Janssen, Maarten C.W.

Working Paper

Auctions as Coordination Devices

Nota di Lavoro, No. 13.2004

Provided in Cooperation with:
Fondazione Eni Enrico Mattei (FEEM)

Suggested Citation: Janssen, Maarten C.W. (2004) : Auctions as Coordination Devices, Nota di Lavoro, No. 13.2004, Fondazione Eni Enrico Mattei (FEEM), Milano

This Version is available at:
http://hdl.handle.net/10419/117892

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Auctions as Coordination Devices
Maarten C.W. Janssen

NOTA DI LAVORO 13.2004

JANUARY 2004

PRA – Privatisation, Regulation, Antitrust

Maarten C.W. Janssen, Department of Economics, Erasmus University

This paper can be downloaded without charge at:
The Fondazione Eni Enrico Mattei Note di Lavoro Series Index:
http://www.feem.it/Feem/Pub/Publications/WPapers/default.htm

Social Science Research Network Electronic Paper Collection:
http://papers.ssrn.com/abstract_id=XXXXXX

The opinions expressed in this paper do not necessarily reflect the position of
Fondazione Eni Enrico Mattei
Auctions as Coordination Devices

Summary

This paper develops an economic argument relating auctions to high market prices. At the core of the argument is the claim that market competition and bidding in an auction should be analyzed as part of one game, where the pricing strategies in the market subgame depend on the bidding strategies during the auction. I show that when there are two licenses for sale the only equilibrium in the overall game that is consistent with the logic of forward induction is the one where firms bid an amount (almost) equal to the profits of the cooperative market outcome and follow a cooperative pricing strategy in the market game resulting in high prices. With three or more licenses the auction format determines whether the forward induction argument works.

Keywords: Auctions, Market prices, Coordination

JEL Classification: L50

This paper has been presented at the EuroConference on "Auctions and Market Design: Theory, Evidence and Applications" organised by Fondazione Eni Enrico Mattei and sponsored by the EU, Milan, September 25-27, 2003.

An earlier version of this paper was entitled Auctions as Collusion Devices. I thank Ken Binmore, Paul Klemperer, Benny Moldovanu, Giancarlo Spagnolo, Elmar Wolfstetter and participants of presentations at ESEM 2003, Erasmus University and the AMD 2003 conference (Milan) for helpful comments.

Address for correspondence:

Maarten Janssen
Department of Economics
H07-22, Post-box 1738
Erasmus University
3000 DR Rotterdam
The Netherlands
Phone: 31-10-4082341
Fax: 31-10-4089149
E-mail: janssen@few.eur.nl
Auctions as Coordination Devices*

Maarten C.W. Janssen†

October 2003

Abstract

This paper develops an economic argument relating auctions to high market prices. At the core of the argument is the claim that market competition and bidding in an auction should be analyzed as part of one game, where the pricing strategies in the market subgame depend on the bidding strategies during the auction. I show that when there are two licenses for sale the only equilibrium in the overall game that is consistent with the logic of forward induction is the one where firms bid an amount (almost) equal to the profits of the cooperative market outcome and follow a cooperative pricing strategy in the market game resulting in high prices. With three or more licenses the auction format determines whether the forward induction argument works.

1 Introduction

One of the most debated questions concerning the recent wave of spectrum auctions held around the world is whether auctions give rise to higher prices in the market

*An earlier version of this paper was entitled Auctions as Collusion Devices. I thank Ken Binmore, Paul Klemperer, Benny Moldovanu, Giancarlo Spagnolo, Elmar Wolfstetter and participants of presentations at ESEM 2003, Erasmus University and the AMD 2003 conference (Milan) for helpful comments.

†Address for correspondence: prof. Maarten Janssen: Department of Economics, H07-22, Postbox 1738, Erasmus University, 3000 DR Rotterdam, The Netherlands, Phone: 31-10-4082341, Fax: 31-10-4089149, E-mail: janssen@few.eur.nl.
after the auction. Firms tend to stress that they have to recover the money they spend on obtaining a license and therefore tend to set higher prices when auction revenues are high. Economists tend to the view that payments during an auction should be considered as a sunk cost at the moment firms compete in the market place. According to the economic point of view, there is, or should not be, any relation between auction revenues and market prices (see, e.g., Binmore and Klemperer (2002)). Recent experiments show, however, that auctioning rights to compete in the market does lead to higher market prices (see, Offerman and Potters, 2000).

Formally, the sunk cost argument is based on the notion of subgame perfection. This notion basically says that at the beginning of each subgame (read: after some auction outcome is observed and market competition starts) players should look at the future and choose strategies that form an equilibrium in the subgame. The behaviour that has lead to a particular subgame is not relevant for the strategic analysis of that subgame. With multiple equilibria in a subgame, subgame perfection does not give clear guidance to players what to choose. In this case, the notion of forward induction (see, e.g., Van Damme, 1989, Osborne, 1990, Ben-Porath and Dekel, 1992) may complement an analysis in terms of subgame perfection. Under forward induction, past behaviour may signal which future play is intended. Using this idea, this paper argues that market competition and bidding in an auction should be analyzed as part of one game, where bidding behaviour in the auction may signal pricing behaviour in the market game.

The paper analyzes a situation with N bidders. The prize that the winners of the auction get is the right to play the market game. In its most simple form, the market competition game is analyzed as a coordination game in which firms can either follow a competitive strategy resulting in relatively low profits if both decides to do so or a more cooperative strategy with relatively high profits. What is important for the argument to hold is that the market game has multiple equilibria and that the strategy space is finite.¹

The formal results are as follows. With two licenses for sale the claim is that the only equilibrium in the overall game that is consistent with the logic of forward

¹In theoretical IO models, price, quantity and other decision variables are typically modelled as continuous variables. However, discrete variables are typically more realistic: prices have to be set in cents and firms in the real world tend to consider only certain “psychological” prices (ending on 5 or 9).
induction is the one where firms bid an amount (almost) equal to the profits of the cooperative market outcome and follow the cooperative strategy in the market game. In other words, the auction solves the coordination game at the market level in favour of the high profit equilibrium at the market stage. With three or more licenses for sale, the validity of the forward induction argument depends on the type of auction that is chosen. For simultaneous ascending auctions, where bidders can react on each others’ bids, the above argument can be adapted and the result carries over. When the licenses are allocated using some type of sealed-bid auction, the forward induction logic does not apply, however, and I obtain the more standard argument that bidding behaviour in the auction and strategic behaviour in the market are not connected. The differences in results indicate, once more, that details of auction design may have important implications for the final outcome.

An interesting side issue that comes out of the proof is that during the bidding stage in the game, firms may find it optimal to introduce a ”jump bid” (see also Avery, 1998). The size of the jump is given by the difference between the maximal profits that can be obtained by following a competitive market strategy and the overall minimum pay-off winners of the auctions could make in the aftermarket. The jump is necessary to convince others that they will follow the cooperative strategy in the aftermarket.

Intuitively, what the forward induction argument establishes is that by integrating the auction game and the market game into one larger game, auction expenditures are no longer sunk in the larger game. By looking at the market game separately, auction expenditures are indeed sunk, but at the auction stage they are not! Therefore auction expenditures may signal the intention to play a high profit equilibrium in the market game.

Forward induction has first been used in the ”burning money” argument in game theory (see, e.g., Van Damme, 1989, Osborne, 1990, Ben-Porath and Dekel, 1992 and Rubinstein, 1990). The basic idea in this literature is that coordination problems like the ones in Battle-of-the-Sexes games can be resolved if one of two players before playing the game has the option to burn some money. The forward induction argument that is used in this literature is quite similar to the one applied in this paper although there are some major differences. First, in an auction all players, and not just one, have the possibility of ”burning money”. Second, the competitive
pressure present in auctions makes that in the resulting equilibrium, players do burn money, whereas the equilibrium that is selected in the burning money/Battle-of-the-Sexes example, players do not burn money. The fact that nothing is burnt, leads to a fundamental issue regarding game theoretic modelling (see Osborne and Rubinstein, 1994, p. 113): One may always argue that players have the possibility of burning money, but as nothing is burnt it is difficult to perceive this as a signal as it is not clear whether the other player considered the possibility of burning money in the first place. My argument is not prone to this objection as the equilibrium that is chosen has players ”burning money”.

The forward induction argument has been used in a loose way in two closely related papers discussing auctioning the rights to play a coordination game. Van Huyck et al. (1993) discusses an experiment where the right to play a series of coordination games between nine players is auctioned off between 18 players. In the auction, an auctioneer keeps on raising the stakes until nine bidders remain. They find strong evidence that auctioning the rights to play the coordination game makes players coordinate on the Pareto-superior equilibrium. Crawford and Broseta (1998) provides a theoretical model explaining the experimental evidence. The model is based on a history-dependent learning dynamics. Even though both papers mention the similarity of their work to the intuition of the forward induction logic, they explicitly reject the formal forward induction argument as the explanation for the experimental evidence.² The main difference, therefore, between the present paper and these two papers is that I show that the formal forward induction argument can be used. In addition, details of the auction design do matter (see above).³

The paper is also related to recent literature on the interaction between auctions and aftermarkets. Jehiel and Moldovanu (1996a, 1996b, 2001) study the way externalities in the aftermarket have an impact on bidding behavior in the auction.

²In the abstract to their paper, for example, Crawford and Broseta (1998, p. 198) argue that ”the efficiency enhancing effect of auctions is reminiscent of forward induction, but it is not explained by equilibrium refinements”.

³It is true that forward induction does not have the necessary bite in the formal game analyzed by Crawford and Broseta (1998), see p. 205 of their paper for more details. Another difference relates to the interpretation of the results. Crawford and Broseta (1998) use the term ”efficiency-enhancing” as the Pareto-superior equilibrium is a high effort equilibrium in a game where players choose effort in a production process, which presumably is good for both everyone in the model economy. In our setting, the Pareto-superior equilibrium is a high profit equilibrium, which generally leads to low levels of consumer surplus and to overall inefficiencies.
They show that, depending on the specific context, standard properties of auctions do not hold when bidding firms also interact after the auction outcome has been established (see also, e.g., Das Varma, 2002). Signalling does not play a role in these papers. Signalling does play a role in Goeree (2002). In that paper players have private information that affects aftermarket competition. He shows that players may have an incentive to overstate their private information in an attempt to influence the behavior of competitors in the aftermarket. This paper, therefore, falls in the tradition of signalling models where actions (in this case, firms bidding behavior) may reveal a player’s type. In contrast, I look at a situation where private information does not play a role and past actions signal future actions, instead of a player’s private information.

The rest of the paper is organized as follows. Section 2 specifies the model in case two licenses are auctioned off. Section 3 contains the main proposition and its proof for this case of two licenses. Section 4 discusses details of the \(k \geq 3 \) license case and Section 5 concludes with a discussion.

2 The Model and Solution Concept

There are \(N \) firms. The game the firms play is a two-stage game. In the first stage the firms bid in an auction. The two firms with the highest bid continue to the second stage where they play a market competition game. If there is a tie for the first and/or second highest bid, a lottery will determine the ranking of the bids. The bids of the two players that continue to play the market competition game are denoted by \(x_1 \) and \(x_2 \), respectively, where \(x_1 \geq x_2 \). Players have to pay their own bid in case they continue to the second stage of the game. Each firm can win at most one license. For simplicity, but without loss of generality, the next section analyzes a discriminatory auction where each firm submits only one (sealed) bid. For the formal part of the argument it is convenient to have a discrete strategy space and therefore, I assume firms can bid any amount \(x = \epsilon, 2\epsilon, 3\epsilon, \ldots \) The grid \(\epsilon \) measures the bidding increment and I assume that \(\epsilon \) is small.\(^4\) In the second stage, the two winning firms play a market competition game. Firms can choose to play

\(^4\)Note that in most auction designs a bid increment of some kind is implemented.
competitively (aggressively), denoted by A, or cooperatively, denoted by C. The 2x2 game is described in the matrix below

$$
\begin{pmatrix}
C & A \\
C & (a,a & c,d) \\
A & (d,c & b,b)
\end{pmatrix}
$$

, where $a > d \geq b > c > 0$.

So, the value v of winning the auction is uncertain, and can be equal to a, b, c or d. Note that the restrictions on the pay-off parameters imply that there are two symmetric pure-strategy equilibria: (C, C) and (A, A), where the first equilibrium Pareto-dominates the second. The market game is not fully specified in order to allow for many different interpretations. According to most interpretations, high profits and high market prices go together. One interpretation is that the market game is a static game with multiple Pareto-ranked equilibria as the search model described in Janssen and Moraga (2003). Another interpretation of the market game is as a simplified version of repeated interaction in the market, where cooperative play can be supported as an equilibrium outcome. In line with this second interpretation, I denote the action of player i in the market game by p_i. The overall strategy of player i is then denoted by $(x_i, p_i(x_1, x_2))$.

It is clear that any type of market behavior can be part of a subgame perfect equilibrium. Underlying the notion of subgame perfection is the view that deviations from a proposed equilibrium strategy are considered mistakes which are not informative about future behavior (cf., Selten, 1975). The only requirement it imposes is that the strategies in the market game form an equilibrium in the market subgame and in our case there are two equilibria. The argument I made in the Introduction, namely that a deviation of a proposed equilibrium bid in the auction game should not be interpreted as a random mistake, but rather as a signal of future actions in the market game is what motivates the notion of forward induction (see, for the argument that follows it is not necessary that $d \geq b$. The assumption is made to avoid writing $\max(b, d)$ each time. Moreover, in line with the collusion and trigger strategy interpretation, the assumption $d \geq b$ is more natural than the reverse. When we take the fact that licenses are auctioned for a fixed period of time literally, cooperation can still be an equilibrium outcome for some periods of time if we allow uncertainty a la Kreps et al. (1982). Note that in the present context the notion of backward induction formalises the standard economists’ point of view of “auction revenues are sunk cost”.

6
e.g., Kohlberg and Mertens, 1986, Van Damme 1989, and others). An equilibrium is consistent with forward induction if it is not the case that some player, by deviating from the equilibrium path, can ensure that a proper subgame is reached where all solutions but one give the player strictly less than the equilibrium pay-off, and where exactly one solution gives the player strictly more. Underlying the notion of forward induction is the idea that deviations from a proposed equilibrium should be interpreted as signals of future actions, if possible. The solution concept underlying the argument above is iterative elimination of weakly dominated strategies (IEDS).^8

3 Analysis for two licenses

In this section, I prove one of the main results of the paper. The result says that provided the number of competing firms in the auction is large enough, the forward induction argument selects only one of the subgame perfect equilibria. The equilibrium that is selected has firms coordinating on the high profit (price) equilibrium in the market game. Moreover, during the auction phase firms ”burn” all their future profits, i.e., their bids are close to the profits obtained in the market game. There are three important steps in the proof, namely steps (ii)-(iv), and I will describe them informally here. First, the strategy ”bid an amount in the auction game that is larger than the profits one can maximally achieve by choosing a competitive market strategy and choose a competitive market strategy” is dominated as it always leads to a negative profit. This in turn implies that if one of the firms that wins the auction has made a relatively high bid, the other firm can safely assume that this firm will choose to play cooperatively in the market game. Thus, the second step of the argument argues that strategies of the form ”bid an amount x in the auction game and choose a competitive market strategy whenever the other winning firm has bid an amount that is larger than the profits one can maximally achieve by choosing a competitive market strategy” is dominated by a similar strategy where cooperative play in the market game is recommended. These two steps together assure that if someone bids relatively high in the auction, firms play cooperatively in

^8The decision-theoretic foundation of the forward induction argument has been considered weak as it was thought to rest on the iterative elimination of weakly dominated strategies. Recent papers by Asheim and Dufwenberger (2003a, 2003b) give a much more solid foundation in terms of the concept of fully permissible sets. Their arguments can also be applied in the present context.
the market game. The last step in the argument shows that given this anticipation, competition between a large enough number of contestants in the auction assures that it is indeed optimal to bid higher than the profits one can maximally achieve by choosing a competitive market strategy.

Theorem 1 For any \(N \geq \min_{n \in N} \max\{\frac{2(a+2(n+2)\epsilon)}{(a-d-\epsilon)}, \frac{2n+2}{n+1}\} \) the unique equilibrium that is consistent with forward induction has \(x_i \in [a-2\epsilon, a) \) and \(p_i(x_1, x_2) = C, i = 1, ..., N. \)

Proof. The proof eliminates sets of strategies in five consecutive stages. First, define for any given natural number \(n \), \(K \) as the largest integer such that \((K+n+1)\epsilon < c\).

Step \(i \): Fix an integer \(k \) with \(0 \leq k \leq K - 1 \). Given that players’ strategies are restricted to \(x_i \geq ke \), any strategy \((x_i, p_i(x_1, x_2))\) with \(x_i = ke \) is iteratively dominated by \((\bar{x}_i, \tilde{p}_i(x_1, x_2))\) with \(\bar{x}_i = (k+1)\epsilon \) and \(\tilde{p}_i(x_1, x_2) = p_i(x_1, x_2) \). The argument here is quite similar to the conventional elimination of dominated strategies in a first-price sealed-bid auction. The pay-offs the two strategies yield in the second stage is the same, because \(\tilde{p}_i(x_1, x_2) = p_i(x_1, x_2) \), and at least equal to \(c. \) Moreover, the overall pay-off of both strategies is always positive as \(\bar{x}_i \leq c - \epsilon \). The firms thus try to outbid each other, which is what drives the bids up. The last step of the this stage of the elimination procedure is the most stringent and gives a good idea about the previous steps. So, let us briefly consider the argument for the \(K \)th step. In the \(K \)th step I have to argue that any strategy \((x_i, p_i(x_1, x_2))\) with \(x_i = (K-1)\epsilon \) is iteratively dominated by \((\bar{x}_i, \tilde{p}_i(x_1, x_2))\) with \(\bar{x}_i = K\epsilon \) and \(\tilde{p}_i(x_1, x_2) = p_i(x_1, x_2) \).

There are three possible situations to consider: Either \(x_2 > K\epsilon \), or \(x_2 = K\epsilon \), or \(x_2 = (K-1)\epsilon \). In the first case, both classes of strategies (those with \(x_i = (K-1)\epsilon \) and those with \(x_i = K\epsilon \)) under consideration yield a pay-off of 0. In the second case, all strategies with \(x_i = (K-1)\epsilon \) yield a pay-off of 0, whereas strategies with \(x_i = K\epsilon \) yield a positive expected pay-off. In the third case, the pay-off of strategies in the class with \(x_i = (K-1)\epsilon \) yield a pay-off of at most \(2(v-(K-1)\epsilon)/N \), where \(v \) equals \(a, b, c \) or \(d \). The pay-off of strategies in the class with \(x_i = K\epsilon \) yield a pay-off of \(v - K\epsilon \). This latter expression is not smaller than the first expression for any value of \(v \), if it is larger for \(v = c \). As \((K-1)\epsilon < c - (n+2)\epsilon \), this is the case if \((n+2)(N-2)\epsilon/N \geq \epsilon \), or \(N \geq 2\frac{n+2}{1+n} \).
Step ii: Any strategy $(x_i, p_i(x_1, x_2))$ with $x_i \geq d$ and $p_i(x_1, x_2) = A$ whenever $x_i \geq x_2$ is weakly dominated by $(\tilde{x}_i, \tilde{p}_i(x_1, x_2))$ with $\tilde{x}_i < b$ and $\tilde{p}_i(x_1, x_2) = p_i(x_1, x_2)$.

To prove this claim, I will denote the first strategy by s_1 and the second one by s_2. When player i sets strategy s_1, her pay-off is either 0 or negative. I will show that by choosing strategy s_2, she can never do worse and sometimes better. There are three possibilities: $x_2 > x_i$, $\tilde{x}_i \leq x_2 \leq x_i$, $\tilde{x}_i > x_2$. In the first case, both s_1 and s_2 yield a pay-off of 0. In the second case, $\pi_i(s_1, s_{-i}) \leq 0 \leq \pi_i(s_2, s_{-i})$. In the third case, $\pi_i(s_1, s_{-i}) < 0 < \pi_i(s_2, s_{-i})$. Thus, s_2 weakly dominates s_1.

Step iii: Any strategy $(x_i, p_i(x_1, x_2))$ that assigns $p_i(x_1, x_2) = A$ for some value of $x_1 \geq d$ is weakly dominated by $(\tilde{x}_i, \tilde{p}_i(x_1, x_2))$ with $\tilde{x}_i = x_i$ and $\tilde{p}_i(x_1, x_2) = C$ whenever $x_1 \geq d$ and otherwise $\tilde{p}_i(x_1, x_2) = p_i(x_1, x_2)$.

To prove this claim, note that all strategies $(x_i, p_i(x_1, x_2))$ with $x_i \geq d$ that survived IEDS up to this stage have $p_i(x_1, x_2) = C$ because of step (ii). There are two cases then to consider: $x_i < x_2$ and $x_i = x_2$. In the first case, both strategies yield a pay-off of 0. In the second case, let us denote by m the number of players with a bid equal to x_i. There are two subcases: x_1 equals a value larger than or equal to d to which the first strategy assigns $p_i(x_1, x_2) = A$ and all other values of x_1 including $x_1 < d$. In the first subcase, the overall pay-off of the first strategy is $(d - x_i)/m$, whereas the pay-off of the second strategy is $(a - x_i)/m$. In the second subcase, the actions prescribed by both strategies are identical and, therefore, the pay-offs are equal.

Steps $i–iii$ together assure that if one player bids an amount larger than or equal to d in the auction, both players proceeding to the second stage of the game will choose to play cooperatively. The next step argues that all strategies that prescribe players to bid less than d in the auction are iteratively dominated. To this end let us denote by $\tilde{S}^C(0)$ the set of strategies $\{(x_i, p_i(x_1, x_2))| x_i > c - 2\epsilon$ and $p_i(x_1, x_2) = C$ if $x_1 \geq d \}$. Note that this class leaves the second stage action unspecified whenever $x_1 < d$. Let us also define $\tilde{S}^C(0)$ as the subset of $\tilde{S}^C(0)$ with the lowest bid x_i, i.e., $\tilde{S}^C(0) \equiv \{(x_i, p_i(x_1, x_2))| c - 2\epsilon < x_i < c - \epsilon$ and $p_i(x_1, x_2) = C$ if $x_1 \geq d \}$. The lowest bid itself in $\tilde{S}^C(0)$ is denoted by $\hat{x}(0)$. Using these two notions, we can define $\tilde{S}^C(1) \equiv \tilde{S}^C(0) \setminus \tilde{S}^C(0)$ and similarly to defining $\tilde{S}^C(0)$, one can define $\tilde{S}^C(1)$ as the

Note that the case $x_i > x_2$ is covered by (ii) above as it implies that $x_i = x_1 \geq d$.

9
subset of $\tilde{S}^C(1)$ with the lowest bid x_i, i.e., $\tilde{S}^C(1) \equiv \{(x_1, p_i(x_1, x_2))| c - \epsilon < x_i < c$ and $p_i(x_1, x_2) = C$ if $x_1 \geq d\}$. Proceeding iteratively, I define for all $k > 1$, $\tilde{S}^C(k) \equiv \tilde{S}^C(k-1) \setminus \tilde{S}^C(k-1)$ and $\tilde{S}^C(k)$ as the subset of $\tilde{S}^C(k)$ with the lowest bid x_i. In each round the lowest bid itself in $\tilde{S}^C(k)$ is denoted by $\hat{x}(k)$. Finally, I define K^C as the number of steps ϵ that is needed to reach the interval $[d - \epsilon, d]$ from the interval $[c - 2\epsilon, c - \epsilon]$.

Step iv: Fix a $0 \leq k \leq K^C$ and $\tilde{S}^C(k)$. Given that players’ strategies are restricted to $\tilde{S}^C(k)$, all strategies in $\tilde{S}^C(k)$ are weakly dominated by the strategy $(x_i, p_i(x_1, x_2))$ with $d \leq x_i < d + \epsilon$ and $p_i(x_1, x_2) = C$ for all pairs (x_1, x_2).

To prove this step, let us call the dominating strategy s_4. For each $k \geq 0$ there are three situations to consider. Either $x_2 \geq d + \epsilon$, or $\hat{x}(k) < x_2 < d + \epsilon$, or $\hat{x}(k) = x_2$. In the first case, all strategies in $\tilde{S}^C(k)$ as well as strategy s_4 itself yield a pay-off of 0. In the second case, all strategies in $\tilde{S}^C(k)$ yield a pay-off of 0, whereas strategy s_4 yields a pay-off larger than $a - d - \epsilon$ due to the fact that step (iii) implies that if someone bids an amount higher than d, players play C. In the third case, the pay-off of strategy s_4 is still larger than $a - d - \epsilon$, whereas the pay-off of choosing a strategy in $\tilde{S}^C(k)$ cannot be larger than $2(a - c + (n + 2)\epsilon)/N$. When $N \geq \frac{2(a - c + (n + 2)\epsilon)}{(a - d - \epsilon)}$, the first pay-off is not smaller than the second.

Steps i – iv imply that all strategies with bids $x_i < d$ are iteratively eliminated. Both condition on N mentioned in steps i and iv have to be satisfied, and we can choose a natural number n such that the overall condition on N is easiest satisfied. The last step of the argument then is again a conventional auction type of argument. To this end, define K^d as the smallest integer such that $K^d\epsilon > d$ and K^A as the largest integer such that $(K^A + 1)\epsilon < a$.

Step v: Fix an integer k with $K^d \leq k \leq K^A - 1$. Given that players bidding strategies are restricted to $x_i \geq k\epsilon$, any strategy $(x_i, p_i(x_1, x_2))$ with $x_i = k\epsilon$ and $p_i(x_1, x_2) = C$ for all pairs (x_1, x_2) is iteratively dominated by $(\bar{x}_i, \tilde{p}_i(x_1, x_2))$ with $x_i = (k + 1)\epsilon$ and $\tilde{p}_i(x_1, x_2) = p_i(x_1, x_2)$. This last step of the argument is, again, just the conventional argument of elimination of dominated strategies in a first price sealed-bid auction. Given steps (ii)-(iv) firms always play cooperatively in the market game, which guarantees a pay-off of a of winning the auction. Firms would like therefore, to outbid each other, which drives the bids in the auction up. The details of the argument are similar to the argument made in step (i) and are,
therefore, omitted.

Step (iv) of the proof highlights the use of a "jump bid". Given the earlier steps of the proof, a bidder can only guarantee himself the highest possible continuation pay-off in the aftermarket, if he chooses a bid that is higher than the maximal pay-off of d one could get by following market strategy A. Up to that moment in the auction (proof) only bids smaller than c are eliminated. The size of the jump bid is thus at least equal to $d - c$. This step of the proof also makes clear why the forward induction argument does not work when a clock auction is used.

One issue that remains to be discussed is why the argument only works when the number of firms is larger than a specific lower bound on the number of firms participating in the auction. The reason is the following. There is a possibility that bidding stops at the moment all bidders bid an amount x_i close to $c - \epsilon$. The two firms that are randomly selected face a coordination problem in the market game: both playing cooperatively and both playing aggressively are both Nash equilibria. Even though there is no specific reason to do so, it may thus happen that both firms coordinate on playing cooperatively. The total pay-off for the two firms of following this strategy is then smaller than $a - c + (n + 2)\epsilon$. The chance of being selected is $2/N$. Note that the expected pay-off decreases in N as the chance of being selected in the lottery decreases. Each firm then faces the following decision problem: being satisfied with this chance of getting a relatively large pay-off or "jump bidding" to a bid larger than d, which guarantees a pay-off of a in the market game. For "jump bidding" to be profitable, N has to be relatively large.

4 Auctioning $k \geq 3$ Licenses

In this Section we analyze to what extent the result of the previous section can be generalized to the case where $k \geq 3$ licenses are auctioned off. In order to discuss the implications of this generalization, we first need to generalize the market stage pay-offs to the case where k firms compete. The pay-offs when everyone behaves cooperatively or aggressively do not need to be modified. When $n < k$

10 Of course, taking literally jump bids cannot take place in a sealed-bid auction. However, a similar analysis applies to a multi-unit ascending auction.
players play cooperatively and the remaining \(k - n\) players play aggressively, one may denote the pay-off to the aggressors and cooperators by \(d_n\) and \(c_n\), respectively. It is natural to assume that \(d_n < d_{n+1}\) and \(c_n < c_{n+1}\), i.e., the more cooperators, the higher the pay-offs to both cooperators and aggressors. Moreover, I assume that the structure of the coordination game is unaffected, i.e., for every \(n\) the following holds: \(a > d_n \geq b > c_n > 0\). The bids of the \(k\) players that continue to play the market competition game are denoted by \(x_1, \ldots, x_k\), respectively, where \(x_1 \geq x_2 \geq \ldots \geq x_k\). As indicated in the Introduction, the results for the case of \(k \geq 3\) licenses crucially depend on the auction format. To see this, I will consider a sealed-bid discriminatory auction and a simultaneous ascending auction in turn.\(^{11}\)

In a discriminatory sealed-bid auction, the forward induction argument does not work. The overall strategy of player \(i\) in such an auction can be denoted by \((x_i, p_i(x_1, x_2, \ldots, x_k))\). To see why the forward induction arguments fails, consider the equilibrium in which every player chooses a bid just below \(b\) and play aggressively in the market game. The reason that no firm wants to deviate and "signal" the intention to play \(C\) in the market game (bidding high), is that the other \(k - 1\) firms face the following coordination "game". If \(h < k - 2\) out of the other \(k - 2\) winners cooperate, the pay-off in the market game to a player who didn’t bid above \(d_{k-1}\) is equal to \(c_{h+2}\) if he himself cooperates and equal to \(d_{h+1} > c_{h+2}\) if he himself plays aggressively. On the other hand, if all the other \(k - 2\) winners cooperate, the pay-off in the market game to a player who didn’t bid above \(d_{k-1}\) is equal to \(a\) if he himself cooperates and equal to \(d_{h+1} < a\) if he himself plays aggressively. Thus, for these players it is optimal to choose \(C\) if, and only if, all others play \(C\). In a simultaneous auction, this type of coordination problem cannot be resolved. This in turn implies that signalling the intention to play \(C\) in the market game, may not be followed by everyone playing \(C\) in the market game. the result is that nobody may signal the intention to play \(C\) in the market game as players fear that others will not coordinate on the high pay-off equilibrium.

In a simultaneous ascending auction the situation is different. To analyze this type of auction design, I use the following notation: \(x_i(x_0^i, x^k)\) denotes the bid of

\(^{11}\)Some of the arguments presented below are related to the ideas expressed in Ben-Porath and Dekel (1992, pp. 44) who argue that the timing of the signaling is crucial in \(n\)-person games of common interest.
player i at a certain moment during the auction when her highest bid so far is x_i^0 and the k-highest bid so far is x_k^k; moreover, the notation $p_i(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_k)$, indicates that market behaviour is conditional on the final k-highest bids, where \tilde{x}_i denotes player i’s final bid. Player i’s strategy is then denoted by $(x_i(x_i^0, x_k^k), p_i(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_k))$. In this case of a simultaneous ascending auction, the following result extends the analysis of the previous section to the case where there are three or more licenses for sale.

Theorem 2 In a simultaneous ascending auction of $k \geq 3$ licenses the following holds. For any $N \geq \min_{n \in N} \max \{ \frac{k(a-c_1+(n+2)\epsilon)}{(a-d_k-1-\epsilon)}, \frac{k+\epsilon}{n+1} \}$ the unique equilibrium that is consistent with forward induction has $\tilde{x}_i \in [a - 2\epsilon, a)$ and $p_i(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_k) = C$, $i = 1, \ldots, N$.

Proof. (sketch)\(^{12}\) The proof eliminates sets of strategies in several consecutive stages. The first and the last stage are similar to steps (i) and (v) of the proof of Theorem 1, based on iterative elimination of strategies in a standard auction game, and are, therefore, not formally given here. In the first step all bids with $x_i(x_i^0, x_k^k) < c_1 - (n + 2)\epsilon$ are eliminated if $N \geq \frac{k+\epsilon}{n+1}$ (for a given n). The second step is also similar to step (ii) of the proof of Theorem 1, based on the idea that bidding more than one ever could get by playing aggressively in the market game, i.e., bidding more than d_{n-1}, and playing aggressively in the market game is also dominated, and therefore, also not formally given here. Steps (iii) and (iv) require some modifications and basically have to be replaced by an iterative procedure.

To this end, suppose we have executed the first two steps of the elimination procedure and that the auction has proceeded so far that x_i^0 and x_k^k are well-defined.\(^{13}\) I then claim that any strategy $(x_i(x_i^0, x_k^k), p_i(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_k))$ that assigns $p_i(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_k) = A$ for some value of $x_k^{k-1} \geq d_{k-1}$ is weakly dominated by $(\tilde{x}_i(x_i^0, x_k^k), \tilde{p}_i(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_k))$ with $\tilde{x}_k = x_i$ and $\tilde{p}_i(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_k) = C$ whenever $x_k^{k-1} \geq d_{k-1}$ and $\tilde{p}_i(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_k) = p_i(\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_k)$ otherwise.

\(^{12}\)When I mention pay-offs in this proof, I implicitly assume that the pay-offs to a player under consideration are not affected by future bidding in the auction by himself or any other player. Future bidding will never make the lower bid better than the higher bid and as I claim that higher bids dominate lower bids, the argument will never be reversed when future bids would be taken into account.

\(^{13}\)In case bidder i has not bid yet or if less than k different players have bid, one can set $x_i^0 = 0$ and/or $x_k^k = 0$.

13
To prove this claim, note that all strategies \((x_i, p_i(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k))\) with \(x_i \geq d_{i,n-1}\) that survived IEDS up to this stage have \(p_i(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k) = C\) because of step \((ii)\). There are two cases then to consider: \(x_i < x_i^k\) and \(x_i = x_i^k\).14 In the first case, both strategies yield a pay-off of 0. In the second case, let us denote by \(m\) the number of players with a bid equal to \(x_i\). There are two subcases to be considered: \(x_i^{k-1} \geq d_{k-1}\) which according to the first strategy is followed by \(p_i(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k) = A\) and all other values of \(x_i^{k-1}\). In the first subcase, the overall pay-off of the first strategy is \((d_{k-1} - x_i)/m\), whereas the pay-off of the second strategy is strictly larger, namely \((a - x_i)/m\). In the second subcase, the actions prescribed by both strategies are identical and, therefore, the pay-offs are equal.

The above argument assures that if \(k - 1\) players bid an amount larger than or equal to \(d_{k-1}\) in the auction, all \(k\) players proceeding to the second stage of the game will choose to play cooperatively. The next step, similar to step \((iv)\) of the proof of Theorem 1, argues that if there are already \(k - 2\) bids above \(d_{k-1}\) all strategies that prescribe players to bid less than \(d_{k-1}\) in the auction are iteratively dominated. To make the claim more precise, I use notation similar to that in the proof of step \((iv)\) of Theorem 1 with, e.g., \(\tilde{S}^C(0) = \{(x_i(x_i^0, x_i^k), p_i(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k))\mid x_i(x_i^0, x_i^k) > c - (n + 2)\varepsilon\) and \(p_i(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k) = C\) if \(x_i \geq d_{k-1}\}\). So, the next claim, similar to step \((iv)\) of the proof of Theorem 1, is the following: Fix a \(0 \leq k \leq K^C\) and \(\tilde{S}^C(k)\). Given that players’ strategies are restricted to \(\tilde{S}^C(k)\), all strategies in \(\tilde{S}^C(k)\) are weakly dominated by the strategy \((x_i(x_i^0, x_i^k), p_i(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k))\) with \(d_{k-1} \leq x_i(x_i^0, x_i^k) < d_{k-1} + \varepsilon\) and \(p_i(\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k) = C\) for all \((\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k)\).

To prove this claim we should consider for each \(k \geq 0\) three situations. Either \(\hat{x}^k \geq d_{k-1} + \varepsilon\), or \(\hat{x}(k) < x_2 < d_{k-1} + \varepsilon\), or \(\hat{x}(k) = x_2\). In the first case, all strategies in \(\tilde{S}^C(k)\) as well as the dominating strategy itself yield a pay-off of 0. In the second case, all strategies in \(\tilde{S}^C(k)\) yield a pay-off of 0, whereas the dominating strategy yields a pay-off larger than \(a - d_{k-1} - \varepsilon\) due to the fact that step \((iii)\) implies that if \(k - 1\) bidders bid an amount higher than \(d_{k-1}\), players play \(C\). In the third case, the pay-off of the dominating strategy is still larger than \(a - d_{k-1} - \varepsilon\), whereas the pay-off of choosing a strategy in \(\tilde{S}^C(k)\) cannot be larger than \(k(a - c_1 + (n + 2)\varepsilon)/N\).

When \(N\) satisfies the condition mentioned in the Theorem, the first pay-off is not

14Note that the case \(x_i > x_i^k\) is covered by (the not explicitly treated) step \((ii)\) above as it implies that \(x_i \geq x_i^{k-1} \geq d_{k-1}\).
smaller than the second.

The rest of the proof of step (iv) proceeds by induction on j: if there are already $k - j$ bids above d_{k-1} all strategies that prescribe players to bid less than d_{k-1} in the auction are iteratively dominated. The above two claims together argue that this induction claim is true for $j = 2$. Arguments similar to these two claims, and using the fact that players know that if they signal others will follow, can be used to argue that it also holds for $j = 3, \ldots, k$. ■

The fact that the condition on N becomes tighter, when comparing Theorems 1 and 2, is understood if one realizes the fact that with more licenses being auctioned, the chance of getting one of them increases if players bid relatively low amounts. The "jump" that has to be made in order to signal future cooperative behaviour remains the same, however, and therefore, the cost of making such a "jump bid". The main argument, however, remains the same: if someone bids an amount during the auction that he cannot hope to receive in the market game by playing aggressively, i.e., if he bids more than d_{n-1}, then he signals future cooperative behavior. Also, during the auction stage firms compete away their future profits, like in the Theorem stated in the previous section.

5 Discussion and Conclusion

In this paper, I have shown in the context of a simple model how auctions may lead to high prices in the after-auction market. The main idea is that by bidding more than the profits a firm could possibly make by playing a competitive strategy in the market game, a firm signals that he will act cooperatively in the market game. Other firms pick up this signal and play cooperatively as well if they take part in the market game. As during the auction, firms compete to get a license to operate in the after-auction market, firms outbid each other during the auction game. Thus, all firms bid more than they possibly could make by competing in the after-auction market. When two licenses will be sold, this argument holds true for both sealed-bid auctions and simultaneous ascending auctions; when three or more licenses are sold, the argument fails to hold for sealed-bid auctions, but continuous to hold for simultaneous ascending auctions.
It is important to note that some conditions are necessary to make the argument work: (i) there should not be too much uncertainty about future market pay-offs, (ii) equilibrium behavior in the market should be indetermined in the sense that multiple equilibria in the market game exists, (iii) the winning bids should be publicly observable, and (iv) the number of contestants in the auction should be relatively large. I will briefly comment on the first three points below; the fourth issue has already been discussed in Sections 3 and 4.

Concerning uncertainty, the argument made allows for some form of pay-off uncertainty as long as the maximum pay-off from competing aggressively in the market stage is smaller than the minimum possible pay-off of all firms cooperating in the market place. In case there is too much uncertainty about future pay-offs, auction fees cannot be interpreted as a signal of future market stage behaviour. In the case of the European UMTS-auctions, one may argue that they were held at such an early point in time that it was highly uncertain how much profits were to be gained. If this is so, the above argument does not apply.

When there is a unique equilibrium in the market stage, signalling future behavior does not make much sense as future behavior is fully determined by the market constellation itself. Hence, a necessary condition for our argument to work is the existence of multiple market equilibria. Finally, when the winning bids are not made public, firms cannot condition their market behavior on these winning bids. Accordingly, the firms cannot use their bids to signal future intentions in this case.

It is not crucial to the argument, however, that firms are identical. For example, one could introduce a private value component in the following way: for any \(v = a, b, c \) or \(d \), one may write \(v_i = v + \epsilon_i^v \), where \(\epsilon_i^v \) is private knowledge and drawn from some distribution \(F \) with support \([v, \bar{v}]\). This makes clear that the pay-offs of cooperating or competing in the market place may depend on the firms’ identity. It is relatively easy to see that if the private value component is not too large, more precisely if \(a - \epsilon^v > d + \epsilon^d \), the core results hold true. In this case, the winning firms are likely to make some profits, however.

There are several interesting policy issues concerning auction design that come out of this paper. One issue that arises is with respect to the optimal choice of bid increment. It is easy to see that the lower bound on the number of firms stated in the Theorem is increasing in the bid increment \(\epsilon \). This means that by choosing a
larger bid increment, the auctioneer (government authorities) may try to prevent signalling in the sense discussed in this paper.

Second, it is interesting to observe that by announcing the winning bids, the government may facilitate coordinating on the high profit (price) equilibrium in the sense discussed in this paper. If only the identity of the winning bidders is revealed, but not their bids, firms cannot directly infer what the other firm has paid and therefore they cannot condition market behaviour on the bids. In this case, the argument developed in this paper breaks down.

Finally, coordinating on the high profit (price) equilibrium may be difficult to detect by competition authorities as no explicit communication is needed. Moreover, the firms may argue that the auction has forced them to pay so much that if they don't coordinate on the high profit equilibrium, they will go bankrupt. If bankruptcy of crucial firms in an economy is a serious concern for competition authorities, there is not much the authorities can do after the auction has taken place. Of course, the authorities may threaten ex ante that they will introduce severe punishments, but one may wonder whether this is a credible threat given the observation that ex post the authorities may not find it optimal to punish.

6 References

Carole MAIGNAN, Dino PINELLI and Gianmarco I.P. OTTAVIANO

Matthew HAAG and Roger LAGUNOFF

Lori SNYDER, Robert STAVINS and Alexander F. WAGNER

Bernardo BORTOLOTTI and Paolo PINOTTI

Ana MAULEON and Vincent VANNETELBOSCH

Matthew O. JACKSON

Giorgio BELLETTINI and Gianmarco I.P. OTTAVIANO

Santiago RUBIO and Alistair ULPH

Halis Murat YILDIZ

Giorgio BUSETTI and Matteo MANERA

Carlo CARRARO and Carmen MARCHIORI

Slim BEN YOUSSEF

the Dilemmas

Vincent MERK

Sandra WALLMAN

Kazuma MATOBA

Globalisation and Migration

Multicultural Environment: Saint-Petersburg’s Case

Natalya V. TARANOVA

Ljiljana DERU SIMIC

Ercole SORI

David FRANTZ (lxix): Lorenzo Market between Diversity and Mutation

Joseph E. ALDY, Scott BARRETT and Robert N. STAVINS: Thirteen Plus One: A Comparison of International Environmental Agreements

International Environmental Agreements

The Beginning of Organic Fish Farming in Italy

The Role of the City in Fostering Intergroup Communication in a Multicultural Environment: Saint-Petersburg’s Case

Kristine CRANE (lxiii): The City as an Arena for the Expression of Multiple Identities in the Age of Globalisation and Migration

Kazuma MATOBA (lxii): Global Dialogue- Transformation through Transcultural Communication

Catarina REIS OLIVEIRA (lxii): Immigrants’ Entrepreneurial Opportunities: The Case of the Chinese in Portugal

Sandra WALLMAN (lxii): The Diversity of Diversity - towards a typology of urban systems

Richard PEARCE (lxii): A Biologist’s View of Individual Cultural Identity for the Study of Cities

Vincent MERK (lxii): Communication Across Cultures: from Cultural Awareness to Reconciliation of the Dilemmas
KNOW 79.2003 Giorgio BELLETTINI, Carlotta BERTI CERONI and Gianmarco I.P. OTTAVIANO: Child Labor and Resistance to Change

ETA 80.2003 Michele MORETTO, Paolo M. PANTEGHINI and Carlo SCARPA: Investment Size and Firm’s Value under Profit Sharing Regulation

IEM 81.2003 Alessandro LANZA, Matteo MANERA and Massimo GIOVANNINI: Oil and Product Dynamics in International Petroleum Markets

CLIM 82.2003 Y. Hossein FARZIN and Jinhua ZHAO: Pollution Abatement Investment When Firms Lobby Against Environmental Regulation

CLIM 83.2003 Giuseppe DI VITA: Is the Discount Rate Relevant in Explaining the Environmental Kuznets Curve?

CLIM 84.2003 Reyer GERLAGH and Wietze LISE: Induced Technological Change Under Carbon Taxes

NRM 85.2003 Rinaldo BRAU, Alessandro LANZA and Francesco PIGLIARU: How Fast are the Tourism Countries Growing? The cross-country evidence

KNOW 86.2003 Elena BELLINI, Gianmarco I.P. OTTAVIANO and Dino PINELLI: The ICT Revolution: opportunities and risks for the Mezzogiorno

SIEV 87.2003 Lucas BREITSCHEGER and Sjak SMULDERS: Sustainability and Substitution of Exhaustible Natural Resources. How resource prices affect long-term R&D investments

CLIM 89.2003 Marzio GALEOTTI: Economic Development and Environmental Protection

CLIM 90.2003 Marzio GALEOTTI: Environment and Economic Growth: Is Technical Change the Key to Decoupling?

CLIM 91.2003 Marzio GALEOTTI and Barbara BUCHNER: Climate Policy and Economic Growth in Developing Countries

ETN 93.2003 Andrea BELTRATTI: Socially Responsible Investment in General Equilibrium

CTN 94.2003 Parkash CHANDER: The γ-Core and Coalition Formation

IEM 95.2003 Matteo MANERA and Angelo MARZULLO: Modelling the Load Curve of Aggregate Electricity Consumption Using Principal Components

IEM 96.2003 Alessandro LANZA, Matteo MANERA, Margherita GRASSO and Massimo GIOVANNINI: Long-run Models of Oil Stock Prices

KNOW 98.2003 John CROWLEY, Marie-Cecile NAVES (lxiii): Anti-Racist Policies in France. From Ideological and Historical Schemes to Socio-Political Realities

KNOW 100.2003 Alaknanda PATEL (lxiii): Cultural Diversity and Conflict in Multicultural Cities

KNOW 101.2003 David MAY (lxiii): The Struggle of Becoming Established in a Deprived Inner-City Neighbourhood

KNOW 102.2003 Sébastien ARCAD, Danielle JUTEAU, Sirma BILGE, and Francine LEMIRE (lxiii): Municipal Reform on the Island of Montreal: Tensions Between Two Majority Groups in a Multicultural City

CLIM 103.2003 Barbara BUCHNER and Carlo CARRARO: China and the Evolution of the Present Climate Regime

CLIM 104.2003 Barbara BUCHNER and Carlo CARRARO: Emissions Trading Regimes and Incentives to Participate in International Climate Agreements

CLIM 105.2003 Anil MARKANDYA and Dirk T.G. RÜBELKE: Ancillary Benefits of Climate Policy

NRM 106.2003 Anne Sophie CRÉPIN (lxiv): Management Challenges for Multiple-Species Boreal Forests

NRM 107.2003 Anne Sophie CRÉPIN (lxiv): Threshold Effects in Coral Reef Fisheries

SIEV 108.2003 Sara ANIYAR (lxiv): Estimating the Value of Oil Capital in a Small Open Economy: The Venezuela’s Example

NRM 110.2003 Anastasios XEPAPADEAS and Catarina ROSETA-PALMA(lxiv): Instabilities and Robust Control in Fisheries

NRM 111.2003 Charles PERRINGS and Brian WALKER (lxiv): Conservation and Optimal Use of Rangelands

CTN 113.2003 Carlo CARRARO, Carmen MARCHIORI and Sonia OREFFICE: Endogenous Minimum Participation in International Environmental Treaties

CTN 114.2003 Guillaume HAERINGER and Myrna WOODERS: Decentralized Job Matching

CTN 115.2003 Hideo KONISHI and M. Utku UNVER: Credible Group Stability in Multi-Partner Matching Problems

CTN 116.2003 Somdeb LAHIRI: Stable Matchings for the Room-Mates Problem

CTN 117.2003 Somdeb LAHIRI: Stable Matchings for a Generalized Marriage Problem

CTN 118.2003 Marita LAUKKANEN: Transboundary Fisheries Management under Implementation Uncertainty
NOTE DI LAVORO PUBLISHED IN 2004

IEM 1.2004 Anil MARKANDYA, Suzette PEDROSO and Alexander GOLUB: Empirical Analysis of National Income and So2 Emissions in Selected European Countries

ETA 2.2004 Masahisa FUJITA and Shlomo WEBER: Strategic Immigration Policies and Welfare in Heterogeneous Countries

PRA 3.2004 Adolfo DI CARLUCCIO, Giovanni FERRI, Cecilia FRALE and Ottavio RICCHI: Do Privatizations Boost Household Shareholding? Evidence from Italy

ETA 4.2004 Victor GINSBURGH and Shlomo WEBER: Languages Disenfranchisement in the European Union

PRA 7.2004 Sandro BRUSCO, Giuseppe LOPOMO and S. VISWANATHAN (lxv): Merger Mechanisms

PRA 8.2004 Wolfgang AUSSENEGG, Pegaret PICHLER and Alex STOMPER (lxv): IPO Pricing with Bookbuilding and a When-Issued Market

PRA 9.2004 Pegaret PICHLER and Alex STOMPER (lxv): Primary Market Design: Direct Mechanisms and Markets

PRA 11.2004 Bjarne BRENDSTRUP and Harry J. PAARSCH (lxv): Nonparametric Identification and Estimation of Multi-Unit, Sequential, Oral, Ascending-Price Auctions With Asymmetric Bidders

PRA 12.2004 Ohad KADAN (lxv): Equilibrium in the Two Player, k-Double Auction with Affiliated Private Values

PRA 13.2004 Maarten C.W. JANSSEN (lxv): Auctions as Coordination Devices
2003 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLIM</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KNOW</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRIV</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>

2004 SERIES

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Editor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCMP</td>
<td>Climate Change Modelling and Policy</td>
<td>Marzio Galeotti</td>
</tr>
<tr>
<td>GG</td>
<td>Global Governance</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>SIEV</td>
<td>Sustainability Indicators and Environmental Valuation</td>
<td>Anna Alberini</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resources Management</td>
<td>Carlo Giupponi</td>
</tr>
<tr>
<td>KTHC</td>
<td>Knowledge, Technology, Human Capital</td>
<td>Gianmarco Ottaviano</td>
</tr>
<tr>
<td>IEM</td>
<td>International Energy Markets</td>
<td>Anil Markandya</td>
</tr>
<tr>
<td>CSRM</td>
<td>Corporate Social Responsibility and Management</td>
<td>Sabina Ratti</td>
</tr>
<tr>
<td>PRA</td>
<td>Privatisation, Regulation, Antitrust</td>
<td>Bernardo Bortolotti</td>
</tr>
<tr>
<td>ETA</td>
<td>Economic Theory and Applications</td>
<td>Carlo Carraro</td>
</tr>
<tr>
<td>CTN</td>
<td>Coalition Theory Network</td>
<td></td>
</tr>
</tbody>
</table>