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ABSTRACT: 

Shift-Share analysis is a well-known methodology frequently used to obtain insights into 

the determinants of regional growth processes. It can address many issues, such as output 

growth, employment growth and productivity growth. After the initial equation proposed 

by Dunn (1960), several extensions have been suggested in order to overcome some 

conceptual problems. One of the most important undesirable properties that have been 

mentioned is the so-called “non-uniqueness” of the results. That is, numerous 

decomposition forms are equivalent to the classical shift-share equation from a theoretical 

point of view, but the results often depend strongly on the choice of a specific one. In this 

paper, we propose a methodology based on maximum entropy econometrics to 

incorporate additional information to select the unique shift-share formula that fits this 

information best. We illustrate the method empirically by investigating the sources of 

change of employment growth in Spanish regions, 1986-2000. 
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1. Introduction 
 
The classical Shift-Share technique has been traditionally applied in regional science to 

explain the influence of different factors on the observed change in a variable. Basically, the 

main idea in this kind of analysis is that the temporal variations in a variable  (where i 

refers to the economic sector and j to the region) depend on three factors or effects: a 

National Effect measuring the influence of the national economic growth process, a 

Sectoral Effect reflecting the effect of differences between regions in the industry mix and, 

finally a Regional or Competitive Effect measuring the regional differences in the dynamics 

of sector i. This analysis can provide useful information to policy makers: for the design of 

policies for a region it could be interesting to know, for instance, what is the influence of 

its specific sectoral specialization on the economic growth

ijz

1. 

 

The three effects commented are summarized in the following equation: 

 

ijijijij RESENEz ++=∆                                    (1)
 

where ,  and RE ; this is the formulation of the 

so-called Classical Shift –Share Equation.  In it, r is the growth rate of variable z in the whole 

nation,  is the growth rate of this variable for the national sector i and  is the growth 

rate of z , considering two time periods 0 (initial) and 1 (final). Therefore:  
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As it is well known, the National Effect (NE) measures the hypothetical growth that the 

variable  would have had if its growth rate had been the same as the national average; 

the Sectoral Effect (SE) measures the differential growth rate of national sector i compared to 

ijz

                                                 
1 As an example of this interest, the Foundation for the Research depending on Caixa Galicia (a Spanish 

bank, http://www.fundacioncaixagalicia.org/) and the European Fund for Regional Development co-
supported the study Sectoral Structure and Regional Convergence (De la Fuente, 2000), which used Shift –Share 
techniques to identify the effects commented here on the income per capita of Spanish regions. 
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the national aggregate growth rate; and, finally, the Regional Effect (RE) measures the 

influence of the specific economic characteristics of region j comparing the growth rate of 

sector i in this region with the national growth of this sector.  

 

The bases of Shift-Share were already established in the sixties by Dunn (see Dunn, 1960). 

This technique has been applied for decades to decompose temporal changes in the 

regional levels of sectoral output or employment. However, its use has been the cause of 

some debate: works that criticized the Shift-Share techniques are Richardson (1978) or 

Holden et al. (1989); a strong defence can be found in Fothergill & Gudgin (1979).  During 

these years several modifications and extensions have been  proposed. Among the most 

important advances, are the works of Esteban-Marquillas (1972), Arcelus (1984), Berzeg 

(1978, 1984) or Barff & Knight (1988).  

 

Traditionally, one of the most criticised features of the Classical Shift-Share equation has 

been the existence of some asymmetries in the analysis that lead to a non-unique solution. 

On of them is related to the choice of reference periods to weight the effects (Klaassen & 

Paelinck, 1972 or Barff & Knight, 1988). The main objective of this paper is the suggestion 

of a different perspective. We argue that any available additional information for periods 

inbetween the initial and final time period considered can be used to divide the interaction 

terms in a way that fits the data better than implied by simply taking averages. The 

additional data are used in a Maximum Entropy (ME) estimation procedure to arrive at 

parameter estimates that together specify a unique division of the interaction terms.2 

 
The paper is organized as follows. In Section 2, we present the “non-uniqueness” problem 

in Shift-Share analysis in formal terms. Section 3 introduces a decomposition “path-based” 

method which continuous temporal paths for the factors involved in decomposition 

problems and obtains a type of solutions that depend on unknown parameters. In Section 

4, the principles of ME estimation are highlighted, and we show how ME estimation 

techniques can be used to estimate the parameter of interest in solving the “non-

uniqueness” problem in Shift-Share. Section 5 is devoted to a discussion of additional 

information that can be used to implement the ME approach. In Section 6 we present an 

empirical illustration of the approach. We will study the sources of change of employment 
                                                 
2  Maximum Entropy econometrics and strongly related Cross Entropy methods have been used in an 

intersectoral setting before. See, for example, Golan et al. (1994) and Robinson et al. (2001) for methods to 
estimate missing data in input-output tables and social accounting matrices.  

 3



growth in Spanish regions between 1986 and 2000. Our aim is to assess the importance of 

changes in the national economy as a whole on the one hand,  the effects of specific 

sectoral specialization and the consequences of some regional advantages and 

disadvantages. Section 7 concludes the paper.    

 

2. The Non-Uniqueness Problem 
 
As we have commented in the introduction to this section, Shift-Share techniques measure 

the different effects of the change in a variable z  between two time periods, considering 

three effects: national, sectoral and regional, as expressions (2)-(4) show. In this section we 

will illustrate how this  result is closely related to the decomposition of temporal change in 

a variable that can be expressed as a product of several factors. 

ij

 

So, considering  variable z  as: ij

 

ijiij wxyz =                                      (5)
 

where x is the national value of the variable (the aggregate of all sectors and regions), i. e., 

zx = . On the other hand, yi is a ratio that measures the influence of the industry mix by 

the ratio 
z
zy i

i =  that measures the weight of sector i over the national value. Finally, w 

shows the ratio of region j over the overall employment in sector i (
i

ij
ij z

z
w = ). 

 

If we measure z  in the initial and final time periods, 0 and 1 respectively, the variation 

between them would be:  

ij

 
00011101
ijiijiijijij wyxwyxzzz −=−=∆                                         (6)

 

Adding and subtracting  and  in (6) we obtain:  001
iji wyx 011

iji wyx
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Each one of the terms of equation (7) shows the effects defined in (1):  
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In other words, expression (7) actually is the classical Shift-Share equation. Note that the 

starting point of this section was a decomposition problem for a variable that can be 

defined by the product of three factors. The problem is that if in (6) we had made different 

mathematical transformations, the whole change in z  would had been expressed as the 

following sum:  

ij

 

ijiijiijiij wyxwyxwxyz ∆+∆+∆=∆ 001011                                    (11)
 

Consequently, the three effects can be measured by expressions different from the classical 

equation (7). Through this kind of transformation it would be possible to achieve six 

decomposition forms of the temporal change in z . The expressions of all the 

decomposition forms are: 

ij
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1
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1
i wyxwyxwxy ∆∆∆ ++  Decomposition form 6 (12f)

 
In general terms, in decomposition problems where variables are the product of n 

determinants, the number of possible decompositions is !n . All them are admissible as 

exhaustive (the sum of the effects equals the change in the variable) and taking one or 

another is a purely arbitrary choice that implies some variability in the results and the 

analysis conclusions could differ extensively. 

 
3. The Path Based Approach 
 

In this section, a framework for an alternative decomposition method will be sketched. It 
builds on earlier work by Hoekstra & Van den Bergh (2002) and in particular Harrison et al. 
(2000), who introduced the basics of what we will call the Path Based (PB) approach. The 
alternative setup starts from the premise that both the value of zij and the value of the 
determinants x, yi, and wij have changed continuously over time, between time 0 and time 1. 
Hence, we can write: 
 

)t(w)t(y)t(x)t(z ijiij =  (13)

 
and, assuming differentiability of each factor an infinitesimal change in z can be expressed 
as 
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Finally, the total change in zij can be expressed as the sum of all the infinitesimal changes 
between time 0 and time 1: 
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Equation (14) shows that the derivatives of the determinants x, yi, and wij to time t play an 
important role in the size of the effects attributed to changes in these determinants. 
Consequently, the choice of the functional forms of the functions, or in other words, the 
specification of the temporal paths that variables follow between initial and final periods, 
can have a big impact on the measurement of their effects that together add up to the 
variation in zij. 
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Harrison et al. (2000) proposed the solution arrived at by assuming straight-line paths of the 

factors: 

 
( ) xtxtxxx)t(x ∆+=−+= 0010  (16a)

( ) tyytyyy)t(y iiiiii ∆+=−+= 0010  (16b)
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From this linear paths and equation (15), we will obtain the following effects: 
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Actually, this approach yields the same solution as Sun’s (1998) ‘equal shares’ method. 
Furthermore, this solution equals the average of the six decomposition forms of equations 
(12a)-(12f). In this paper, we propose a method to take such information explicitly into 
account in attributing parts of the interaction effects to the effects of the respective 
determinants.    

 
The methodological innovation we propose is to relax the strict assumption of a straight 

line, by considering more flexible forms for the functions that describe the temporal 

behavior of factors x, yi, and wij. In order to preserve possibilities to estimate the parameters 

that characterize the time-paths of the variables, we choose to consider a specific class of 

monotonic functions without inflexion points: 
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Obviously, the temporal path of a factor will be a straight line if the parameter θ equals 1, 
and  the solution obtained by the method introduced here will be identical to Harrison’s et 
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al. (2000) solution. Figure1 indicates what the path for a generic factor f (which may refer 
to x, yi, or wij) looks like if θf  takes on a value different from 1. 
 
 
 
Figure 1. Several temporal paths for factor f 
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As can be seen from Figure 1, the class of paths considered contains all possible 

monotonic paths for  to  that do not have inflexion points. This is a limitation for 

sure. An important category of paths not covered by our class of paths are those that 

contain values that are below the initial value or exceed the final value (assuming, without 

loss of generalization that  is larger than ). Considering this type of temporal paths 

and taking into account expression (15), 

0f 1f
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equations:  
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Where ,  and  show respectively the National, Sectoral and Regional Effects 

obtained by the use of PBM technique for the sector i in the region j. The interpretation of 

these results is quite intuitive. Starting with the national effect, equation (4.17) shows that: 

*
ijNE *

ijSE *
ijRE
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whereas, as appears in (8), the solution yielded by classical Shift-Share equation was:  

 
0
ij

0
iij wxyNE ∆=  (8)

 

We can see how the path based decomposition allows a share of the joint terms to be 

allocated to variable x. The respective portion of these interactions assigned to x is 

determined by the size of  in relative terms to xθ iji wy ,θθ . Then, is easy to see that classical 

Shift-Share equation assigns a much lower to parameter xθ  value than the rest of the 

parameters. On the other hand, the Regional Effect expression obtained by the method 

proposed is: 
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whereas the classical Shift-Share solution that appears in expression (10) was: 
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In other words, this technique gives an infinitely large value to 
ijwθ  relative to the other 

parameters. Finally, regarding Sectoral Effect, with classical Shift-Share equation we obtain: 

 
0
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1
ij wyxSE ∆=  (9)
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that is the result of equation (22) when parameter xθ  takes a value close to zero and 

simultaneously  is infinitely bigger than the rest. Taking all this into account, we can 

conclude that in a context where the three factors of z  (the national value of the variable, 

the weight of sector i over the national aggregate and the  weight of region j over sector i) 

are increasing

ijwθ

ij

3, equation (7) gives to the national effect (NEij) its minimum value and, at the 

same time, assigns to the Regional Effect (REij) its maximum value. Unless the true values 

of the unknown parameters coincide exactly with the values supposed by the classical Shift-

Share equation (in other words, unless the arbitrary determination of temporal paths was 

the same as the true paths), the obtained effects by (7) will have underestimated the 

national effect and overestimated the Regional Effect.   

 

An important fact that must be noted is that classical Shift-Share solutions match particular 

cases of functional forms (21)-(23). In other words, classical Shift-Share technique is not 

out of the solutions achieved by the path based technique, and the expressions of the 

effects are just results of a specific value assignation  to parameters . The 

contributions of the factors to the change in z  will be determined by the size of these 

parameters. Therefore, the decomposition problem can be viewed as a problem of value 

assignation to unknown parameters; if we only have data about the factors in the initial and 

final period the solution would be the application of the indifference principle and the 

assumption that equality 

iji wyx ,, θθθ

ij

iji wyx θ=θ=θ  holds. This solution equals the computation of the 

average for the six decomposition forms (12a-12f).  

 

Other important point is that any positive finite values for parameters provide 

an exhaustive decomposition where the sum of the effects equals the total change in z

iji wyx ,, θθθ

ij. 

When Shift-Share techniques are applied usually the sum from all the regions of the 

Sectoral and Regional Effects are zero by definition. This happens because both effects are 

defined as differences to an average rate: in the case of the Sectoral Effect is a differential 

effect with respect to the whole national rate, the Regional Effect is based in the difference 

of a regional industry to the growth rate of the national sector. If one wants to obtain 

                                                 
3 A context where 0≥∆∆∆ iji w,y,x  . 
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decomposition where the sum of the Regional Effects for every sector i equals zero, i. e. 

, from equation (23) can be derived that the condition is: i;RE
j

*
ij ∀=∑ 0

ji, ;c
ijw ∀=θ
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Moreover, to obtain decompositions where , from equation (22) 

and taking into account (24) can be easily obtained the following condition: 

0==∑∑∑
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4. Maximum Entropy Econometrics 
 

In the previous section, we found that taking the mean contributions of all decomposition 
forms is the most reasonable solution to the non-uniqueness problem if the researcher has 
no information at all about the time paths of the determinants. In many cases, however, 
more information than the values of the determinants at t=0 and t=1 is available, for 
example about values of one or more of the determinants at intermediate points in time. 
Estimation of the parameters θi is generally not possible by means of classical econometric 
estimation procedures like least squares estimation. The amount of data is quite limited, 
which precludes the use of least squares estimation procedures based on limit theorems. 
Such procedures require at least more observations than parameters to be estimated, which 
is problematic in the input-output context studied here. 

 
In this section, we will give an introduction to maximum entropy (ME) econometrics, a 

collection of tools that can be very convenient to use scarce additional information in 

producing estimates for the temporal path parameters θ.4 To start with, let us assume that 

an event can have K possible outcomes E1, E2, ..., EK with the respective distribution of 

probabilities  such that ∑ . Following the formulation of Shannon 

(1948), the entropy of this distribution p will be 

Kp,...,p,p 21=p 1
1

=
=

K

i
ip

                                                 
4  See Kapur & Kesavan (1992) or Golan et al. (1996) for a detailed analysis of properties of the estimators 

obtained by means of these techniques. 
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which reaches its maximum when p is a uniform distribution ( K1,...,i ,1
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entropy measure H indicates the ‘uncertainty’ of the outcomes of the event. If some 

information (i.e., observations) is available, it can be used to estimate an unknown 

distribution of probabilities for a random variable x which can get values { }. 

 

Suppose that there are T observations { }Tyyy ,...,, 21  available such that 
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with  a set of known functions representing the relationships 

between the random variable x and the observed data 

{ )(),...,(),( 21 xfxfxf T }
{ }Tyyy ,...,, 21 . In such a case, the 

ME principle can be applied to recover the unknown probabilities. This principle is based 

on the selection of the probability distribution that maximizes equation (26) among all the 

possible probability distributions that fulfill (27). The following constrained maximization 

problem is posed: 
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In this problem, the last restriction is just a normalization constraint that guarantees that 
the estimated probabilities sum to one, while the first T restrictions guarantee that the 
recovered distribution of probabilities is compatible with the data for all T observations. 
The Lagrangian function for problem (28) is 
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and the corresponding estimates for the probabilities pi are 
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with tλ̂  the Lagrangian multipliers associated to the first T restrictions in the constrained 
maximization problem (28). It is important to note that even for T=1 (a situation with only 
one observation), the ME approach yields an estimate of the probabilities. Hence, in 
situations in which the number of observations is not large enough to apply econometrics 
based on limit theorems, this approach can be used to obtain robust estimates of unknown 
parameters.5 A disadvantage of ME estimators is that comparisons of means and variances 
of estimators are not possible. Such comparisons are common practice in classical least 
squares and maximum likelihood econometrics. 
 
For our current purposes, it is important that the above-sketched procedure can be 

generalized and extended to the estimation of unknown parameters for traditional linear 

models. Let us suppose that the problem at hand is the estimation of a linear model where 

a variable y depends on n explanatory variables xi: 

 

eXθy +=  (31)

 

where y is a ( )1×T  vector of observations for y, X is a ( )nT ×  matrix of observations for 

the xi variables, θ  is the ( )1×n  vector  of unknown parameters ( n )θθ ,...,1=′θ  to be 

estimated, and e is a ( )1×T  vector reflecting the random term of the linear model. For 

each iθ , it will be assumed that there is some information about its 2≥M  possible 

realizations by means of a ‘support’ vector ( )Mb,...,

*

bb ,...,' *
1=

bi =

b , the elements of which are 

symmetrically distanced around a central value θ (the prior expected value of the 

                                                 
5  Golan et al. (1996, p. 12) contains a simple, classic example of this technique, the so called “dice 

problem”. 
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parameter), with corresponding probabilities ( )iMi pp ,...,1=′ip . For the sake of convenient 

exposition, it will be assumed that the M values are the same for every parameter, although 

this assumption can easily be relaxed. Now, vector θ can be written as  

t =′q
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θ
θ
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nn p

...

p

p

b.00

....

0.b0

0.0b
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...
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1
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'
'

2

1

 (32)

 
with B and p of dimensions (nxnM) and (nMx1), respectively.  The value for each 
parameter is then given by 
 

∑
=

==θ
M

m
immi pb

1

' ipb ;  ni ,...,1=∀ (33)

 
For the random terms, a similar approach is chosen. To express the lack of information 
about the actual values contained in e, we assume a distribution for each , with a set of 

 values  with respective probabilities 
te

2≥K ( Kv,...,v' 1=v ) ( )Ktqtt ,...,q,q 21 .6 Hence, we 
can write 
 





































==
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q

...

q

q

v.00

....

0.v0

0.0v

Vq
...

e

'
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'

e

e
e

T

2

1

 (34)

 
and the value of the random term for an observation t equals 
 

∑
=

==
K

k
tkjt qv'e

1
tqv ;  Tt ,...,1=∀ (35)

 
And, consequently, equation (31) can be transformed into 
 

VqXBpy +=  (36)

 

                                                 
6  Usually, the distribution for the errors is assumed symmetric and centered about 0, therefore v . Kv−=1
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Now, the estimation problem for the unknown vector of parameters θ is reduced to the 
estimation of  probability distributions, and the following maximization problem 
(similar to problem (28)) can be solved to obtain these estimates: 

Tn +

 

∑ ∑∑∑
= = ==

−−=
n

i

T

t

k

k
tktk

M

m
imim,

)qln(q)pln(p),(HMax
1 1 11

qp
qp

 (37)

subject to: 

T1,...,t  ,yqvpbx t

K

k
tkj

n

i
imm

M

m
it =∀=+∑∑∑

== = 11 1

  

  1,...,  ,1
1

nip
M

m
im =∀=∑

=

 

T1,...,t  ,q
K

k
tk =∀=∑

=1

1  

 
By solving the associated Lagrangian function, we find 
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K1,...,k  ;T1,...,t  ,
vˆexp

vˆexp
q̂

K

k
k

T

t
t

k

T

t
t

tk =∀=∀









λ−









λ−

=

∑ ∑

∑

= =

=

1 1

1  (39)

 
Finally, these estimated probabilities allow us to obtain estimations for the unknown 
parameters.7 The estimated value of iθ  will be:8,9 

                                                 
7  Golan et al. (1996, Chapter 6) show that these estimators are consistent and asymptotically normal. In 

Golan et al. (1996, Chapter 7) the finite sample behavior of the ME estimators is numerically compared to 
traditional least squares and maximum likelihood estimators. In experimental samples with limited data, 
the ME estimators are found to be superior.  

8  The construction of the vector b is based on the researcher’s prior knowledge (or beliefs) about the 
parameter. Sometimes, the choice of minimum and maximum values b1 and bM is quite obvious, but in 
other cases a ‘natural’ choice does not exist. In such a situation, it will not be possible to obtain an 
accurate solution to the estimation problem if the actual parameter value is out of the fixed range, say 

. Therefore, one should be careful in choosing the maximum and minimum values of b. Golan et 
al. (1996, chapter 8) devote more attention to consequences of choices concerning the elements of the 

Mi b>θ
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∑
=

=θ
M

m
mimi bp

1

ˆˆ , n,...,i 1=∀  (40)

 
This approach can be applied to the decomposition problem studied in the previous 
section, since limited additional information would enable us to obtain estimates of the 
parameters that determine the contribution of each determinant to the total change that has 
actually been observed. In other words, non-arbitrary solutions to the decomposition 
problem could be obtained. In the next section several situations with availability of  
various types of additional data will be considered, as well as the way to estimate the effects 
of the factors to the total change ∆zij using this technique.  

     
5. Incorporating Additional Information in Shift-Share Analysis 
 
In the previous sections we have justified the crucial role of  the parameters θ  for 

measuring the National, Sectoral and Regional Effects, so it would be desirable that their 

values were not assigned in an arbitrary way. One way to do this is computing the mean of 

the six decomposition forms (12a)-(12f). Nevertheless, taking an average solution is not the 

only way to obtain non-arbitrary values of the parameters. Assuming a context where some 

additional information between the initial and final periods is available (data for 

intermediate points), it would be possible to use this information to obtain their respective 

contributions in a not arbitrary  way, since the computation of these effects can be viewed 

as an estimation problem for unknown parameters. Therefore, the initial decomposition 

problem can be approached  as an estimation question. 

iji wyx ,, θθ

 

In this section we will suppose a scenario in which we have some additional observations 

for intermediate periods. A “dynamic Shift-Share” in the more traditional sense is not 

possible, however, since we suppose that these intermediate observations are only available 

for some of the three factors x, yi, and wij considered.10 To assess the contribution of factor 

                                                                                                                                               
vector b. An almost universal result is that wider bounds can be used without substantial consequences 
for the characteristics of the estimators. 

9  Fernández (2004, pp. 69) proves that the solution of the constrained maximization problem (37) without 
additional information yields estimates equal to the expected value b* of the prior distribution. 

10  The “dynamic Shift-Share analysis” was proposed by Barff & Knight III (1988). If observations for all the 
factors were available for a period s (0<s<1), dynamic Shift-Share would amount to decomposing zs-z0 
and z1-zs in the classic way outlined in Section 2, and subsequently adding results for the corresponding 
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xi, equations (20a)-(20b) will be used again, but in a slightly different form. They contains a 

stochastic component εit that allows the factors to diverge from the deterministic path that 

we would like to estimate11 

 

00 >θ∀∆+= εθ
x

x    ;extx)t(x t  (41a)

00 >θ∀∆+= εθ

i

it
y

y
iii    ;etyy)t(y i  (41b)

00 >θ∀∆+= εθ

ij

ijt
w

w
ijijij    ;etww)t(w ij  (41c)

 
Defining ,  and   and taking 
logarithms, we have: 

0x)t(x)t(g −= 0
iii y)t(y)t(g −= 0

ijijij w)t(w)t(g −=

 

tx )tln(
x

)t(gln ε+θ=






∆

, or 

t
*

x
* t)t(x ε+θ=  

(42a)

ity
i

i )tln(
y

)t(gln
i

ε+θ=







∆

, or 

it
*

y
*
i t)t(y

i
ε+θ=  

(42b)

ijtw
ij

ij )tln(
w

)t(g
ln

ij
ε+θ=











∆
, or 

ijt
*

w
*
ij t)t(w

ij
ε+θ=  

(42c)

 
Equations (42a)-(42c) are linear models with one parameter to be estimated. Hence, it is 
possible to apply the Maximum Entropy estimation technique for linear relationships 
analyzed in the previous section, and they can be written as 
 

                                                                                                                                               
effects in the two decompositions to obtain the contributions for z1-z0. A discussion of transitivity 
problems in this approach is beyond the scope of this paper.  

11  We assume that εit = 0 in the final period. This ensures that the factor has its final value in the final period 
1. 
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which ends up as constraints in maximization problems like those depicted in (35). 
According to equation (38), solving these problems yield estimates for parameters 

. For those factors for which there is no additional information, the estimates 
should equal 1 to resemble the linear path. Hence, the central value b

iji wyx ,, θθθ
* should be set to 1. 

Upon having obtained estimates for 
iji wyx ,, θθθ substitution of these values and the 

observations for x, yi, wij in equations (21)-(23) yields the estimated respective National, 
Sectoral and Regional Effects. 
 
 The use of additional information in the framework outlined above can cause nontrivial 

problems if the information is rather unlikely to be generated by a time path belonging to 

the class of paths defined by equations (41a)-(41c). This happens if observations for 

intermediate periods rule out a monotonic path. We deal with such observations by fitting 

the most appropriate monotonic paths. Figure 2 depicts all possibilities if two intermediate 

observations are available. 

 
Figure 2. Estimated temporal paths with intermediate observations 
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For intermediate period t’ observations for this determinant can be categorized as A, B, C 

or D, depending on whether they are above or below the linear path and inside or outside 

the rectangle. In the same vein, we have E, F, G or H for intermediate period t’’. If the two 

observations are both like B, C, F and G, no problems are encountered. If A and E are 

observed, the closest monotonic path is PP1, which corresponds to 0=θ f . If D and H are 

observed, PP2 is most appropriate and ∞=θ f .12 If A (above the rectangle) and H (below 

the rectangle) are observed, we opt for the linear path, since it is the average of PP1 

(implied by A) and PP2 (implied by H). If points like B and E or B and H are observed, 

there will be an observation inside the rectangle (B) and another one in the outside (E or 

H). In such cases, to obtain valid estimates of the parameter it will be assumed that points 

E or H are not outside the rectangle but just on the border of the rectangle (given by PP1 

and PP2 respectively). The same procedure is applied in situations with observations like A 

and F or D and F.    

 
It should be noted that the important issue is that the flexibility of this estimation method 

allows including information even if there were not direct observations of the factors 

appearing in the decomposition problem. If there is some kind of knowledge about the 

behavior of other variables that are somehow related to these factors, this information can 

be used to obtain estimates of the parameters.    

 
6. Illustration: Analysis of regional employment dynamics in Spain (1986-2000) 
 
We apply the techniques developed in the previous sections to study the National, Sectoral 

and Regional Effects to changes in regional employment in Spain, over the period 1986-

2000. It should be emphasized that the aim of this section is not so much to provide a 

“deep” analysis of the dynamics of Spanish regional employment, but rather to provide an 

illustration of the methods proposed in this paper. The required data were taken from the 

Spanish Regional Accounts published by the Spanish Statistical Institute (INE), considering 

a 15-sector classification and are detailed in tables A1, A2 and A3 in Appendix A. 

 
Tables A2 and A3 show the values of the studied variable for every region and sector in the 

reference periods. Their rightmost columns show the overall regional levels of 

employment, and the bottom rows the sectoral levels. So, information about the three 

                                                 
12  If , a “very big” value must be inserted in equations (21)-(23) to obtain numerical results. In the 

empirical application described in the next section, we used the value 10
∞=θ f

20 in such cases.  
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factors is available: the total national employment (factor x), the weight of sector i over this 

aggregate  (factor yi) and the weight of the variable in region j over the national value of 

sector i (factor wij). If the classical Shift-Share formulation is used to measure the effects of 

changes in these three factors over the variation observed in z , the aggregate outcomesij
13 

for each of these effects will be the following, measured thousand of workers as well as a 

percentage over the total change in regional employment: 

 
Table 1. Classical Shift-Share equation outcomes 

Absolute effect  
(thousand of workers) 

% of total variation 

 
 TOTAL  

VARIATION 
National 

Effect 
Sectoral
 Effect 

Regional 
Effect 

National 
Effect 

Sectoral 
 Effect  

 Regional 
Effect  

AND 825.30 649.28 -10.00 186.02 78.67 -1.21 22.54
ARAG 112.70 158.52 -13.95 -31.87 140.66 -12.38 -28.28
AST 12.20 148.01 -34.49 -101.32 1213.21 -282.73 -830.48
BAL 119.20 93.46 21.73 4.02 78.40 18.23 3.37
CAN 292.50 154.03 28.25 110.23 52.66 9.66 37.68
CANT 38.60 66.67 -7.97 -20.10 172.72 -20.64 -52.08
CAST-L 131.70 326.76 -65.35 -129.72 248.11 -49.62 -98.49
CAST-LM 137.70 194.99 -50.82 -6.46 141.60 -36.91 -4.69
CAT 943.20 756.42 79.99 106.79 80.20 8.48 11.32
CVAL 578.50 461.88 -15.07 131.69 79.84 -2.61 22.76
EXT 82.80 110.47 -20.25 -7.42 133.42 -24.46 -8.96
GAL 61.70 410.04 -226.66 -121.68 664.57 -367.36 -197.21
MAD 845.30 607.38 277.32 -39.39 71.85 32.81 -4.66
MUR 158.00 114.64 -3.83 47.19 72.55 -2.42 29.87
NAV 68.80 72.32 0.06 -3.57 105.11 0.08 -5.19
BC 213.60 277.69 48.80 -112.89 130.00 22.85 -52.85
LR 19.40 38.65 -7.73 -11.52 199.23 -39.85 -59.38

 
The outcomes in Table 1 show the direction and the intensity of the three effects and allow 
some conclusions to be made about the regional employment dynamics. So, it is possible to 
see a growth in the employment levels over all the regions but, on the other hand, different 
features in other aspects. For example, let us suppose that the objective of the study was to 
identify the regions with some kind of regional characteristics that make their growth in 
employment be especially dynamic. These regions would be those where the Regional 
Effects was positive. The outcomes that Table 1 show would lead to the conclusions that 
these regions are Andalusia, Canary and Balearic Islands, Catalonia, the Valencian 
Community and Murcia. In the remaining regions some regional disadvantages make that 

                                                 
13 All the results that appear in the tables of this chapter are expressed in aggregate terms by region, i. e., 

, SE  and .   ∑
=

=
15

1i
ijj NENE ∑

=

=
15

1i
ijj SE ∑

=

=
15

1i
ijj RERE
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their employment growth has been smaller than expected, taking into account their 
industry mix and the growth in the national employment.  
 
As argued before, these solutions are determined by a specific assignation of values to 

parameters 
iji wyx ,, θθθ  where we suppose that 0=θx , ∞→θ

ijw  and θ . If 

we assume that parameters  are the same for all the factors (i.e., 

ijwiyx θ<θ<

iji wy θ=θ=θ xθ ) for all 

region i and sector j would yield an average solution. This would be a natural thing to do if 

no information would be available for the years in-between 1986 and 2000. To illustrate the 

techniques outlined in the previous sections, we will estimate some of the θ parameters by 

employing additional information. Specifically, we incorporate information about national 

employment levels by sector for the intermediate periods from 1992 to 1994. The data are 

the following: 

 
Table 2. Additional information about sectoral employment levels (1992-1994) 

 Sector  
Year s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 TOTAL
1992 1211.1 131.7 894.6 138.9 264.1 424.4 392.8182.8 390.2 1204.1 2938.6 722.7 320.7 1208.5 2530.9 12956.1
1993 1149.8 127.2 841.5 137.5 230.9 428.2 363.2168.5 375.1 1096.3 2881.8 715.7 314.8 1206.1 2536.7 12573.3
1994 1103.8 122.1 830.9 138.4 224.3 418.3 354.2158.1 367.8 1066.5 2929.6 726.8 309.6 1229.9 2527.7 12508

 
Note that these data provide supplementary information about factors x and y for these 

years, but there is no information about the share of sectoral employment over the regions 

in the intermediate periods considered, i. e., there is no additional information for factor wij. 

Consequently, the corresponding estimates for the parameter of this factor will be 

1,...,17j 1,...,15;i ;ˆ
wij ==∀=θ 1 . The use of these non-informative estimates ji, ;ˆ

wij ∀= 1  θ

guarantee that  (see equation (24)).  i;RE
j

*
ij ∀=∑

=

0
17

1

The supplementary information of Table 2 will be used to estimate the parameter xθ , 
which is common for all the sectors, and the 15 parameters 1,..,15i ;yi =θ . For the 
estimation of  we need to decide on the values to be assigned to the a priori 

distributions contained in the support vector b

xθ
x (see equation 31) and the possible 

realizations for the random term in vectors vx (see equation 34). The following vectors 
were used throughout the empirical analyses below:14 

                                                 
14 Fernández (2004, p. 142-143) tested the assertion by Golan et al. (1996, p. 138) that the estimation results 

are generally not very sensitive to the choice of a particular set in the specific context of a path-based 
shift-share analysis. His results strongly confirmed this assertion by Golan et al. 
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bx=[-5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0]’   and   vx=[-0.4, -0.2, 0, 0.2, 0.4]’  
 
Consequently, the ME program for estimate xθ  will be: 
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From the intermediate values of x in Table 3, the estimate for the parameter will be: 
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1

.bp̂ˆ
M

m

x
mmx ==θ ∑

=

 (45)

 

This estimate indicates that the best monotonic approximation (given the additional data 

considered) to the temporal path of the national employment would be like P1 (see Figure 

2). The estimation procedure for the 15 parameters yiθ  will be very similar. The supporting 

vector by will have the same 7=M  values as in the previous case that are common for the 

15 sectors. However, as the temporal evolution of the sectoral employment weights in 

those years has been quite different among the industries, it has been necessary to increase 

the bounds of vectors vy to get estimates that fit to the observed temporal behaviour. 

Specifically, the supporting vectors employed have been: 

 

by=[-5.0, -3.0, -1.0, 1.0, 3.0, 5.0, 7.0]’   and   vy=[-2, -1, 0, 1, 2]’  
 

With these vectors we need to solve the following  ME program: 
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The estimates will be expressed as: 

 

1,..,15i ;bp̂ˆ
M

m

y
mimyi =∀=θ ∑

=1

 (48)

 

The following table summarizes the estimated values for the parameters obtained: 

 

Table 3. Estimates for parameters yiθ   

 Sector 
Sector s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

yiθ̂  0.81 0.75 1.67 1.14 0.9 2.35 0.78 0.49 1.23 0.93 0 0 2.4 1.52 0.37
 

Once we have obtained estimates for parameters 
iji wyx ,, θθθ , we include them in the 

decomposition forms (21)-(23), in order to obtain the following effects: 
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Table 4. Effects obtained by the PB approach with additional information 
Absolute effect  

(thousand of workers) 
% of total variation 

 
 TOTAL  

VARIATION 
National 

Effect 
Sectoral
 Effect 

Regional 
Effect 

National 
Effect 

Sectoral 
 Effect  

 Regional 
Effect  

AND 825.3 685.72 -38.45 178.03 83.09 -4.66 21.57
ARAG 112.7 150.18 -10.76 -26.72 133.26 -9.55 -23.71
AST 12.2 122.29 -20.28 -89.81 1002.39 -166.23 -736.16
BAL 119.2 97.96 19.41 1.82 82.18 16.28 1.53
CAN 292.5 179.48 20.35 92.67 61.36 6.96 31.68
CANT 38.6 61.21 -2.76 -19.85 158.56 -7.14 -51.43
CAST-L 131.7 290.09 -42.74 -115.65 220.27 -32.45 -87.81
CAST-LM 137.7 184.59 -42.35 -4.54 134.05 -30.75 -3.30
CAT 943.2 789.38 64.47 89.34 83.69 6.84 9.47
CVAL 578.5 482.96 -13.31 108.86 83.48 -2.30 18.82
EXT 82.8 105.91 -19.30 -3.81 127.91 -23.30 -4.61
GAL 61.7 340.72 -152.05 -126.97 552.22 -246.44 -205.79
MAD 845.3 652.63 220.82 -28.15 77.21 26.12 -3.33
MUR 158 124.08 -14.74 48.66 78.53 -9.33 30.80
NAV 68.8 72.11 -2.87 -0.45 104.82 -4.17 -0.65
BC 213.6 266.57 42.00 -94.97 124.80 19.66 -44.46
LR 19.4 35.37 -7.50 -8.46 182.30 -38.67 -43.63

 

These results (denoted with superscripts *) will be compared to the effects obtained by 

other solutions that do not take into account additional information, namely, the classical 

Shift-Share equation (superscripts s) and the mean of all the decomposition equations 

(12a)-(12f) (with superscripts µ): 
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Table 5. Comparison to other solutions 

Classical Shift-share Mean solution 









s

*

NE
NE100  








s

*

SE
SE100  








s

*

RE
RE100 








µNE

NE*
100 








µSE

SE*
100  








µRE

RE*
100  

AND 105.61 384.49 95.71 101.03 88.21 93.63
ARAG 94.74 77.11 83.85 98.95 95.35 96.18
AST 82.62 58.80 88.64 96.09 97.29 95.32
BAL 104.82 89.34 45.42 100.98 95.17 102.00
CAN 116.52 72.04 84.08 102.85 93.95 96.19
CANT 91.80 34.58 98.74 98.47 93.95 96.24
CAST-L 88.78 65.41 89.16 97.67 97.64 95.16
CAST-LM 94.67 83.33 70.23 98.88 96.42 89.68
CAT 104.36 80.60 83.66 100.72 95.35 97.29
CVAL 104.56 88.32 82.66 100.85 104.52 96.88
EXT 95.87 95.27 51.40 99.15 92.38 121.67
GAL 83.09 67.08 104.35 95.89 96.51 93.31
MAD 107.45 79.63 71.47 101.54 95.76 100.34
MUR 108.24 385.04 103.11 101.45 93.57 94.58
NAV 99.72 -5136.79 12.47 99.97 95.47 135.87
BC 96.00 86.08 84.13 99.43 95.89 96.60
LR 91.50 97.04 73.47 98.33 96.51 96.24
Average 104.01 67.66 81.69 100.72 95.23 97.69

 

The three rightmost columns show how the differences between the classical Shift-Share 

equation and the PB approach are substantial in some cases. In Catalonia, for instance, 

whereas the measurements of National Effect is quite similar, the Sectoral and Regional 

Effect obtained by the classical Shift-Share equation is approximately 20% smaller than in 

the PB technique. Something similar happens to Aragon, the Valencian Community and 

the Basque Country. For the other regions, the differences are even bigger, changing 

sometimes the sign of the effect (such Navarra15). In general terms, although the 

differences are not remarkable in the measurement of the National Effect, for the other 

two effects one can observe major divergences. Using the PB approach would lead to 

obtaining Sectoral Effects approximately 30% less important than in the classical Shift-

Share equation; furthermore the average Regional Effect would be around 20% smaller. 

Actually, this is a theoretical result that has been advanced in previous sections: the classical 

Shift-Share equation “overestimates” the Regional Effect if all the factors of the 

decomposition problem grow between the initial and the final period.  

                                                 
15 The extremely big values that appear in this table for the Sectoral Effects in Murcia and Navarra are a 

consequence of the results obtained by classical Shift-Share equation being very small (-3.8 and 0.1, 
respectively). So, not very big differences (these same effects are –22.30 and –4.75, respectively, by 
equation 4.11) produce these extreme values of the ratios. 
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The three leftmost columns compare the solutions obtained under the PB approach to the 

average of decomposition forms (12a)-(12f), which equals the solution of the method 

proposed without additional information. This comparison is useful to measure to what 

extent this supplementary information changes the outcomes obtained. In general terms 

the divergences to the mean solution are not as large as before, but still considerable in 

some specific cases. Note that in some regions the PB method yields outcomes 

approximately 20% larger (see the Regional Effect for Extremadura) or around 10% 

smaller (Sectoral Effect for Andalusia). The conclusion is that the use of this additional 

information leads to substantially different outcomes from those obtained by the 

application of a mean solution. 

 

As an additional test,  a yearly dynamic average decomposition will be computed to 

compare its results with the effects obtained by the PB method suggested, the classical 

Shift-Share analysis and the mean solution. When a “dynamic” decomposition is computed, 

the variability in the results of decomposition forms is reduced16. This type of 

decomposition in several stages can be accomplished in the empirical example studied: 

although we have supposed a scenario where the only additional information were the 

levels of sectoral employment form 1992 to 1994, yearly data of regional employment levels 

for sectors are available from 1986 to 2000. If the results obtained by the PB approach are 

close to those obtained by a yearly decomposition, this means that using only the piece of 

information considered, it is possible to obtain similar results to this dynamic 

decomposition. Consequently, a yearly mean decomposition has been computed, i. e., a 

decomposition applying the equations (12a)-(12f) year by year through the T years from 

1986 to 2000. Its results will be compared to those yielded by the classical Shift-Share 

equation, the mean solution of all decompositions and the PB method with additional 

information from 1992 to 994. The following table shows the squared differences for each 

effect: 

Table 6. Differences to the yearly mean decomposition 
 National Effect Sectoral Effect Regional Effect TOTAL 

Classical Shift-Share 100.45 86.54 63.76 250.75
Mean decomposition 23.30 31.92 38.94 94.16

PB approach 27.72 30.68 30.45 88.85
 

Although the variability in the results obtained by the yearly decomposition is small, since 

this “dynamic” decomposition reduces the interaction term which is split up among the 
                                                 
16 See Fernández (2004, pp. 134-136) for a more detailed explanation. 
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factors, it requires information for many periods. The objective of this comparison is to see 

which of the three other decomposition forms yields more similar outcomes to the yearly 

decomposition. Note that, in general terms, when all the effects are taken into account the 

results by the PB technique solution are the closest to the ones yielded by the yearly 

decomposition. On the other hand, the main gain is given by the consideration of the mean 

decomposition (the differences go from 250.75 with the classical Shift-Share equation to 

94.16, 62%). The application of the PBM with these additional data obtains a more modest 

reduction from this mean decomposition (from 94.16 to 88.85, a 7%). Only for the case of 

the National Effect the mean of all decomposition forms would obtain results closer to the 

yearly decomposition. The conclusion would be that, using only a limited amount of 

additional information (sectoral employment levels from 1992 to 1994), it is possible to 

obtain similar results to a very flexible decomposition form. 

 
7. Conclusions 
 
Classical Shift-Share suffers from the “non-uniqueness” problem. Since many 

decomposition formulae are equally valid from a theoretical point of view, the substantial 

differences in outcomes noted by Klaasen & Paelinck (1972) pose a serious problem. This 

paper does not challenge the theoretical equivalence of decomposition formulae but 

proposes a methodology using Maximum Entropy econometrics to select the 

decomposition formula that provides an optimal ‘fit’ to additional empirical information. 

 

The point of departure is a class of monotonic time paths for variables, which led us to 

label our method the “path based” (PB) method. It was shown that taking the average over 

all decomposition formulae is equivalent to one specific member of this class, i.e. the linear 

path. Next, we showed how the parameters that characterize the paths can be estimated, 

even if the available data is very limited. If information about the values of the 

determinants contained in the analysis is completely absent, the estimation procedure yields 

the linear path. If some information is available for some periods between the initial period 

and the final period of the analysis, the selected path is a different one. Together, the 

estimated parameters define a decomposition formula. From an empirical point of view, 

this formula is to be preferred over other decomposition formulae that can be constructed 

by means of the monotonic times paths considered. 

We applied the methodology to quantify the National, Sectoral and Regional Effects to 

changes in sectoral employment levels in Spanish regions between 1986 and 2000. As 
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additional information we considered the actual levels of regional employment for three 

intermediate years. The results indicate that the use of additional information in the PB 

approach can well yield results that differ substantially from the mean over all traditional 

decomposition formulae, or equivalently, the linear path. For some sectors and effects, the 

differences amount to more than 20%. Differences of this size lead us to believe that the 

PB method provides an interesting alternative to computing averages over decomposition 

formulae.  

 
A couple of challenges remain to be solved, however. In a considerable number of cases, 

the additional information did not fit the class of monotonic paths we defined. We opted 

for a rather pragmatic solution if the value of a determinant in an intermediate period 

exceeded the values in both the initial and the final period (or if it was lower than both), 

which implies non-monotonicity. We would of course prefer an approach in which non-

monotone paths could be estimated. More research should be done in this respect, because 

a more general class of time paths would complicate the construction of the constrained 

maximization problems characteristic of maximum entropy estimation procedures. It could 

also be interesting to see whether estimation results would change if we would estimate the 

parameters in a way that takes the continuous time character of the temporal paths 

explicitly into account. In this paper, we do implicitly assume that final demand levels are 

constant over a year, which is not really in line with the continuous nature of the temporal 

paths considered. This seems to be a very ambitious task, however.    
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Appendix A: Data for Empirical Illustration 

 
Table A1. Sectoral classification applied 

Sector Name 
s1 Agriculture 
s2 Energy 
s3 Primary metals, metal products, electrical machinery and instruments 
s4 Chemical products 
s5 Transport equipment 
s6 Food, drinks and tobacco 
s7 Textiles, clothing and leather 
s8 Paper and derived products 
s9 Industries not classified elsewhere 
s10 Building materials 
s11 Commerce, restaurants and repair services 
s12 Transport and communications 
s13 Finance and insurance 
s14 Other commercial services 
s15 Non commercial services 
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Table A2. Sectoral employment in Spanish regions (1986, thousand of workers) 
Region /Sector                s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 TOTAL
ANDALUSIA 279.6 14.4 55.7 9.9 30.6 67.2 32.9 10 23.6 125.2 378 95.2 30.7 94.3 328.4 1575.7
ARAGON 63.2 7.1 32.4 4.8 12.7 13.2 16.6 3.8 11.2 26.5 70.6 21 8.9 25.1 67.6 384.7
ASTURIAS 68.7 34 38.6 1.6 4.9 8.7 2.7 1.8 3.7 25.5 67.7 20.1 5.7 18 57.5 359.2
BALEARIC ISLANDS 13.8 2.7 4.1 0.2 0.2 5.4 12.6 1.4 8 27 78.9 16.9 6 16.5 33.1 226.8
CANARY ISLANDS 50.2 5.1 5.8 0.5 0.9 10.9 0.7 2.8 5 42.6 124.4 26.4 6.8 28 63.7 373.8
CANTABRIA 31.1 1.3 18.7 3.9 3.6 7.5 1.3 1.3 4.9 10.4 28.7 8.7 3.4 10.8 26.2 161.8
CASTILLA Y LEON 180.7 21 30.3 6.4 24.9 36.9 12.9 6.4 23 60 154.2 45.1 15.3 41.6 134.3 793
CASTILLA-LA MANCHA 119.1 4.9 23.4 4.4 1.6 18.8 26.2 1.6 12.8 44.3 85.9 23.3 8.6 20.2 78.1 473.2
CATALONIA 101.9 22 173 55.9 48.2 68.4 152.2 34.8 70.4 119.1 384.8 127.7 59.7 180.6 237 1835.7
VALENCIAN COM. 132.7 6.2 74.9 7.7 13.4 39.3 100.1 12.6 66.9 78 270.7 58.1 24.1 76.8 159.4 1120.9
EXTREMADURA 72.8 2 5.7 0.3 0.2 9.9 6 0.7 3 25.1 55.3 11.1 5.1 11.1 59.8 268.1
GALICIA 404.1 10.3 33.3 3.7 30.1 27.4 11.5 4.1 19.2 62.4 165.1 43.7 14.7 42.2 123.3 995.1
MADRID 20.3 13.6 101.8 26.9 38.8 30.5 27.7 31.2 34.8 109.7 310.5 123.8 70.2 175.5 358.7 1474
MURCIA 46.7 3 10 3 6.4 18.5 7.4 2 9.8 20.7 56.6 15.4 4.7 18.3 55.7 278.2
NAVARRA 19.3 0.8 24.7 1.4 7.5 11.9 4.2 5.6 7.7 10.5 32.5 10.7 3.5 14.1 21.1 175.5
BASQUE COUNTRY 28.8 6.9 159.2 10.1 20 14.9 6.6 14.5 35.5 37.1 127.3 34.8 16.3 61.8 100.1 673.9
LA RIOJA 13.3 0.4 6.1 0.5 0.8 6.7 12.3 1.4 5.5 6.2 16.5 2.7 2.5 4.9 14 93.8
TOTAL 1646.3 155.7 797.7 141.2 244.8 396.1 433.9 136 345 830.3 2407.7 684.7 286.2 839.8 1918 11263.4
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Table A3. Sectoral employment in Spanish regions (2000, thousand of workers) 
Region /Sector s1               s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 TOTAL
ANDALUSIA 262.8 17.3 70.8 11.8 23.5 60.1 25.9 14.1 40.8 269.1 626 115.1 41.3 258.1 564.3 2401
ARAGON 36.8 4.3 39.9 3.6 21.5 12.8 11.8 6.2 16.3 40.3 94.5 27.8 11.7 64.2 105.7 497.4
ASTURIAS 33.9 11 31.2 1.8 3.5 8.9 3.4 3.5 6.5 38.8 77.7 22.4 6.1 42.6 80.1 371.4
BALEARIC ISLANDS 6.8 2.9 7.6 0.3 0.9 7 6.1 3 6.5 45.8 120.3 27.2 7.6 46.9 57.1 346
CANARY ISLANDS 43.9 4.7 13.8 1 1.6 15.2 0.7 4.3 6 84.1 212.2 44.6 9.2 83.7 141.3 666.3
CANTABRIA 14.2 1.9 14.9 2.4 3.3 7.1 1.7 1.2 5.2 24.2 41.1 11.6 3.5 27.9 40.2 200.4
CASTILLA Y LEON 95.7 12.3 41 4.8 23.5 36.2 10 7.7 28.8 105.6 159.3 50.7 19.4 107.5 222.2 924.7
CASTILLA-LA MANCHA 71.6 4.5 31.5 5.8 2.7 21.6 29.3 3.6 20.5 75.8 109.8 31.1 11.4 52.8 138.9 610.9
CATALONIA 76.2 17 223.1 61.6 67.4 86.4 121.8 66 106.5 244.3 574.2 163.6 69.3 480.6 420.9 2778.9
VALENCIAN COM. 83.1 8.9 129.3 9.5 21.1 42.5 95.1 20.7 78 175.7 420.4 87.4 31.8 200.4 295.5 1699.4
EXTREMADURA 53.2 3.1 7.7 0.4 0.3 9.3 4.5 1 4 50.4 73.8 14 7 30.9 91.3 350.9
GALICIA 183.9 9.8 46.2 3.3 31 28.5 22.5 6.2 28.5 114.9 203.5 50.1 17.5 106.9 204 1056.8
MADRID 16.7 17.5 118.1 23.4 36.2 30.1 26.7 57.4 44.8 199.7 423.8 178.8 91.5 452.6 602 2319.3
MURCIA 50.6 3 17.3 3.8 3.9 20.4 9.2 3.1 15.1 47.4 95.7 23.8 7 40.6 95.3 436.2
NAVARRA 17 1.4 29.9 2 14.2 10.3 3.7 5.5 8.3 22.5 35 13.4 4.7 33 43.4 244.3
BASQUE COUNTRY 15.2 6.1 151.9 8.3 23.2 14 4.7 13.5 39.6 77.2 162.7 47.3 15.5 146.5 161.8 887.5
LA RIOJA 10.6 0.5 9.8 0.8 2.2 7.6 6.5 1.8 6.4 10 16.7 4.9 2.8 11.2 21.4 113.2
TOTAL 1072.4 126.4 984.2 144.6 280 418.3 383.7 218.9 461.8 1629.1 3456.3 916 357.7 2190.9 3314.4 15954.7
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