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Abstract: 

Land use planning concepts and methods have evolved new approaches due to the 
perception of the very long term impact of global change, particularly climate change. 
Future land use configurations provide valuable knowledge for policy makers and 
economic agents, especially under expected environmental changes such as decreasing 
rainfall or increasing temperatures. Considering the time frame requirements from 
climate change issues, usually 100 years, this paper proposes an optimization approach 
to study future land uses. Modelling land use change is designed as an optimization 
problem in which landscapes (land uses) are generated through the use of evolutionary 
algorithms (EA). GeneticLand is an evolutionary algorithm, designed for a multi-
objective function, minimization of soil erosion, and maximization of carbon 
sequestration, and a set of local restrictions (e.g. physical constraints and landscape 
spatial structure). GeneticLand has been applied for a Mediterranean landscape, located 
in Southern Portugal. This paper presents the GeneticLand algorithm design and results 
obtained show the feasibility of the generated landscapes, whose main characteristic is 
an increase in spatial heterogeneity.  

Keywords: land use, climate change, optimization, evolutionary computing, 
Mediterranean 
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1. Introduction 

Land use models have been developed for the last decades to answer land use planning 

issues, such as: which types of land can be used, how much each can be utilized, for 

which activities at a given amount of resources, as well as the conditions of uses within 

particular circumstances. Several methodological approaches have been adopted to 

produce land use scenarios for a wide range of time scales, with emphasis on the next 

cycle of decision making policy (i.e. next years). In the last years, the need to reason in 

a longer time scale has appeared, in part motivated by the climate change issue. It is the 

case of Rousenvell et al [1] who presented scenarios of future agricultural land use in 

Europe for 2080. Within this time context, it is proposed herein that the land use 

scenarios should be approached as a goal-oriented process, providing a framework for 

identifying concerns, assessing trends and spatial configurations and producing 

knowledge for future actions, instead of a solution-based process derived from scenario 

writing. The former approach relies on the discovering of expected behaviors of a 

landscape to key drivers changes (mostly environmental and morphological drivers), 

after which policy scenarios should be designed, while the later considers, from the 

beginning, different policy scenarios to which a landscape should be adapted. For 

example, discovering long term future landscapes (understood as a spatial configuration 

of land uses) under reduced water availability and increased temperature climate, in a 

goal-oriented process, should result in different expected behaviors (solutions) to which 

technology, social and economic scenarios should be designed in order to prevent or 

accommodate them. On the contrary, discovering long term future landscapes in a 

solution-based process requires firstly some scenarios assumptions, as from the SRES 

narratives [2], to which adapted landscapes are determined in response to a set of 

allocation rules, for example. 

It is proposed in this paper that reasoning on the very long term land use change should 

be approached as an optimization exercise, where several instantiations of the objective 

function result in different landscape solutions in order to facilitate the identification of 

emergent spatial patterns. Landscapes can be understood as complex systems, 

considering their characteristics of spatial self-organizing, and non-linear behavior to 

long term drivers. However, one may assume that a landscape under a specific climate 

and morphological conditions, for example a Mediterranean region, will evolve in a 

specific way, if (i) one considers no policy assumptions, and (ii) a set of constraints is 
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respected in order to keep spatial coherence and physical feasibility in the future. For 

example, no trees could be considered in an area with a soil depth less than 30 cm, or no 

landscape which exceeds a specific fragmentation index can exist.  

In this paper, the formulation of long term future landscape generation is proposed as an 

optimization problem, with more than one objective function and, at least, two sets of 

constraints. There is a wide application of techniques to land use optimization problems 

[3]. However, most of these techniques were not developed to allow objectives that 

require spatial data and are unable to handle spatial objectives. Ducheyne [4] presents 

an overview of the disadvantages of classic optimizing procedures to handle spatial data 

and spatial tailored objective functions. Linear programming, for example, uses 

continuous variables and this is not suitable when spatial integrity is of concern. Integer 

and mixed integer programming overcome this problem, but in order to explicitly 

formulate the spatial requirements, they have computing power problems. Heuristics 

have also been proposed to handle complex optimizing problems, but they are 

essentially single objective optimizers. Usually, they require that multiple objectives 

have to be reformulated into a single objective function and this hampers the search for 

the trade-off front between these objectives. 

This work proposes the approach of evolutionary computation to deal with land use 

generation as an optimization task, accommodating its explicit spatial dimension and 

multiple objective functions. Specifically, the proposed algorithm, named GeneticLand, 

accommodates two objective functions - minimization of soil erosion, and maximization 

of carbon sequestration - and a set of physical feasibility and suitability constraints to 

specific land uses, as well as landscape structure and spatial organization constraints 

indices. 

 

2. Methodology  

Modeling land use change is addressed in our work as a multi-objective optimization 

problem in which landscapes (land uses) are generated by means of Evolutionary 

Computation (EC), a field that contains a number of techniques that have been applied 

successfully in search and optimization problems across a variety of domains.  

Evolutionary Algorithms are based on the principles of Natural Selection. The idea is 
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that fit individuals survive and propagate their traits to future generations and unfit 

individuals have a tendency to die. In this type of algorithms, an individual corresponds 

to a possible solution for a particular problem that we are interested in solving. In the 

case of GeneticLand, an individual is a land use assignment for a grid of 100x100 cells. 

The task of the EA is to search for a good land use assignment.  

As opposed to classical optimization methods, which often combine multiple objectives 

into a single objective by assigning different weights to each of them, the field of 

Evolutionary Computation has developed various methods that allow us to evolve a 

diverse set of solutions which incorporate the tradeoffs that are intrinsic to the problem 

at hand. It is left up to the decision-makers which of the different alternative solutions 

should be chosen, something that is usually done based on higher level information [5]. 

 

2.1. The GeneticLand Algorithm formulation 

GeneticLand is an evolutionary algorithm for land use generation, working on a region 

represented by a bidimensional array of cells. For each cell, there is a finite number of 

possible land uses. The task of the algorithm is to search for an optimal assignment of 

these land uses to the cells, evolving the landscape patterns that are most suitable for the 

various objectives satisfying the set of restrictions. The objective functions and the 

restrictions of the GeneticLand algorithm were designed and instantiated from an 

application case. Spatial analysis were performed over the landscape under study, 

including land use and geomorphological assessment, and landscape ecology, in order 

to conclude for the appropriate restrictions. A Mediterranean landscape, located at 

Southern Portugal, was considered for analysis due to its vulnerability to climate 

change, which fulfils the motivation for this work.  

 

2.1.1. The objective functions 

GeneticLand considers two goals: minimization of soil erosion and maximization of 

carbon sequestration. Minimization of soil erosion was selected due to its importance in 

the Mediterranean landscapes and the perspective of its development in climate 

scenarios characterize by annual reduced rainfall patterns and increased flash floods [6]. 

Each landscape solution, provided by GeneticLand algorithm, is validated by applying 

the USLE (Universal Soil Loss Equation), with the best solution being the one that 

minimizes both the global landscape soil erosion value and lowers the local erosion 
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values below a manageable threshold (10 ton.ha-1.y-1). The USLE predicts the long term 

average annual rate of erosion on a field slope based on rainfall pattern, soil type, 

topography, crop system and management practices. Global soil loss for the whole 

landscape is derived from the following expression: 

�

Global Soil loss = Σi [R * LS * K * C * Landscapei ], 

being i each pixel of the landscape 

R is the erosivity factor due to rainfall; The greater the intensity and duration of the rain 

storm, the higher the erosion potential. LS refers to the slope length-gradient factor; The 

steeper and longer the slope, the higher is the risk for erosion. K is soil erodibility 

factor; K is a measure of the susceptibility of soil particles to detachment and transport 

by rainfall and runoff. C is the crop/vegetation and management factor. It is used to 

determine the relative effectiveness of soil and crop management systems in terms of 

preventing soil loss. 

Each landscape (land uses) solution is multiplied by the USLE factors resulting in a 

long term average annual soil loss in tons per acre per year. The global landscape soil 

erosion value is the sum of average annual soil loss calculated for all pixels, except for 

those with values less than 10 ton/ha/year, which are negligible. The GeneticLand 

algorithm is implemented in a way that all factors may be changed in order to consider 

different data sets. For example, by using different rainfall data, future climate scenarios 

can be accommodated and landscapes generated according to these scenarios. Table 1 

presents the values for the C factor for the Mediterranean landscape [7] under study.  

Table 1: C factors of land use classes to soil loss 

LAND USE CLASSES SUSCEPTIBILITY FACTOR OF 
LAND USES TO SOIL LOSS  

Forest 0,1 

Shrubs 0,02 

Permanent agriculture 0,1 

Annual agriculture 0,3 

Mixed agriculture 0,3 

 

Maximization of carbon sequestration was considered due to its importance under the 

carbon cycle and climate change issues; each solution, provided by GeneticLand 

algorithm, is validated by applying atmospheric CO2 carbon uptake estimates, 
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according to the following expression  

Global Carbon uptake = Σi C uptake * Landscapei 

being i each pixel of the landscape 

The landscape (land uses) solution is multiplied by the average carbon uptake indicators 

[8] for each land use (Table 2), with the best solution being the one that maximizes the 

global landscape carbon uptake. The global landscape carbon uptake value is the sum of 

carbon uptake calculated for all pixels.  

Table 2: Susceptibility factors of land uses to carbon uptake 

LAND USE CLASSES CARBON UPTAKE INDICATORS 
(t C/ha/YEAR) 

Forest 1,6 

Shrubs 0,4 

Permanent agriculture 0,5 

Annual agriculture 0 

Mixed agriculture 0,1 

 

 

2.1.2. The set of restrictions  

As a guideline for the placement of land cover classes in future landscapes by the 

GeneticLand algorithm, two types of constraints were considered: physical constraints, 

concerning geomorphological variables, and landscape ecology indices at the patch, 

land use and landscape levels. The physical constraints were developed by analyzing the 

1990 Corine land cover for the Portuguese Guadiana watershed (11 600 km2) regarding 

the distribution of land cover against four different variables: 

(i) Soil type suitability, considering nine different soil types;   

(ii) Slope, at 90m spatial resolution, divided in to fifteen classes from plane (1) 

to very steep (15); 

(iii) Aridity Index, consisting in a ratio between Precipitation and Thornthwaite's 

Potential Evapotranspiration (P/PET), and comprehending seven classes 

raging from very dry (1) to very humid (7); 

(iv) Topographic Soil Wetness Index (TSWI) [9] consisting of thirteen classes 

varying from very low soil humidity  to very high soil humidity 
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Table 3 illustrates the constraints stated for each land cover in soil type 1. For example, 

annual agriculture only occur in areas with slopes ranging from 1 to 4, P/PET classes 

from 2 to 3 and TSWI values from 6 to 28, while forests occur in every slope classes, in 

areas where P/PET ranges from 2 to 7, and TSWI classes from 4 to 16. This procedure 

was performed for every land cover in every soil type, providing a complete set of 

geomorphological constraints to feed GeneticLand. 

Table 3 - Example of the constraints feeding the GeneticLand algorithm, concerning for 

land covers occurring in Soil Type 1 (Cambisols) for the case study. 

Cambisols Slope P/PET TSWI 
 Min. Max. Min. Max. Min. Max. 

Annual agriculture 1 4 2 3 6 28 
Permanent agriculture 1 7 2 5 4 16 

Mixed agriculture 1 6 2 7 4 26 
Forest 1 15 2 7 4 16 
Shrubs 5 8 4 6 4 4 

 

Landscape ecology restrictions were used to insure the spatial coherence of the 

landscape. Landscape ecology provides indices that help the characterization and 

quantification of landscape structure, function and change [10]. These metrics were 

calculated with the support of the Fragstats 3.3 software [11]. Two indices are selected 

from a previous landscape ecology analysis supported by a set of different indices: the 

patch size for each land use, and the adjacency index, named contagion.  

A patch is defined as a non-linear surface that differs in the appearance, shape and 

complexity, and includes a single pixel or a set of adjacent pixels of the same land use 

class. The patches vary in size, form, type, heterogeneity and characteristics of edge. 

The size is an important aspect of a patch, since it governs the circulation of nutrients 

through the landscape and the amount of species in a region, and thus can be assumed as 

a fundamental characteristic in a specific landscape. GeneticLand considers a range for 

the patch size (min and max) as a characteristic of each land use class that, for 

simplicity, will be respected in order to preserve the spatial structure of each land use. 

Contagion is a landscape ecology index that measures the probability of "adjacency" of 

cells (pixels) of the same land use class. This index measures the degree of dispersion or 

aggregation of the landscape elements where high values (Max. 100) are from 

landscapes with few patches of great dimension, while low values (Min. 0) show 

landscapes with many dispersed units. This index considers all patch types present on 
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an image, and considers similar adjacencies (i.e., cells of a patch type adjacent to cells 

of the same type). The numeric expression of contagion index can be consulted in [11].  

 

2.2. The GeneticLand Algorithm implementation 

 Multi-objective evolutionary algorithms (MOEAs) rely on the concept of non-

dominated solutions, which state that two solutions are only comparable if one of them 

is better than the other in all the objectives. This idea has been incorporated successfully 

in a number of MOEAs, and the main reason for that is due to the fact these algorithms 

work with a population of solutions rather than with single solutions.  

For the evolutionary algorithm, the Pareto Archived Evolution Strategy (PAES) 

developed by [12], was used. This algorithm is perhaps the simplest evolutive scheme 

for multi-objective optimization and it is based on an extension of the (1+1) evolution 

strategy [13]. In starts with a random solution (one parent) and then it generates one 

offspring by means of a mutation operator. If the offspring is a better solution than the 

parent, it replaces the parent for the next generation (iteration). In the opposite case, the 

offspring is discarded. This process is repeated a number of times until a specified 

stopping criterion is satisfied.  

The PAES algorithm maintains an archive of non-dominated solutions, each of which 

cannot be said to be better that the other. The PEAS algorithm was selected, rather than 

a more sophisticated evolutionary algorithm, due to the very large problem dimension 

that we are facing. Current applications of evolutionary algorithms have in general no 

more than a few thousand decision variables, while the problem that we are modeling 

can go up to over 10 thousand decision variables, which correspond to a landscape with 

100 x 100 cells. 

The mutation operator that was implemented in GeneticLand changes a cell to a 

different land use. In addition to doing that, it also changes a number of surronding  

cells to the new land use. We did that because otherwise the mutation operator would 

generate invalid solutions with a very high frequency. When constraints are violated by 

means of the mutation operator, the fitness of the solution is penalized by a certain 

amount. The more a constraint is violated, the more the solution is penalized. 

The algorithm was run for a total of slightly over 1 million iterations. There are 

theoretical results (Muhlenbein, 1992) that say that for a simple unimodal function, the 
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average number of iterations that the (1+1) EA needs to find the optimal solution is 

exp(1)*N*log(N/2), where N denotes the number of decision variables of the problem. 

That result was derived for solutions coded as binary decision variables. In our case, we 

have 5 possible values for each decision variable. Considering that the most difficult 

step is to optimize the last gene (which means not mutating the correct genes and 

mutation the incorrect one to the right value), we decided to multiply the number of 

iterations by a factor of 5. Note however that this is only a rough approximation. 

The various simulations were run on a Linux cluster. A single run took several days to 

complete. Recall that the evaluation of a single solution requires several arithmetic 

operations on a grid of 100x100 cells. A possible improvement to speed up the 

computational time is to come up with an incremental fitness function. This way, a new 

solution would not have to be reevaluated from scratch. Instead, it's fitness could be 

derived based on the fitness of the parent and on the cells that were affected by 

mutation. This scheme could be easily implemented but some care would have to be 

taken regarding the possible constraint violations introduced. 

 

3. Application 

The GeneticLand algorithm was designed and tested in an area located in southern 

Portugal, within the Guadiana watershed, as illustrated in Figure 1. The physical 

characteristics of this region, from where the constraints were derived, are shown in 

Figure 2, both the corresponding maps and the histograms. 

 

 

 

 

 

 

 

 

 

Figure 1: Location of the study landscape supporting the design and test of GeneticLand 
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Figure 2: Selected physical characteristics of the landscape under study, from where the 

constraints were designed to feed the GeneticLand algorithm.  
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4. Results and Discussions 

A small subsection of the landscape under analysis, representing an area with about 9 

km2 (100 columns and 100 rows), was selected to test the implementation and 

performance of the GeneticLand algorithm. As previously explained, and according to 

the evolutionary methods, a set of solutions were generated for the multi-objective 

functions. In this case, two sets of 15 landscape solutions were generated, with each set 

evolving from an initial random image and the two images being generated with 

different random seeds. The solutions’ tradeoff between reducing soil erosion and 

increasing carbon uptake follow the traditional Pareto curve, as can be seen in Figure 3. 

Although there are some differences among the 30 landscape solutions, they are less 

than 2%, and all the solutions comply in more than 91% in the area with the set of 

restrictions. It can be seen that more carbon uptake corresponds to more soil erosion. A 

detailed analysis of each solution reveals that the algorithm prefers to increase the 

carbon uptake instead of decrease soil erosion. This is a consequence of the constraints 

imposed on this landscape since the choice of shrubs, the land use more appropriate to 

prevent soil erosion, is restricted in part of this area. 
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Figure 3:  Pareto curve for the 30 landscape solutions generated by the multi-objective 

GeneticLand algorithm 

Figure 4 presents the current land use in the test area, and one of the landscape solutions 

generated by the multi-objective GeneticLand algorithm. It can be seen that forest was 

chosen over annual agriculture, which fulfils the carbon uptake goal. Permanent 
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agriculture was also generated due to its higher carbon uptake values and lower 

susceptibility to soil erosion when compared to other land uses. Shrubs were also 

selected due to their ability to prevent soil loss. Figure 5 shows soil erosion patterns 

comparing the current land uses and those derived from the landscape generated by the 

multi-objective GeneticLand algorithm. It is visible that the algorithm succeeds in 

reducing the overall soil erosion patterns. 

  
Figure 4: Current land use and landscape generated by the multi-objective GeneticLand 

algorithm. 

  

Figure 5: Current soil erosion patterns and optimized soil erosion patterns derived from 
the landscape generated by the multi-objective GeneticLand algorithm. 

Finally, Figure 6 shows the comparison of global results concerning soil erosion and 

carbon uptake, between current landscape and one generated by the multi-objective 

GeneticLand algorithm. On average, for the set of landscape solutions, the GeneticLand 

algorithm increases carbon uptake up to more than 740% when compared with current 

land uses, at the same time that reduces soil erosion by about 65%. Also, it should be 

noticed that areas of serious soil erosion (>100 ton.ha-1.y-1) were reduced about 77%, 

when compared with current land uses. This is a very interesting result, because the 
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reduction of serious soil erosion areas was not a requested goal, but the algorithm chose 

to improve its solution in these pixels. 

A final assessment of the landscape generated by the GeneticLand algorithm refers to 

the type of spatial distribution of land uses. Compared to the current landscape, the 

landscape solution is characterized by a higher spatial heterogeneity of the land uses. 

This type of spatial distribution has been proposed as the better approach to promote 

ecosystem sustainability in general, and preventing soil erosion, in particular. 
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Figure 6: Comparison of global results, concerning soil erosion and carbon uptake,  
between current landscape and that generated by the GeneticLand algorithm 

 

5. Conclusion 

It is proposed in this paper that reasoning on the very long term land use change should 

be approached as an optimization exercise. An optimization problem was formulated 

based on two objective functions (soil erosion minimization and carbon uptake 

maximization), subject to a set of physical and spatial constraints.  This paper proposes 

an algorithm, name dGeneticLand, in which landscapes (land uses) are generated by 

means of Evolutionary Computation (EC), based on the principles of natural selection, a 

field that contains a number of techniques that have been applied successfully in search 

and optimization problems across a variety of domains. In this type of algorithms, an 

individual corresponds to a possible solution for a particular problem that we are 

interested in solving. The task of the EA is to search for a good land use assignment. 

The GeneticLand algorithm was designed and tested in a small area (100x100 cells) 

located in southern Portugal, within the Guadiana watershed. All the landscape 
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solutions comply in more than 91% in the area with the set of restrictions, and fulfill the 

stated objective goals. In fact, the algorithm increases carbon uptake up to more than 

740% when compared with current land uses, at the same time that reduces soil erosion 

by about 65%. Also, the areas of serious soil erosion (>100 ton.ha-1.y-1) were reduced 

about 77%, when compared with current land uses. The landscape solution is 

characterized by a higher spatial heterogeneity of the land uses, which is appointed as 

the better approach to promote ecosystem sustainability in general, and preventing soil 

erosion, in particular. 

Although the results are very promising concerning the feasibility of landscape 

generation through the use of evolutionary algorithms, there are a set of limitations that 

should be considered for further development. Some of them refer to: (i) the physical 

constraints were derived from CORINE 1987 spatial analysis and it should be derived 

from a time series analysis in order to accommodate land use change dynamics; (ii) the 

algorithm is allowed to choose the same land use classes as the current land use map, 

but other classes should be allowed; (iii) physical suitability of land uses, stated in the 

set of constraints, are maintained constant in the future, but some should be different as 

it is the case of forests that could adapt for other P/PET classes than 2 to 7; (iv) 

improvement of the implementation strategy to run images larger than 100*100, in 

order to consider landscapes with more complex spatial variability patterns.  
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