115.2003 Hideo KONISHI and M. Utku UNVER: Credible Group Stability in Multi-Partner Matching Problems

CTN 116.2003 Somdeb LAHIRI: Stable Matchings for the Room-Mates Problem

CTN 117.2003 Somdeb LAHIRI: Stable Matchings for a Generalized Marriage Problem

CTN 118.2003 Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty
NOTE DI LAVORO PUBLISHED IN 2004

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding, and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSSEN (lxv): Auctions as Coordination Devices

PRA 14.2004 Gadi FIBICH, Arieh GAVIOUS and Aner SELA (lxv): All-Pay Auctions with Weakly Risk-Averse Buyers

PRA 15.2004 Orly SADE, Charles SCHNITZLEIN and Jaime F. ZENDER (lxv): Competition and Cooperation in Divisible Good Auctions: An Experimental Examination

PRA 16.2004 Marta STRYSZOWSKA (lxv): Late and Multiple Bidding in Competing Second Price Internet Auctions

CCMP 17.2004 Slim Ben YOUSSEF: R&D in Cleaner Technology and International Trade
2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>(Editor: Marzio Galeotti)</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>(Editor: Anna Alberini)</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>(Editor: Carlo Giupponi)</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>(Editor: Gianmarco Ottaviano)</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>(Editor: Anil Markandya)</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>(Editor: Sabina Ratti)</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>(Editor: Bernardo Bortolotti)</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>(Editor: Marzio Galeotti)</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>(Editor: Anna Alberini)</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>(Editor: Carlo Giupponi)</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>(Editor: Gianmarco Ottaviano)</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>(Editor: Anil Markandya)</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>(Editor: Sabina Ratti)</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>(Editor: Bernardo Bortolotti)</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>(Editor: Carlo Carraro)</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>