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Abstract

This paper provides a multivariate score-type test to distinguish between true and spu-

rious long memory. The test is based on the weighted sum of the partial derivatives of

the multivariate local Whittle likelihood function. This approach takes phase shifts in

the multivariate spectrum into account. The resulting pivotal limiting distribution is

independent of the dimension of the process, which makes it easy to apply in practice.

We prove the consistency of our test against the alternative of random level shifts or

monotonic trends. A Monte Carlo analysis shows good finite sample properties of the

test in terms of size and power. Additionally, we apply our test to the log-absolute re-

turns of the S&P 500, DAX, FTSE, and the NIKKEI. The multivariate test gives formal

evidence that these series are contaminated by level shifts.
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1 Introduction

Distinguishing between true and spurious long memory is of major importance for the

empirical modeling of many macroeconomic and financial time series. Usually, fraction-

ally integrated processes are used to model long memory. Nevertheless, several authors

point out that other data generating processes can have similar autocovariance features.

Examples of this literature include Granger and Ding (1996), who argue that time vary-

ing coefficient models and other non-linear models can generate spurious long memory.

Diebold and Inoue (2001) derive parameter constellations for which random level shift

processes, STOPBREAK models, and markov switching models can generate spurious

long memory and support these arguments with extensive simulation studies. Similar

results are obtained by Granger and Hyung (2004), who also report that the evidence

for long memory in absolute returns of the S&P 500 vanishes if breaks are accounted

for. Further contributions that give similar evidence are Lobato and Savin (1998) and

Mikosch and Stărică (2004), among others.

Motivated by these findings, several tests have been proposed to distinguish true long

memory from spurious long memory. Berkes et al. (2006) or Yau and Davis (2012),

among others, suggest tests for the null hypothesis of spurious long memory. Here, we

focus on the literature with the null hypothesis of true long memory. Dolado et al.

(2005) propose a time domain test based on the testing principle of previously derived

fractional Dickey Fuller tests. Shimotsu (2006) suggests two tests. The first one is

based on the observation that for a true fractionally integrated process the memory

parameter d must be the same across all subsamples. On the other hand, the implied d

of a spurious long-memory process depends on the number of shifts and their location

in the sample. Splitting the sample into subsamples, therefore, changes the implied d in

every subsample. Shimotsu’s second approach is to test whether the d-th difference of

a process is I(0) or its partial sum I(1), using KPSS and Phillips-Perron tests. Another

property of fractionally integrated processes is that the parameter d remains unchanged

if the process is temporally aggregated. Ohanissian et al. (2008) use this property to test

for true long memory by testing the equality of ds estimated from different aggregation

levels of the same process. A similar test based on periodic sub-sampling, also known

as skip-sampling, is presented by Davidson and Rambaccussing (2015). Their testing

procedure compares the memory estimator of the skip-sampled data with the estimated

d from the original data. Haldrup and Kruse (2014) propose a test based on the fact

that nonlinear transformations of an I(d) process will reduce the order of memory when

the Hermite rank of the transformation is greater than one.

Perron and Qu (2010) derive the properties of the periodogram of processes with short

memory plus level shifts. They find that for low frequencies the effect of the shifts
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dominates the behavior of the spectral density and the implied value of d is one. For

larger frequencies, on the other hand, the short memory component is dominant and the

implied d is zero. These findings explain the sensitivity of semiparametric d-estimators

with respect to the bandwidth choice. Therefore, Perron and Qu (2010) propose a test

statistic based on the difference between memory parameters estimated with different

bandwidths. The same results on the spectral density of level shift processes are used

by Qu (2011), who derives a score-type test that is based on the derivative of the local

Whittle likelihood function. Simulation studies conducted by Qu (2011) and Leccadito

et al. (2015) show that among the tests suggested so far, overall the Qu test has the

best power against a wide range of alternatives.

All of these approaches discussed so far are univariate. There is, however, a strand of lit-

erature that has considered multivariate extensions of fractionally integrated processes.

Early examples include the work of Sowell (1989) and Lobato (1997). In particular, Lo-

bato (1999) and Shimotsu (2007) extend the local Whittle estimator to a multivariate

framework.

We contribute to this literature by generalizing the approach of Qu (2011) to test for

true long memory in multivariate processes. The test statistic is based on the weighted

sum of the partial derivatives of the multivariate local Whittle likelihood function in the

form introduced by Shimotsu (2007). In this specification the cross-spectral densities

contain information on the phase and coherence of the process. We prove that our test

is consistent. Due to the weighting scheme it has a pivotal distribution that does not

depend on the dimension of the process and for univariate processes it reduces to the

special case of the Qu test.

To our knowledge, this is the first multivariate test against spurious long memory. The

idea behind the test is that under the null hypothesis the derivative of the local Whittle

likelihood function evaluated at d̂ for the first [mr] <m Fourier frequencies with r ∈ [ε,1]
is approximately equal to zero, independent of the number of frequencies used for the

local Whittle estimation of d. Under the alternative the derivative diverges if it is

evaluated for a lower number of Fourier frequencies than used for the estimation of d

since it is based on a wrong assumption about the shape of the spectral density.

Our test statistic is derived in a multivariate long memory framework which excludes

fractional cointegration. As this is a drawback for the applicability of our test we also

provide a modified test statistic for the situation of fractionally cointegrated data. This

modified test statistic has the same asymptotic properties as the original test statistic,

including the same limiting distribution.

In the empirical example we apply our test to the log-absolute returns of four stock

market indices, the Standard & Poor 500, DAX, FTSE and NIKKEI. Even though the

log-absolute values of S&P 500 returns have been studied in many of the aforementioned
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contributions on the possibility of spurious long memory, the tests proposed so far often

fail to reject the null hypothesis of a true long-memory process. We, therefore, reconsider

this example by extending it to a multivariate framework and can clearly reject the null

hypothesis, indicating that the series are indeed contaminated by level shifts.

The rest of the paper is structured as follows. After stating the model and the as-

sumptions in Section 2, the test statistic is derived in Section 3. Some Monte Carlo

simulations are given in Section 4. The empirical application is presented in Section 5

and Section 6 concludes. Proofs can be found in the appendix.

2 Model Specification and Assumptions

Point of departure is the multivariate q-dimensional long memory model
(1−L)d1 0

. . .

0 (1−L)dq




X1t −EX1t
...

Xqt −EXqt

 =


u1t
...

uqt

 ,
with −1/2 < d1, . . . ,dq < 1/2 and t = 1, . . . ,T . This can alternatively be written as

D(d1, ...,dq)(Xt −EXt) = ut, (1)

where Xt is a (q× 1) column vector and ut = (u1t,u2t, ...,uqt)′ is a covariance stationary

process with spectral density fu(λ) which is bounded and bounded away from zero in a

matrix sense at the zero frequency, λ= 0. The operator D(d1, ...,dq) = diag((1−L)d1 , ..., (1−
L)dq) is a (q×q) matrix with zeros on the non-diagonal elements.

In a univariate framework a type II fractionally integrated process (e.g., Marinucci and

Robinson, 1999) is defined by (1−L)d xt = ut1(t ≥ 0), where ut is an I(0) process having the

Wold representation ut =
∑∞

j=0 θ jεt− j with
∑∞

j=0 ‖θ j‖
2 <∞. The innovations εt are assumed

to be a martingale difference sequence satisfying E(εt|Ft−1) = 0 and E(ε2
t |Ft−1) <∞ with

Ft = σ({εs, s ≤ t}). Furthermore, it is ut = 0 for t ≤ 0. The order of fractional integration

is given by d and (1−L)d is defined by its binomial expansion

(1−L)d =

∞∑
j=0

Γ( j−d)
Γ(−d)Γ( j + 1)

L j,

with Γ(z) =
∫ ∞

0 tz−1e−tdt. L denotes the Backshift operator, i.e. Let = et−1. Details about

recent developments on long-memory time series can be found in Beran et al. (2013) or

Giraitis et al. (2012).
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The spectral density of the multivariate long-memory process Xt as in (1), with d =

(d1,d2, ...,dq)′ being the memory vector, is local to the origin given by

f (λ j) ∼ Λ j(d)GΛ∗j(d), (2)

with Λ j(d) = diag(Λ ja(d)) and Λ ja(d) = λ−da
j ei(π−λ j)da/2, where λ j = 2π j/T denotes the j-th

Fourier frequency, j = 1, . . . , bT/2c. G is a real, positive definite, symmetric and finite

matrix and the asterix A∗ denotes the conjugate transpose of the matrix A. Further, the

imaginary number is denoted by i and da is the memory parameter in dimension a.

The assumption on G excludes fractional cointegration as it stands. We first derive our

test statistic under this assumption and consider the case of fractionally cointegrated

data afterwards. It turns out that the asymptotic properties of the test statistic remain

unchanged under slight modifications of our test statistic.

The spectral density representation in (2) accounts for phase shifts in the spectrum.

Phase shifts occur as the covariance function γ(h) of the process is no longer necessarily

time-reversible in the multivariate setting, that is γ(h) , γ(−h). Therefore, the off-

diagonal elements of the spectral matrix of Xt contain complex valued elements which

are not vanishing even at λ = 0 and which depend on the memory parameter da. These

complex valued elements vanish if and only if the matrix G in (2) is diagonal or da = d

for all dimensions a.

Our model in equation (1) is a causal filter and therefore the phase parameter in the

off-diagonal element fab(λ j) equals π/2(da−db), as it has been pointed out by Kechagias

and Pipiras (2015).

The spectral density of the process ut in (1) is assumed to fulfill the local condition

fu(λ) ∼G, λ→ 0.

This condition is fulfilled whenever ut has the Wold decomposition ut = C(L)εt, where

C(1) is finite and has full rank, and C(L) is a polynomial in the lag operator with absolute

summable weights.

Furthermore, define the periodogram of Xt evaluated at frequency λ as

I(λ) = w(λ)w∗(λ), with w(λ) =
1
√

2πT

T∑
t=1

Xteitλ.

In the rest of the paper the superscript 0 denotes the true value of a parameter, for

example d0 is the true memory parameter.

We need to state the following assumptions which follow those in Shimotsu (2007):
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Assumption 1. For β ∈ (0,2] and a,b = 1, . . . ,q as λ→ 0+

fab(λ)− exp
(
i (π−λ)

(
d0

a −d0
b

)
/2

)
λ−d0

a−d0
bG0

ab = O
(
λ−d0

a−d0
b+β

)
.

Here and in the following fab and Gab are the respective elements of the matrices f and

G.

Assumption 2. It holds that

Xt −EXt = A(L)εt =

∞∑
j=0

A jεt− j,

with
∑∞

j=0 ‖A j‖
2 <∞ and ‖ ·‖ denotes the supremum norm. It is assumed that E(εt|Ft−1) =

0, E(εtε
′

t |Ft−1) = Iq a.s. for t = 0,±1,±2, . . . where Ft denotes the σ-field generated by εs

and Iq is an identity matrix, s ≤ t. Furthermore, there exists a scalar random variable ε

such that Eε2 <∞ and for all τ > 0 and some K > 0 it is P(‖εt‖
2 > τ) ≤ KP(ε2 > τ). In

addition, it holds for a,b,c,d = 1,2, t = 0,±1,±2, . . . that

E(εatεbtεct|Ft−1) = µabc a.s.

and

E(εatεbtεctεdt|Ft−1) = µabcd a.s.,

where |µabc| <∞ and |µabcd | <∞.

Assumption 3. In a neighborhood (0, δ) of the origin, A(λ) =
∑∞

j=0 A jei jλ is differentiable

and

∂

∂λ
aA(λ) = O

(
λ−1‖aA(λ)‖

)
, λ→ 0+,

where aA(λ) is the a-th row of A(λ).

Assumption 4. As T →∞ it holds for any γ > 0

1
m

+
m1+2β(logm)2

T 2β +
logT
mγ

→ 0,

where m is the bandwidth parameter.

Assumption 5. There exists a finite real matrix Q such that

Λ j
(
d0

)−1
A(λ j) = Q + o(1), λ j→ 0.
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These assumptions are multivariate versions of the assumptions in Qu (2011). They

allow for non-Gaussianity. Assumption 1 and 5 are satisfied by multivariate ARFIMA

processes. Assumption 2 excludes conditional heteroscedasticity as it is, but it is possible

to relax this assumption which is omitted here for the ease of presentation. Assumption

4 is slightly stronger than the assumption used in Qu (2011) for the univariate local

Whittle estimator. However, this stronger assumption is necessary for the Hessian of

the objective function of the local Whittle estimator to converge, which is needed in our

proof. It should be mentioned that Assumption 4 gives a sharp upper bound for the

number of frequencies m which can be used for the local Whittle estimator and thus for

our test statistic. It is m = o(T 0.8).

3 Testing for Spurious Long Memory

In this section we consider multivariate testing for pure long memory. Our test is spectral

based and uses the different properties of the periodogram of long-memory processes and

processes with structural breaks or trends. Special use will be made from the fact that

the slope of the spectral density of a process with structural breaks is nearly zero for

j >
√

T .

3.1 The MLWS Statistic

To be concrete, we are interested in testing the hypothesis that the spectral density local

to the origin has the shape given in equation (2):

H0 : f (λ j) ∼ Λ j(d)GΛ∗j(d)

as λ→ 0+ with da ∈ (−1/2,1/2) ∀ a = 1, . . . ,q. Thus, under the null hypothesis Xt is

a multivariate long-memory process. The alternative is that Xt contains spurious long

memory, this is Xt is contaminated either by level shifts or smooth trends. Note that

this does not exclude the existence of a long memory component under the alternative.

To motivate our test statistic, we first need to consider the properties of the periodogram

under the alternative. We consider two alternative models. The first one is a multivariate

random level shift model defined by

Xt = µt + κt with (3)

µt = (Iq−ΠtΦ)µt−1 +Πtet,

where κt, Πt = diag(π1t, . . . ,πqt) and et are mutually independent. The Bernoulli variables
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πit and π jt for the different dimensions of the q-dimensional process Xt are correlated

with correlation matrix Υ for i, j = 1, ...,q. We consider a shift probability that is defined

by p = p∗/T , where p∗ is the expected number of shifts. Furthermore, the magnitude of

the shifts is characterized by the q-dimensional column vector et, with et ∼ N(0,Σe), and

the noise process κt, κt ∼ N(0,Σκ). The pairwise correlation coefficients of πit and π jt, eit

and e jt, and κit and κ jt are labeled as ρπ,i j, ρe,i j and ρκ,i j, ∀ i, j = 1, ...,q.

The q-dimensional diagonal matrix Φ = diag(φ, . . . ,φ), with 0 ≤ φ ≤ 1, contains autore-

gressive coefficients and determines the persistence of the level shifts. This allows us

to consider stationary as well as non-stationary multivariate random level shift pro-

cesses. This formulation of our random level shift model is a multivariate version of the

autoregressive random level shift process suggested in Xu and Perron (2014).

The second model under the alternative is the smooth trend model:

Xt = H
( t
T

)
+ κt, (4)

where all variables are q-dimensional column vectors, H(t/T ) = (h1(t/T ), . . . ,hq(t/T ))
′

and

hi(t/T ) is a Lipschitz continuous function on [0,1], ∀ i = 1, ...,q. The noise term κt is

defined as in equation (3).

In analogy to Perron and Qu (2010), the periodogram of Xt in (3) or (4) can be decom-

posed in three components by

IX(λ j) =
1

2πT

 T∑
t=1

κt exp(iλ jt)


 T∑

t=1

κt exp(iλ jt)


∗

+
1

2πT

 T∑
t=1

µt exp(iλ jt)


 T∑

t=1

µt exp(iλ jt)


∗

+
2

2πT

T∑
t=1

T∑
s=1

κtµ
′

t cos(λ j(t− s)),

where again the asterix denotes the complex conjugate. By similar arguments as in

Proposition 3 of Perron and Qu (2010) for λ j = o(1) the first summand is of order

OP(1), the second is of order OP(T−1λ−2
j ), and the third term is of order OP(T−1/2λ−1

j ).
Therefore, for each component in Xt the level shifts affect the periodogram only up to

j = O(T 1/2). The stochastic orders are exact in the case of level shifts as in equation (3)

and approximate for slowly varying trends in (4).

This decomposition of the periodogram can now be used to construct a multivariate local

Whittle score-type test (MLWS test). It is based on the difference between the spectral
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density of a fractionally integrated process and the periodogram of a series contaminated

by mean shifts or smooth trends that is almost flat for frequencies m>
√

T . This property

also explains why the bias of the estimate d̂ of the memory parameter depends heavily

on the bandwidth choice if a local semiparametric estimator is used.

The test statistic is based on the derivative of the local Whittle likelihood function

evaluated at d̂, where d̂ is the local Whittle estimate obtained using the first m Fourier

frequencies. Qu (2011) now evaluates the derivative of the local Whittle likelihood

function at the first [mr] Fourier frequencies, where r ∈ [ε,1] with ε > 0. For r = 1 the

derivative is exactly zero and for smaller r the derivative should be close to zero as long

as the estimate of d remains stable when the bandwidth is decreased. This is the case

under the null hypothesis. If the alternative is true, the non-uniform behavior of the

spectral density leads to a divergence of the derivative. The test statistic is obtained by

taking the supremum of the derivative over all r.

Our test statistic extends this idea to the multivariate case. It is based on the weighted

sum of the partial derivatives of the multivariate local Whittle likelihood as defined in

Shimotsu (2007), which is given in (2).

As the Gaussian log-likelihood of Xt and G are real, the local Whittle likelihood localized

to the origin can be written as

Qm(G,d) =
1
m

m∑
j=1

{
logdetΛ j(d)GΛ∗j(d) + tr

[
G−1Re

[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]]}
. (5)

The first order condition with respect to G gives

G =
1
m

m∑
j=1

Re
[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]
.

Substituting this into Qm(G,d) and

logdetΛ j(d) + logdetΛ∗j(d) = logdetΛ j(d)Λ∗j(d)

= logdet
(
diag

(
λ−2da

j

))
= −2

q∑
a=1

da logλ j

gives the objective function of the multivariate Gaussian semiparametric estimate (GSE)

of Shimotsu (2007):

R(d) = logdetĜ(d)−2
q∑

a=1

da
1
m

m∑
j=1

logλ j (6)
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with

Ĝ(d) =
1
m

m∑
j=1

Re
[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]
.

To state our test statistic we need to introduce some algebra on the first derivative of the

objective function R(d) which is condensed in Lemma 1 below. Denote by η= (η1, . . . , ηq)
′

a (q×1) vector of real numbers and ν j = logλ j−1/m
∑m

j=1 logλ j. Furthermore, set aG−1

to be the a-th row of G−1 and set ia to be the (q× q) matrix with a one on the a-th

diagonal element and zeros elsewhere. Additionally, Ma denotes the a-th column of the

matrix M. Then, we can write:

Lemma 1. Under Assumptions 1 to 5 we have

q∑
a=1

ηa
√

m
∂R(d)
∂da

=
2
√

m

q∑
a=1

ηa

m∑
j=1

ν j
(
aG−1Re

[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]
a
−1

)
+

1
√

m

q∑
a=1

ηa

m∑
j=1

(λ j−π)aG−1Im
[
Λ j(d)−1I(λ j)Λ∗j(d)−1

]
a
+ oP(1)

The right hand side of Lemma 1 is the main ingredient of our test statistic which is

asymptotically equivalent to the weighted sum of the components of the gradient vector.

The test statistic is given by:

MLWS =
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥∥∥
2√∑m
j=1 ν

2
j

q∑
a=1

ηa

[mr]∑
j=1

ν j
(
aG−1(d̂)

[
Re

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]]
a
−1

)
(7)

+
1√∑m
j=1 ν

2
j

q∑
a=1

ηa
(
aG−1(d̂)

) [mr]∑
j=1

(λ j−π)Im
[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]
a

∥∥∥∥∥∥∥∥∥ .
Remark 1: The factor 1/2 is added in order to obtain comparability with the univariate

case.

Remark 2: As usual, a small sample correction is applied by replacing m−1/2 with

(
∑m

j=1 ν
2
j)
−1/2 which improves the size of the test and is asymptotically equivalent.

In the univariate case our test reduces exactly to that of Qu (2011). The imaginary part

in our test statistic accounts for the phase shifts in the multivariate spectrum.
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By combining the results of Shimotsu (2007) with those of Qu (2011) we are able to

derive the limiting distribution of the test statistic (7). It is stated in the following

theorem, where B(s) denotes standard one-dimensional Brownian motion:

Theorem 1. Under Assumptions 1 to 5 we have for T →∞

MLWS ⇒
1
2

sup
r∈[ε,1]

∥∥∥∥∥∫ r

0

[
(1 + log s)2

(
2η
′

η+ 2η
′
(
G0�

(
G0

)−1
)
η
)

+
π2

4

(
2η
′
(
G0�

(
G0

)−1
)
η−2η

′

η
)]1/2

dB(s)

− 2η
′

B(1)
∫ r

0
(1 + log s)dsη

− 2η
′

F(r)η
∫ 1

0
(1 + log s)dB(s)

∥∥∥∥∥∥ ,
where

F(r) =

∫ r

0
(1 + log s)2ds

(
G0�

(
G0

)−1
+ Iq

)
+
π2

4

(
G0�

(
G0

)−1
− Iq

)
.

The test statistic as it stands and its limiting distribution in Theorem 1 hold for any

choice of the weight vector η. However, the test statistic is not pivotal as the limiting dis-

tribution depends on G0 and thus on the unknown memory parameter d0. Furthermore,

the limiting distribution depends on the dimension q.

To overcome this problem, we fix the weighting scheme η to ηa = 1/
√

q, ∀a = 1, . . . ,q, to

obtain a pivotal test independent of the unknown parameter d0. Further, this choice

guarantees that for every dimension q the limiting distribution is exactly the same as in

Qu (2011). This is stated in the following lemma:

Lemma 2. Under Assumptions 1 to 5 and setting η1 = . . . = ηq = 1/
√

q we have for

T →∞

MLWS ⇒ sup
r∈[ε,1]

∥∥∥∥∥∫ r

0
(1 + log s)dB(s)

− B(1)
∫ r

0
(1 + log s)ds

− F(r)
∫ 1

0
(1 + log s)dB(s)

∥∥∥∥∥∥ ,
where

F(r) =

∫ r

0
(1 + log s)2ds.
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Remark 3: For ε = 0.02, the asymptotic critical values of the MLWS test are given by

1.118, 1.252, 1.374, and 1.517 for a 10%, 5%, 2.5%, and 1% significance level respectively.

The corresponding critical values for a larger trimming parameter, ε = 0.05, equal 1.022,

1.155, 1.277, and 1.426, as shown by Qu (2011).

After deriving the limiting distribution of the test, we have to prove its consistency

under the alternatives (3) and (4). This is done in the following theorem:

Theorem 2. Suppose that the process Xt is generated by (3) or (4). Furthermore,

assume that m/T 1/2→∞, P(d̂ j−d0
j > ε)→ 1, P(m−1 ∑m

j=1 I j(λ)λ2d̂
j > ε)→ 1 for each j as

T →∞ with ε being some arbitrary small constant, and assume that Assumptions 1 to

5 hold. Then, MLWS
P
→∞ as T →∞.

3.2 MLWS Test for Fractionally Cointegrated Series

So far, fractional cointegration has been ruled out by our assumptions on the matrix G,

which has reduced rank if components of Xt are cointegrated. However, our test can be

robustified against fractional cointegration without altering the limiting distribution. In

order to do this, we adopt a stationary fractional cointegration setup with exactly one

cointegrating relationship. As before, the observed series Xt follows Xt = D(d1, ...,dq)−1ut,

as in (1). However, now the components of Xt obey the cointegrating relation

X1t = β′X(−1)t + wt, (8)

where X(−1)t denotes the vector Xt but excluding the first element, β = (β2, ...,βq)′ and

wt ∼ I(dw). We assume with no loss in generality that X1t is the dependent variable since

the ordering in Xt is arbitrary. Since fractional cointegration requires an equal degree of

integration in the relevant component series, it is required that d1 = max2≤a≤q da, where

the max only considers those a, where βa , 0. The component series are cointegrated

if the residual series wt has reduced memory so that 0 ≤ dw < d1 < 1/2. This is a stan-

dard setup for stationary fractional cointegration, similar to that of Nielsen (2007), but

allowing for phase shifts in the spectrum.

If the cointegrating vector β is known, the MLWS test can be carried out on the trans-

formed series BXt = (wt,X2t, ...,Xqt)′. The matrix B is (q×q) with ones on the diagonal

elements and the off-diagonal elements in the first row of B correspond to the elements

of the cointegrating vector β, that is B1a = βa, for all a = 2, ...,q. All other elements of

B are zeros. This means if fractional cointegration is present, one of the cointegrated

variables is removed from Xt and replaced by the cointegration residuals wt.
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The transformed series BXt has the spectral density

f (λ) ∼ Λ j(d)G̃Λ∗j(d),

with Λ j(d) as in (2) but with d1 = dw. Importantly, after this transformation G̃ is a real,

positive definite, symmetric and finite matrix, which is obviously different from the one

in (2).

The cointegration robust test statistic is therefore given by

M̃LWS =
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥∥∥
2√∑m
j=1 ν

2
j

q∑
a=1

ηa

[mr]∑
j=1

ν j
( ˜
aG−1(d̂)

[
Re

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]]
a
−1

)

+
1√∑m
j=1 ν

2
j

q∑
a=1

ηa
( ˜
aG−1(d̂)

) [mr]∑
j=1

(λ j−π)Im
[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]
a

∥∥∥∥∥∥∥∥∥ .
Exactly like the original MLWS test, the modified statistic M̃LWS has the limit distri-

bution given in Lemma 2.

So far, we assumed that the cointegrating vector β in (8) is known, since estimating the

cointegrating relationship is beyond the scope of this paper. In empirical applications

β is often implied by economic theory. If this is not the case, the procedure can be

made feasible if a consistent estimator for β is applied that converges with a faster rate

than
√

m which is the bandwidth used for the MLWS statistic. A possible choice is the

fully modified narrow-band least squares (FMNBLS) estimator proposed by Nielsen and

Frederiksen (2011), for which βa − β
0
a = Op

(
T δFMNBLS /2+(δFMNBLS−1)(dw−da)

)
, if it is applied

with bandwidth m = bT δFMNBLS c, where 0 < δFMNBLS < 1.1 Depending on the strength

(dw−d1) of the cointegrating relationship, this estimator can achieve convergence rates

close to parametric ones. It is always possible to achieve a convergence rate faster than
√

m, if

δFMNBLS >
(dw−d1) +δ/2
(dw−d1) + 1/2

(9)

is selected as the bandwidth parameter for the FMNBLS estimator. Since 0.5 < δ < 0.8
is required for the bandwidth parameter δ used to determine m for the MLWS test, the

right hand side of (9) is always less than one, so that there is a δFMNBLS that fulfills the

condition. Simulation studies, not reported here, show that this is sufficient to leave the

distribution of the MLWS statistic applied to the estimated series B̂Xt unaffected - even

1cf. Nielsen and Frederiksen (2011) for further conditions on m.
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in relatively small samples.2 Therefore, the assumption of known β does not restrict the

applicability of our approach in practice.

3.3 Pre-Whitening

Although the MLWS statistic in (7) is asymptotically independent of short memory

dynamics, we need to apply a pre-whitening procedure to avoid negative effects on the

size and power properties of the test in finite samples if short memory dynamics are

present. Similar to Qu (2011), we do so by approximating the short memory dynamics

of ut in (1) with a low order VARMA process that is given by

ut =A(L)−1M(L)vt,

where A(L) = Iq −A1L− ...−ApA LpA and M(L) = Iq −M1L− ...−MqM LqM are matrix

lag polynomials and vt is a (q× 1) Gaussian white noise with zero mean and variance-

covariance matrix Σv.

Since A(L) and D(d1, . . . ,dq) are not commutative in the multivariate case, there are two

ways to generalize the univariate ARFIMA process to a vector process. This has been

pointed out by Lobato (1997). For the specification used here, Sela and Hurvich (2009)

coined the acronym FIVARMA because the process Xt = D(d1, . . . ,dq)−1A(L)−1M(L)vt

can be interpreted as a fractionally integrated VARMA process. The process Xt =

A(L)−1D(d1, . . . ,dq)−1M(L)vt is a vector autoregression of a fractionally integrated vec-

tor moving average process and is referred to as VARFIMA. The FIVARMA model has

recently been applied in Chiriac and Voev (2011) and has first been studied by Sowell

(1989). As Lütkepohl (2007) points out, the parameters of the unrestricted VARMA

model are not identified. Thus, we follow Chiriac and Voev (2011) and estimate the

model in its final equation form, where A(L) is a scalar operator. The estimation is

carried out using the approximate maximum likelihood estimator of Beran (1995) which

is based on an approximation of the AR(∞) representation of the FIVARMA process.3

Since the short memory dynamics can be approximated well with a low order model and

the estimation of FIVARMA models is computationally very demanding, we restrict

the model order to be pA = qM = 1. In analogy to Qu (2011), we then apply the filter

Â(L)−1M̂(L)Xt = X̃t to the original series Xt. To test for spurious long memory we

subsequently apply the MLWS test in (7) to the filtered series X̃t.

2Monte Carlo results are available from the authors upon request.
3For the sample sizes considered here, this approach turns out to be faster than the method of Sela
and Hurvich (2009). For larger samples the computing time can be further reduced by conducting the
ML estimation on subsamples and using the average of these subsample estimators, as suggested by
Beran and Terrin (1994).
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Note that we do not assume that the short memory dynamics follow a VARMA(1,1)-

process. We use it as a reasonable approximation to the true short memory dynamics

in small samples. Asymptotically the test is unaffected by any form of short memory

dependence because we only use the periodogram ordinates at Fourier frequencies local

to the pole. The short memory dynamics have no influence on the shape of the pole.

This is also why the pre-whitening procedure leaves the limiting distribution of the test

unaffected.

4 Monte Carlo Study

To analyze the finite sample properties of the MLWS test, we conduct a Monte Carlo

analysis that consists of three parts. In the first part, we consider a bivariate setup

and conduct experiments to determine the influence of the bandwidth choice, m = bT δc,

and the choice of the trimming parameter ε on the size and the power of the test.

Then, we turn to higher dimensional applications to analyze how the size and power

depend on the dimension q of the multivariate process. Finally, in the third part we

analyze the performance of the test if short memory dynamics exist. To disentangle

the performance of the multivariate test from that of the pre-whitening procedure, the

latter is only applied in the last part when short memory dynamics are present.

The simulation studies of Qu (2011) and Leccadito et al. (2015) show that the Qu test

has good power against a wide range of different alternatives, such as non-stationary

random level shifts, smooth trends, markov switching models, or the STOPBREAK

proces of Engle and Smith (1999). Therefore, we focus on analyzing the properties that

are specific to the multivariate case and use a stationary random level shift process for

all power DGPs. Further simulation studies covering other forms of deterministic trends

and conditional heteroscedasticity are included in a supplementary appendix, available

online. All results presented hereafter are based on M = 5000 Monte Carlo replications

and all tests are carried out with a nominal significance level of α = 0.05.

4.1 Size and Power Comparison in a Bivariate Setup

The size study for the bivariate case is based on the multivariate fractionally integrated

process from equation (1), where the short memory component ut = vt with vt ∼ N(0,Σv)
is specified to be a bivariate white noise

D(d1,d2)Xt = vt.

In this setup we want to investigate two aspects. First, we evaluate whether the size
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T d1/d2

ρv = .0 ρv = .8
.0 .4 .0 .4

δ/ε .02 .05 .02 .05 .02 .05 .02 .05

250

.0

.60 .008 .011 .009 .010 .011 .015 .007 .010

.65 .011 .016 .010 .015 .015 .023 .012 .020

.70 .016 .019 .015 .018 .016 .021 .015 .022

.75 .014 .022 .016 .022 .020 .028 .018 .023

.4

.60 .007 .009 .006 .009

.65 .009 .014 .012 .017

.70 .013 .019 .014 .019

.75 .017 .025 .020 .024

1000

.0

.60 .015 .022 .017 .021 .017 .025 .018 .023

.65 .019 .028 .020 .024 .024 .030 .021 .028

.70 .023 .031 .024 .031 .028 .037 .027 .031

.75 .026 .037 .029 .039 .037 .049 .032 .038

.4

.60 .015 .020 .015 .021

.65 .021 .031 .022 .025

.70 .025 .032 .025 .031

.75 .029 .035 .030 .038

Table 1: Size of MLWS test for FIVARMA (0,d,0): D(d1,d2)Xt = vt with vt ∼ N(0,Σv) and
σ2

v = 1. The bandwidth m is determined by m = bT δc.

depends on the correlation ρv between the components of the innovation vector vt, or

whether it depends on the (possibly different) degrees of memory d1 and d2 in the two

series. Second, we want to determine the effect of the bandwidth m and the trimming

parameter ε. Since the trimming parameter ε can be chosen discretionary, we follow Qu

(2011) and conduct our simulations for ε ∈ {0.02,0.05}.
Table 1 shows the results. We find that the test is generally conservative in finite samples

- a feature which it shares with its univariate version. For all parameter constellations,

the size is better with ε = 0.05 than with ε = 0.02 and it is increasing in m. The results

also improve as the sample size increases. With a sample size of T = 1000, m = bT 0.75c

and ε = 0.05 for example, we find that the size is between 3.5 and 4.9 percent for all

combinations of ρv, d1, and d2. Thus, in larger samples the MLWS test achieves good

size properties with the right choice of m and ε.

With regard to the correlation ρv between the innovations, the size tends to improve as

the correlation increases since the MLWS test makes use of the coherence information.

Overall, even though the test is quite conservative in small samples, the size is good
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ρ = δ .0 .5 1

T δ/ε .02 .05 .02 .05 .02 .05

250

.60 .134 .160 .147 .171 .244 .254

.65 .300 .357 .316 .379 .421 .449

.70 .510 .542 .537 .575 .587 .588

.75 .739 .749 .746 .760 .735 .731

1000

.60 .724 .759 .730 .764 .776 .791

.65 .934 .942 .934 .945 .914 .918

.70 .987 .989 .989 .988 .965 .964

.75 .996 .995 .998 .997 .988 .987

Table 2: Power of MLWS test against stationary random level shifts: Yt = µt + vt with vt ∼

N(0,Σv) and µt = (Iq−Πt)µt−1 +Πtet. The bandwidth m is determined by m = bT δc.

in larger samples and it is remarkably stable for different degrees of memory in the

components of the series and correlations among the innovation sequences.

We will now turn to the effect of m and ε on the power of the test. In contrast to the

true long-memory processes under the null hypothesis, that we denote by Xt, the DGP

in the power study will be denoted by Yt. It is the sum of the white noise sequence

vt and the multivariate stationary random level shift process µt from equation (3) with

Φ = Iq:

Yt = µt + vt (10)

µt = (Iq−Πt)µt−1 +Πtet.

The shift probability is always kept at p = 5/T , so that in expectation there are five

shifts in every sample and the standard deviation of the shifts is σe = 1. Since a different

behavior of the breaks can imply different phase and coherence information, we consider

different values for the correlation between the occurrence of shifts ρπ and the correlation

of the shift sizes ρe. For simplicity, we always set ρπ = ρe. If ρπ = ρe = 0 shifts occur

independently in each of the components of the series, whereas shifts always coincide in

timing and size if ρπ = ρe = 1.4

The results of this experiment are shown in Table 2. We find that the power is always

increasing in the bandwidth. For small sample sizes with weakly correlated shifts the

4Since the presence of spurious long memory depends on the location of the shifts in the sample, we
discard all samples for which a test, for H0 : d = 0 based on the local Whittle estimate d̂LW , is not
rejected for all components.
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Size Power

MLWS test Qu test MLWS test Qu test

T q/ρv .0 .4 .8 .0 .4 .8 q/ρπ = ρe .0 .5 1 .0 .5 1

100

1 .012 .015 .012 .012 .015 .012 1 .124 .132 .125 .124 .132 .125

2 .014 .016 .014 .007 .012 .012 2 .256 .255 .314 .157 .148 .160

3 .015 .013 .014 .006 .008 .006 3 .369 .365 .453 .164 .152 .167

4 .013 .013 .018 .007 .008 .009 4 .455 .460 .520 .168 .177 .180

5 .015 .015 .011 .006 .006 .007 5 .548 .522 .547 .186 .175 .195

250

1 .021 .021 .018 .021 .021 .018 1 .453 .468 .453 .453 .468 .453

2 .020 .021 .024 .017 .016 .017 2 .743 .736 .726 .602 .593 .549

3 .023 .022 .020 .016 .014 .013 3 .886 .882 .831 .678 .669 .601

4 .021 .021 .021 .015 .015 .014 4 .950 .943 .871 .743 .730 .641

5 .023 .024 .022 .015 .014 .010 5 .981 .977 .885 .795 .764 .657

500

1 .023 .032 .030 .023 .032 .030 1 .791 .801 .799 .791 .801 .799

2 .025 .033 .030 .026 .029 .024 2 .961 .958 .937 .929 .928 .880

3 .029 .027 .030 .026 .020 .021 3 .993 .991 .964 .975 .970 .894

4 .026 .028 .033 .020 .020 .024 4 .999 .999 .975 .990 .987 .917

5 .025 .028 .027 .021 .019 .023 5 1.000 1.000 .982 .997 .993 .927

Table 3: Size and power of MLWS test and repeated Qu test with Simes correction for
increasing dimensions q. Left panel: Size for FIVARMA (0,d,0): D(d1, . . . ,dq)Xt = vt. Right
panel: Power for Yt = µt + vt with vt ∼ N(0,Σv).

test has better power with ε = 0.05, but in larger samples ε = 0.02 leads to a higher

power if m is also relatively large. With regard to the correlation of the shifts, we find

that the power of the test increases in small samples if shifts show a stronger correlation.

In large samples the power slightly decreases if shifts are perfectly correlated.

Overall in the bivariate setup, the test shows good size and power properties and for

an increasing bandwidth both size and power improve. Note however that a larger

bandwidth also makes the test more prone to errors if short memory dynamics are

present. Therefore, we will address the choice of ε and m in practice later.

4.2 The Effect of Increasing Dimensionality

Since the proposed MLWS test is multivariate and its limiting distribution is independent

of the dimension q of the process, we now consider how its finite sample properties depend

on the dimension q.

As before, our size DGP, D(d1, ...,dq)Xt = vt, is a fractionally integrated white noise.

Motivated by our previous findings, we set m = bT 0.75c and ε = 0.05 and consider only

the effect of increasing the dimension q.
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Since there is no other multivariate test against spurious long memory available in the

literature, a practitioner has no other choice but to apply the Qu test to each of the

q components of the process separately. We will use this approach as a benchmark

procedure. To avoid Bonferroni errors, we apply the correction of Simes (1986) that

consists in ordering the p-values in ascending order and then comparing them with α/q,

2α/q, ..., α. The null hypothesis is rejected if any of the ordered p-values exceeds its

respective threshold.

Note that for q = 1 the MLWS test and the Qu test are identical. The left panel of

Table 3 contains the results. We can observe that the MLWS test is quite conservative

in small samples, but the size improves if the sample size increases. It also maintains

approximately the same size independent of the dimension q and independent of the

correlation among the components of vt. For the repeated application of the Qu test

we find that similar to the MLWS test it is conservative in small samples. In addition,

the size tends to further decrease with increasing q and with increasing correlation ρv

between the noise components, which is an effect of the Simes correction.

As in the bivariate setup, the power DGP, Yt = µt + vt, is the sum of the q-dimensional

white noise vt and the q-dimensional multivariate random level shift model from equation

(10). Similar to the size DGP, we restrict the correlations of shifts in the components

as well as the correlation of the shift sizes to be the same among all components such

that ρπ,ab = ρe,ab = ρπ = ρe for all a , b.

If we consider the results on the right hand side in Table 3, we find that there are

indeed large power gains compared to the repeated application of the Qu test. For

T = 100 these can be more than 36 percent. While correlated shifts increase the power

in smaller samples, the power reduction observed in the bivariate simulations increases

with increasing q. We find that the power is increasing in q and T . For larger dimensions

the power is already close to one with only 250 observations.

4.3 Short Memory Dynamics

So far we have considered the MLWS test applied directly to the observed series Xt.

As discussed in Section 4, the performance of the local Whittle based methods can be

negatively affected in finite samples if short memory dynamics are present. This is why

we suggested a pre-whitening procedure based on the FIVARMA(1,d,1). Subsequently,

the test is applied to the filtered series X̃t. The performance of this procedure is analyzed

in the following.
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Pre-whitened: X̃t Unfiltered: Xt

DGP 1 2 3 4 1 2

T δ/ε .02 .05 .02 .05 .02 .05 .02 .05 .02 .05 .02 .05

250

.60 .006 .008 .006 .007 .002 .003 .006 .006 .006 .013 .006 .013

.65 .007 .010 .005 .007 .002 .004 .008 .014 .012 .020 .014 .030

.70 .012 .008 .004 .005 .001 .005 .007 .011 .014 .016 .043 .083

.75 .007 .010 .002 .002 .001 .005 .006 .010 .015 .025 .138 .217

500

.60 .013 .011 .013 .015 .009 .009 .010 .013 .016 .015 .010 .018

.65 .011 .015 .011 .019 .005 .010 .010 .017 .017 .024 .017 .034

.70 .016 .020 .010 .013 .003 .005 .015 .017 .023 .028 .059 .110

.75 .015 .013 .003 .004 .001 .003 .008 .014 .025 .032 .255 .340

1000

.60 .017 .023 .017 .026 .020 .020 .016 .020 .018 .025 .014 .019

.65 .020 .022 .026 .031 .017 .014 .016 .020 .027 .027 .016 .039

.70 .018 .021 .021 .023 .013 .009 .022 .025 .028 .032 .068 .116

.75 .019 .021 .017 .016 .004 .005 .021 .018 .034 .038 .356 .464

2000

.60 .019 .022 .014 .025 .016 .022 .015 .028 .018 .030 .012 .026

.65 .019 .028 .026 .026 .024 .024 .023 .023 .024 .026 .022 .035

.70 .027 .032 .027 .028 .014 .022 .025 .027 .033 .038 .081 .115

.75 .021 .031 .024 .016 .006 .006 .023 .025 .039 .039 .450 .549

Table 4: Size of the MLWS test for FIVARMA(1,d,1): (1−φ1L)D(d1,d2)Xt = (Iq−M1L)vt with
and without pre-whitening. Parameters values of the respective DGPs are given above. The
bandwidth m is determined by m = bT δc.

We consider four different DGPs for the size. These are given by:

DGP1: D(0.2,0.3)Xt = vt

DGP2: (1−0.4L)D(0.2,0.3)Xt = vt

DGP3: (1−0.6L)D(0.2,0.3)Xt = vt

DGP4: (1−0.4L)D(0.2,0.3)Xt =

I2−

 0.5 0

0 0.3

L

vt.

For all processes we set σ2
v = 1, ρv = 0.5 and p = 5/T . All of these processes are spe-

cial cases of the FIVARMA(1,d,1). DGP1 is a simple bivariate fractional white noise,

while DGP2 and DGP3 contain autoregressive dynamics. Finally, DGP4 contains both

autoregressive and moving average dynamics.

For the power studies we combine the respective size DGP Xt with the multivariate

random level shift µt:

Yt = Xt +µt

µt = (Iq−Πt)µt−1 +Πtet.
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Pre-whitened: X̃t Unfiltered: Xt

DGP 1 2 3 4 1 2

T δ/ε .02 .05 .02 .05 .02 .05 .02 .05 .02 .05 .02 .05

250

.60 .028 .034 .025 .027 .011 .013 .027 .034 .041 .051 .013 .021

.65 .060 .080 .045 .047 .015 .016 .066 .082 .093 .111 .019 .026

.70 .113 .128 .057 .051 .014 .015 .116 .122 .192 .199 .023 .024

.75 .177 .192 .056 .054 .013 .018 .190 .194 .312 .339 .030 .037

500

.60 .102 .103 .089 .082 .043 .030 .086 .095 .129 .127 .073 .060

.65 .176 .203 .125 .153 .038 .047 .175 .212 .257 .297 .078 .096

.70 .314 .326 .174 .175 .044 .039 .319 .344 .470 .499 .095 .094

.75 .444 .446 .174 .149 .039 .035 .458 .455 .675 .683 .063 .073

1000

.60 .271 .292 .250 .247 .141 .135 .253 .290 .327 .352 .230 .234

.65 .484 .484 .386 .374 .177 .155 .452 .483 .579 .594 .324 .303

.70 .629 .637 .468 .397 .171 .131 .627 .627 .789 .781 .335 .267

.75 .750 .729 .497 .414 .148 .098 .733 .736 .899 .891 .246 .190

2000

.60 .565 .598 .529 .547 .353 .345 .532 .555 .619 .647 .521 .536

.65 .769 .757 .690 .662 .417 .346 .747 .752 .847 .857 .652 .611

.70 .857 .818 .731 .691 .393 .287 .859 .831 .930 .934 .658 .599

.75 .857 .796 .732 .617 .305 .146 .889 .824 .968 .957 .578 .409

Table 5: Power of the MLWS test for Yt = µt + Xt, with (1−φ1L)D(d1,d2)Xt = (Iq−M1L)vt with
and without pre-whitening. Parameters values of the respective DGPs are given above. The
bandwidth m is determined by m = bT δc.

In the multivariate random level shift process we use ρπ = ρe = 0.9 and σe = 2.

To investigate the costs and benefits of the pre-whitening procedure, the simulations for

DGP1 and DGP2 are conducted with and without pre-whitening. The results for the

size simulations are given in Table 4.

DGP1 is the baseline case. By comparing the results for the tests applied to the pre-

whitened series X̃t with the results of the unfiltered series Xt, we can observe that the

empirical size becomes a bit more conservative. However, for an increasing T the size

approaches its nominal level. By considering DGP2, we see that there are considerable

over-rejections if moderate autoregressive dynamics are present and no pre-whitening is

applied, whereas with pre-whitening these distortions are successfully removed.

The results for DGP3 and DGP4 show that the pre-whitening procedure works well in

controlling the size for different forms of short memory dynamics. As before, the size

is generally better if ε = 0.05 is used. With regard to the bandwidth selection, the best

size is observed most often for δ = 0.65 or δ = 0.7. It is no longer strictly increasing in

m.

Table 5 considers the power results. For the baseline case there is a considerable power

reduction caused by the additional flexibility introduced through the pre-whitening pro-

cedure. But when comparing the results for DGP1 and DGP2 without pre-whitening, we
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observe that the power also suffers severely if there are short memory dynamics but no

pre-whitening is applied. Using the filtering procedure reduces this effect substantially.

The power is increasing in T and generally also in m, but we observe some power drops

for larger bandwidths, especially if the autoregressive dynamics become more persistent.

Similarly to Section 4.1, in small samples ε = 0.05 tends to give better results, whereas

ε = 0.02 gives better power results in large samples.

In view of the size and power results presented here, the rule of thumb to choose ε = 0.05
for T ≤ 500, that is suggested by Qu (2011), still works well in the bivariate case if

short memory dynamics are present. Similarly, Qu’s approach to use m = bT 0.7c for the

bandwidth is a good rule in the bivariate case.

5 Empirical Example
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Figure 1: The log-absolute return of the S&P 500 series with the corresponding autocorrelation
function and periodogram.

Volatility time series, such as log-absolute returns of stock market indices, are a typ-

- 22 -



DAX S&P 500 FTSE NIKKEI

mean -4.977 -5.156 -5.107 -4.924

median -4.920 -5.133 -5.051 -4.803

std.dev. 0.924 0.937 0.900 1.004

skewness -0.131 0.053 -0.087 -0.307

kurtosis 2.475 2.528 2.573 2.419

Table 6: Summary statistics of the log-absolute return series.

ical example in the spurious long memory literature. A frequently analyzed series in

this context is the log-absolute return of the Standard & Poor 500 stock market index

(hereafter S&P 500). The series is examined by Granger and Ding (1996) who find that

it seems to follow a long-memory process. Nevertheless, they argue that long memory

properties can be generated by other models than the standard I(d) process. Granger

and Hyung (2004) obtain a reduction of the estimated memory parameter by considering

structural breaks in the series. Similarly, Varneskov and Perron (2011) consider a model

allowing for both random level shifts and ARFIMA effects. Lu and Perron (2010) and

Xu and Perron (2014) analyze the forecast performance of random level shift processes

for the log-absolute returns of the S&P 500. In most cases, random level shift processes

clearly outperform GARCH, FIGARCH and HAR models.

All these findings indicate spurious long memory in this volatility series. However,

univariate tests are often not able to reject the null hypothesis of true long memory in

volatility time series. Dolado et al. (2005), for example, apply their test to absolute and

squared returns of the S&P 500, without being able to indicate spurious long memory.

In view of the power gains of the multivariate procedure, demonstrated in Section 4.2,

we revisit the log-absolute return series of the S&P 500 and additionally consider log-

absolute returns of the DAX, FTSE and NIKKEI in a multivariate setup to test for

spurious long memory using the MLWS test.

We analyze daily stock price indices from 2005/01/03 to 2014/12/31 (T=2608 obser-

vations) obtained from datastream. The log-returns are computed by first differencing

the logarithm of the price index, rt = ln(Pt)− ln(Pt−1). Subsequently, the log-absolute re-

turns are calculated as ln(|rt|+0.001).5 As an example, Figure 1 depicts the log-absolute

returns of the S&P 500 series. Both, the autocorrelation function and the periodogram

show the typical characteristics of a long-memory process. Since the series of the DAX,

5The constant 0.001 is added to avoid infinite values for zero returns, by following Lu and Perron (2010)
and Xu and Perron (2014).
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δ DAX S&P 500 FTSE NIKKEI partitions coint.rank β̂ d̂u

0.60 0.379 0.472 0.393 0.295 (1,1,1,1) 1 (0.420, 0.421, -0.128) 0.224

0.65 0.338 0.411 0.362 0.290 (1,1,1,1) 1 (0.431, 0.419, -0.123) 0.210

0.70 0.328 0.359 0.303 0.285 (1,1,1,1) 1 (0.435, 0.415, -0.115) 0.183

0.75 0.264 0.300 0.290 0.252 (1,1,1,1) 1 (0.438, 0.422, -0.111) 0.139

Table 7: Fractional cointegration analysis based on local Whittle estimates of d with different
bandwidths m = bT δc.

FTSE and NIKKEI are highly correlated with that of the S&P 500, we omit plots of

these series. Descriptive statistics for the dataset are given in Table 6. It can be seen

that all four series have similar locations and standard deviations. With the exemption

of the S&P 500, they are slightly negatively skewed and all series have lighter tails than

the normal distribution.

Since the specification of the MLWS test depends on whether or not the series are

fractionally cointegrated, we proceed by applying the semiparametric cointegrating rank

estimation method of Robinson and Yajima (2002). The method consists of two steps.

First, the vector series Xt is partitioned into subvectors with equal memory parameters

using sequential tests for the equality of the da in each subvector. In the second step,

the cointegrating rank of the relevant subvectors is estimated.

All results of this procedure are given in Table 7. The analysis is carried out for different

bandwidths m = bT δc using the local Whittle estimator. It can be observed, that the

estimates tend to decrease as the bandwidth increases, which indicates that the series

indeed might be contaminated by level shifts.

Using the T̂0 statistic of Robinson and Yajima (2002) to test for the equality of the

memory parameters, the null hypothesis cannot be rejected for any of the bandwidths,

so that no further partitioning of Xt is necessary. Subsequently, the cointegrating rank of

Xt is estimated. Again, the results are remarkably stable for different bandwidth choices.

We find that there is one cointegrating relationship between the four volatility series.

As described in Section 3.2, the analysis than proceeds by estimating the cointegrating

vector β in (8) using the FMNBLS estimator of Nielsen and Frederiksen (2011). The

DAX series is specified to be the dependent variable. Subsequently, the transformed

series B̂Xt are obtained. Additionally, we report the estimate d̂u of the noise term in the

last column of Table 7 to show that the condition of 0 ≤ dw < d1 < 1/2 is fulfilled.

To formally test for true long memory, we then apply the robustified multivariate local

Whittle score-type test (M̃LWS ) to our system B̂Xt. As a benchmark, we also apply the

univariate test of Qu (2011) to each series separately. Because of the large number of

observations the trimming parameter is set to ε= 0.02 for both tests. The corresponding
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Qu test MLWS

δ DAX S&P 500 FTSE NIKKEI ALL

0.60 0.521 0.515 0.446 0.860 1.334

(0.862) (0.871) (0.949) (0.314) (0.030)

0.65 0.505 1.078 0.443 0.749 1.584

(0.886) (0.118) (0.953) (0.474) (0.007)

0.70 0.395 1.100 0.739 0.519 1.630

(0.983) (0.107) (0.492) (0.865) (0.004)

0.75 0.640 1.477 0.547 0.469 1.604

(0.662) (0.013) (0.824) (0.929) (0.006)

Table 8: Test statistics of the Qu test applied to each series separately and the MLWS test
applied to the multivariate series for different bandwidths m = bT δc. p-values are given in
brackets. Critical values are 1.252 and 1.374 for α = 5% and α = 1%, respectively.

test statistics are given in Table 8, where the p-values are displayed in brackets. As one

can see, Qu’s univariate test fails to reject the null hypothesis of true long memory

for nearly all bandwidths. The only exemption is the S&P 500 if the bandwidth is set

to m = bT 0.75c. From these results one would conclude that the process is a pure long

memory process that is not contaminated by level shifts. On the contrary, the MLWS

test, that takes the information of the cross-spectrum into account, clearly rejects the

null hypothesis in all cases, indicating the presence of spurious long memory due to level

shifts. The application of the MLWS test therefore gives formal support to the arguments

of Granger and Ding (1996) and Granger and Hyung (2004), among others, who argued

that the memory in the log-absolute returns of the S&P 500 might be spurious.

6 Conclusion

This paper provides a multivariate score-type test for spurious long memory based on

the objective function of the local Whittle estimator. The test statistic consists of

a weighted sum of the partial derivatives of the concentrated local Whittle likelihood

function. By introducing a suitable weighting scheme, the test statistic becomes pivotal

and the limiting distribution becomes independent of the dimension of the data gener-

ating process. Our test encompasses the test of Qu (2011) as a special case for scalar

processes. Consistency against multivariate random level shift processes and smooth

trends is shown. Furthermore, we provide a modification of the test statistic in the

case of fractionally cointegrated data which has the same asymptotic properties as the
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original test statistic.

A Monte Carlo study shows that the test has good size and power properties in finite

samples. These properties hold for different bandwidths, m = bT δc, as well as for different

trimming parameters ε. Furthermore, the size and power remain good if the dimensions

of the data generating process increase and the test is robust against short memory

dynamics if a pre-whitening procedure is applied.

Therefore, our test allows to consider multivariate problems in a multivariate setup

instead of testing for spurious long memory in each series separately. By using infor-

mation about the cross dependencies between time series we gain efficiency compared

to a repeated application of a univariate test. This finding is exploited in our empirical

example where we revisit the log-absolute returns of the S&P 500 together with the

DAX, FTSE and NIKKEI stock indices in a multivariate framework. By applying our

multivariate test, we find evidence of spurious long memory in those series. A simple

application of the univariate Qu test to the univariate log-absolute returns, on the other

hand, cannot reject the null hypothesis of true long memory.

As discussed in Section 5, several authors have pointed out that the log-absolute re-

turns might follow a spurious long-memory process. Our empirical application adds to

this literature by providing a formal rejection of pure long memory in the sense of a

statistically significant test decision.
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Appendix

Proof of Lemma 1:

To prove the lemma, note the following arguments in Shimotsu (2007)

q∑
a=1

ηa
√

m
∂R(d)
∂da

=

q∑
a=1

ηa
√

m

− 2
m

m∑
j=1

logλ j + tr
[
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Proof of Theorem 1:

To prove the theorem we start with the Taylor expansion
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where d̄ fulfills ‖d̄−d0‖ ≤ ‖d̂−d0‖ and the notation Rr(d) indicates that the summation
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By arguments as in Shimotsu (2007), we can write the first term plus the imaginary part
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by using Lemma 2 and 3 from Lobato (1999). Now we have
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From the Euler-Mc Laurin equality and Lemma B.1 in Qu (2011) it follows that
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ηaηbG0
ab

(
G0

)−1

ab
−2

q∑
a=1

η2
a


ds.

For the second term of the second equality of (12) we have by similar arguments as in

Qu (2011) that

aG0

m1/2

m∑
j=1

[
a

(
G0

)−1′

a

(
G0

)−1 [
Re

[
Λ0

j(d)−1I(λ j)Λ0∗
j (d)−1

]]
a
−1

]
→ B(1)

where B(s) denotes a standard Brownian motion. As before we have from Lemma B.1

in Qu (2011) that

1
m

[mr1]∑
j=1

ν j→

∫ r1

0
(1 + log s)ds.

It remains the last part of the Taylor decomposition. For the second derivative of the

objective function R(d) we obtain

∂2Rr(d)
∂da∂db

= tr
[
−Ĝ−1(d)

∂Ĝr(d)
∂da

Ĝ−1(d)
∂Ĝr(d)
∂db

+ Ĝ−1(d)
∂2Ĝr(d)
∂da∂db

]
.

Thus,

∂Ĝr(d)
∂da

=
1
m

[mr]∑
j=1

(logλ j)Ĝ1a(d) + oP
(
(logT )−1

)
with

Ĝ1a(d) = iaĜ(d) + Ĝ(d)ia.

Furthermore, it is

∂2Ĝr(d)
∂da∂db

=
1
m

[mr]∑
j=1

(logλ j)2Ĝ2ab(d) +
π2

4
Ĝ3ab(d) + oP(1)

with

G2ab(d) = iaibĜ(d) + iaĜ(d)ib + ibĜ(d)ia + Ĝ(d)iaib
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and

G3ab(d) = −iaibĜ(d) + iaĜ(d)ib + ibĜ(d)ia− Ĝ(d)iaib.

Furthermore, it holds that

tr
[
Ĝ(d)−1Ĝ1a(d)Ĝ(d)−1Ĝ1b(d)

]
= tr

[
Ĝ(d)−1Ĝ2ab(d)

]
.

Altogether this gives

∂2Rr(d)
∂da∂db

= tr

−Ĝ(d)−1

 1
m

[mr]∑
j=1

(logλ j)Ĝ1a(d) + oP
(
(logT )−1

)
×Ĝ(d)−1

 1
m

[mr]∑
j=1

(logλ j)Ĝ1b(d) + oP
(
(logT )−1

)
+ Ĝ(d)−1

 1
m

[mr]∑
j=1

(logλ j)2Ĝ2ab(d) +
π2

4
Ĝ(d)−1Ĝ3ab(d) + oP(1)




= tr


 1

m

[mr]∑
j=1

ν2
j

Ĝ(d)−1Ĝ2ab(d) +
π2

4
Ĝ(d)−1Ĝ3ab(d)

+ oP
(
log2T

)
→ tr

[∫ r

0
(1 + log s)2ds

(
G0

)−1
G0

2ab +
π2

4

(
G0

)−1
G0

3ab

]
= 2

∫ r

0
(1 + log s)2ds(G0�

(
G0

)−1
+ Iq) +

π2

4
(G0�

(
G0

)−1
− Iq).

By denoting F(r) =
∫ r

0 (1 + log s)2ds(G0�
(
G0

)−1
+ Iq) + π2

4 (G0�
(
G0

)−1
− Iq) we have

η
′ ∂2Rr(d)
∂d∂d′

√
m(d̂−d0) = η

′

F(r)η2
∫ 1

0
(1 + log s)dW(s).

Like Qu (2011), we use Theorem 13.5 of Billingsley (2009) to prove tightness. Thus, we

show that for every m and r1 ≤ r ≤ r2

E


∣∣∣∣∣∣∣

T∑
t=1

zt,r −

T∑
t=1

zt,r1

∣∣∣∣∣∣∣
2 ∣∣∣∣∣∣∣

T∑
t=1

zt,r2 −

T∑
t=1

zt,r

∣∣∣∣∣∣∣
2 ≤ K (ψm(r2)−ψm(r1))2

where K is some constant and ψm(·) is a function on [0,1] which is finite, nondecreasing

and fulfills

lim
δ→0

limsup
m→∞

|ψm(s +δ)−ψm(s)| → 0
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uniformly in s ∈ [0,1]. Here we denote zt(s,r) = zt,r − zt,s. Denote also ct(r, s) = ct,r − ct,s

and ct = tr[Θt + Θ̃t]. Using this notation we can use Qu’s (2011) Lemma B.8 to show

that E(|
∑T

t=1 zt,r −
∑T

t=1 zt,r1 |
2|
∑T

t=1 zt,r2 −
∑T

t=1 zt,r|
2) is bounded from above by

K

 T∑
t=1

t−1∑
s=1

ct−s(r1,r)2


 T∑

t=1

t−1∑
h=1

ct−h(r,r2)2


where K is some positive constant. By similar arguments as in Qu (2011) we obtain

furthermore

T∑
t=1

t−1∑
s=1

ct−s(r1,r)2 ≤

 1
Tm

[mr]∑
j=[mr1]+1

[mr]∑
k, j

(
ν2

j + ν2
k

)
+

1
m

[mr]∑
j=[mr1]+1

ν2
j


×

2 q∑
a=1

η2
a + 2

q∑
a=1

q∑
b=1

ηaηbG0
ab

(
G0

)−1

ab


≤

3
m

[mr]∑
j=[mr1]+1

ν2
j

2 q∑
a=1

η2
a + 2

q∑
a=1

q∑
b=1

ηaηbG0
ab

(
G0

)−1

ab

 .
As (2

∑q
a=1 η

2
a + 2

∑q
a=1

∑q
b=1 ηaηbG0

ab(G0)−1
ab ) ≤ K for some constant K we set ψm(s) = 1/m∑[ms]

j=1 ν
2
j . This satisfies the condition as

lim
δ→0

limsup
m→∞

|ψm(s +δ)−ψm(s)| = lim
δ→0

∫ s+δ

s
(1 + log x)2dx → 0.

This proves the theorem. �

Proof of Lemma 2:

To prove the lemma, it is enough to show that 2η
′

η+ 2η
′

(G0 � (G0)−1)η = 4. For this

denote

G0 =



g11 g12 . . . g1q

g21 g22 . . . g2q
...

. . .
...

gq1 gq2 . . . gqq


.

Thus, we obtain for the inverse matrix
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(
G0

)−1
=

1
det(G0)



det(G0
11) −det(G0

21) . . . (−1)1+q det(G0
q1)

−det(G0
12) det(G0

22) . . . (−1)2+q det(G0
q2)

...
. . .

...

(−1)1+q det(G0
1q) (−1)2+q det(G0

2q) . . . det(G0
qq)


by using Cramer’s rule. Therefore, by applying Laplace’s formula and using that gi j = g ji

we have

G0�
(
G0

)−1
=

1
det(G0)



g11 det(G0
11) −g12 det(G0

21) . . . (−1)1+qg1q det(G0
q1)

−g21 det(G0
12) g22 det(G0

22) . . . (−1)2+qg2q det(G0
q2)

...
...

. . .
...

(−1)1+qgq1 det(G0
1q) (−1)2+qgq2 det(G0

2q) . . . gqq det(G0
qq)


.

Therefore

G0�
(
G0

)−1
η =

1
det(G0)



1√
q
∑q

i=1(−1)1+igi1 det(G0
i1)

1√
q
∑q

i=1(−1)2+igi2 det(G0
i2)

...

1√
q
∑q

i=1(−1)q+igiq det(G0
iq)



=



1√
q

1√
q
...

1√
q


and thus finally

η
′
(
G0�

(
G0

)−1
)
η = 1

which proves the Lemma. �

Proof of Theorem 2:

To prove the consistency of our test statistic, we use the property that I(λ j) = OP(1)
when jT−1/2→∞. Note that ν j is monotonically increasing in j with ν1 < 0 and νm > 0.

For our test statistic we write
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MLWS =
1
2

sup
r∈[ε,1]

∥∥∥∥∥∥∥∥∥
2√∑m
j=1 ν

2
j

q∑
a=1

ηa

[mr]∑
j=1

ν j
(
ag

[
Re

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]]
a
−1

)

+tr

G(d̂)−1 1√∑m
j=1 ν

2
j

[mr]∑
j=1

λ j−π

2
Im

[
(Λ j(d̂))−1(−iaI(λ j) + I(λ j)ia)(Λ∗j(d̂))−1

]
∥∥∥∥∥∥∥∥∥

= sup
r∈[ε,1]

‖I + II‖.

Let us consider the term I first. Define j∗ = min{ j : ν j ≥ 0}. From Qu’s (2011) Lemma

B.1 it follows that j∗ = Km for some constant K. Define now

A =

∥∥∥∥∥∥∥∥
q∑

a=1

ηa

m∑
j= j∗

ν j
(
ag

[
Re

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]]
a
−1

)∥∥∥∥∥∥∥∥
and

B =

∥∥∥∥∥∥∥∥
q∑

a=1

ηa

j∗−1∑
j=1

ν j
(
ag

[
Re

[
Λ j(d̂)−1I(λ j)Λ∗j(d̂)−1

]]
a
−1

)∥∥∥∥∥∥∥∥ .
Applying the reverse triangle inequality to I gives

I ≥max(A−B,B).

Now, if A ≥ 2B than we have

I ≥ A−B

=
A
2

+

(A
2
−B

)
≥ A

2 .

On the other hand, if A < 2B than I ≥ B > A/2. Altogether, we have I ≥ A/2. Thus, we

have to show that A
P
→∞ if T →∞. To do so, we write A in the form

A =

∥∥∥∥∥∥∥∥
q∑

a=1

ηa

m∑
j= j∗

ν j
(
ag

[
Re

[
Λ j(d)−1A(λ j)Iε jA∗(λ j)Λ∗j(d)−1

]]
a
−1

)∥∥∥∥∥∥∥∥ .
Applying the reverse triangle inequality to A gives
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A ≥
q∑

a=1

ηa

m∑
j= j∗

ν j−

q∑
a=1

ηa

m∑
j= j∗

ν j
(
ag

[
Re

[
Λ j(d)−1A(λ j)Iε jA∗(λ j)Λ∗j(d)−1

]]
a

)
.

For the first term of this inequality we have

q∑
a=1

ηa

m∑
j= j∗

ν j = m1/2
∫ 1

κ
(1 + log s)ds + o

(
m1/2

)
which is strictly positive and of exact order m1/2.

For the second term we can conclude the following. As m/T 1/2 → ∞ it holds that

j∗/T 1/2→∞. Thus, for every j∗ ≤ j ≤ m it follows I(λ j) = OP(1). Furthermore, we have

ν j
(
ag

[
Re

[
Λ j(d)−1A(λ j)Iε jA∗(λ j)Λ∗j(d)−1

]]
a

)
= OP

(
λ2d̂

j

)
= OP

(
λ2ε

j

)
= oP(1)

for every a. This holds because ν j = OP(1) for j∗ ≤ j ≤m, Ĝ(d) = 1/m
∑m

j=1 Re[Λ j(d)−1I(λ j)
Λ∗j(d)−1], P(d̂ j > ε)→ 1 and λ j = o(1). Therefore, the second term is of lower order than

m1/2 and is dominated asymptotically by the first term. Thus, A
P
→∞ if T →∞. By

using exactly the same arguments as before the term II is of lower order than m1/2, and

therefore dominated asymptotically by term I. This proves the theorem. �
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