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Abstract

This paper employs recently developed non stationary panel method-
ologies that assume some cross-section dependence to estimate the pro-
duction function for Italian regions in the industrial sector over the
period 1970-1998. The analysis consists in three steps. First, unit
root tests for cross-sectionally dependent panels are used. Second, the
existence of a co-integrating relationship between value added, phys-
ical and human capital variables is investigated. The Dynamic OLS
(DOLS) and Fully modified (FMOLS) estimators developed by Pedroni
(1996[35], 2000[36], 2001[37]) and the Panel Dynamic OLS (PDOLS)
estimator proposed by Mark and Sul (2003[31]) are then used to esti-
mate the long run relationship between the variables considered.
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1 Introduction

There is a plethora of studies which estimate aggregate production functions
using macro panel data for countries or regions (e.g. Aschauer, 1989[2];
Holtz-Eakin, 1994[16]; Islam, 1995[20]; Garcia-Mila, McGuire and Porter,
1996[12]). More recent works consider non-stationary panel data techniques
(e.g. McCoskey and Kao, 1999[29]; Canning, 1999; Marrocu, Paci and Pala,
2000). All of them assume the hypothesis of cross-section independence.
Here, we claim that the independence assumption is too strong, especially
when regional data are used, since co-movements of economic variables be-
tween one region and another are usually observed because of spill-over ef-
fects. For instance, it is not the case to test the stationarity of the GDP, or
other macroeconomics variables, of one region without taking into account
the relationship between this GDP and the GDP of the other regions belong-
ing to the same country. In this paper, a regional production function in the
industrial sector is estimated for Italian regions over the period 1970-1998 by
using recent non-stationary panel estimators that assume some sort of cross-
section dependence. The analysis consists in three steps. First, unit roots
properties of the panel data set are properly investigated by applying newly
developed tests for cross-sectionally dependent panels. Second, the existence
of a co-integrating relationship between value added, physical and human
capital variables is also investigated in a cross-section dependence frame-
work. Finally, the Dynamic OLS (DOLS) and Fully modified (FMOLS)
estimators constructed by Pedroni (1996, 2000, 2001) and the Panel dy-
namic OLS estimator (PDOLS) (Mark and Sul, 2003) are used in order to
estimate the long run relationship between the variables considered.1All the
estimators take into account some degree of cross-section dependence. Our
results provide robust evidence in favor of a cointegrating relationship be-
tween regional value added, physical capital and human capital-augmented
labor. The estimated long-run input elasticities suggests that allowance for
common time effects and individual trends usually implies that the regional
production function is characterized by constant returns to scale. Other-
wise, the production function exhibits slightly increasing returns to scale.
The paper is organized as follows. Section 2 describes the model. Section
3 discusses the econometric methodology. Data and empirical results are
presented in Section 4. Section 5 concludes.

1The PDOLS estimator is a within dimension panel estimator. The DOLS and FMOLS
estimators proposed by Pedroni (1996, 2000, 2001) are between estimators.
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2 The model

We estimate a Cobb-Douglas production function for the Italian regions
adopting the human capital specification suggested by Hall and Jones (1999):

Yit = Ai,t(Ki,t)α(Li,thi,t)β (1)

where Yit is the value added in region i at time period t, Ki,t is the stock
of physical capital and Li,thi,t is the amount of human capital-augmented
labour used in production (with hi,t the human capital per worker and Li,t

the total number of workers). Ai,t is the specification for (Hicks-neutral)
technology and it is the element which introduces a stochastic component
into the model. Specifically, we define a simple knowledge production func-
tion for region i at time t as follows:

Ai,t = eγi+δit+θt+εi,t (2)

where Ait denotes the level of technology in region i at time t, γi is a region-
specific constant which captures the intrinsic efficiency in technology produc-
tion, the δit component catches the growth path of region-specific efficiency
in producing technology, θt captures the worldwide (or countrywide) knowl-
edge accumulation and εit introduces a random shock in the knowledge pro-
duction function. The common time effect θt is introduced since we assume
that some technology spreads across regional boundaries through interna-
tional and interregional trade which also implies that regional economies
cannot be regarded as technologically independent. Therefore, the regional
production function is estimated taking into account the cross-regional de-
pendence.2 As usual, labor Li,t is assumed to be homogenous within a region
and hit is a transformation of Ei,t that measures the education level of each
labor unit in terms of years of schooling. Thus, human capital-augmented
labor is given by Li,thi,t = Li,te

φ(Ei,t). In this specification, the function
φ(E) reflects the efficiency of a labor unit with E years of schooling rela-
tive to one with no education (φ(E) = 0). The derivative is the return to
schooling estimated in a Mincerian wage regression: an additional year of
schooling raises a worker’s efficiency proportionally by φ(E). Taking logs,
equation (1) can be written as follows:

lnYi,t = γi + δit + θt + αlnKi,t + βlnLi,thi,t + εi,t (3)

2Obviously, this represents a very simple way of modelling technology. First, in our
model, technology and technological change are completely exogenous. Specifically, we
decided to not endogenize technological change (for example by introducing R&D invest-
ments within the knowledge production function), since we do not have data on technology
(such as R&D expenditure or number of patents) at regional level for the whole time period
considered in the empirical analysis. Second, the assumption of Hicks-neutral technolog-
ical progress implies that technological change is fully disembodied and it depends only
on time
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The panel model includes a regional-specific effect γi, a regional-specific
liner trend δit and a common time-specific factor θt. The two parame-
ters α and β can be interpreted as the elasticities of physical and human
capital with respect to production output. In this paper, equation (3) is
estimated by using a panel data set of 20 Italian regions over the period
1970-1998. Several approaches have been used in the literature to study
aggregate production functions. Mankiw, Romer and Weil (1992[27]) es-
timate a cross-country production function for physical and human capi-
tal. Aschauer (1989), Holtz-Eakin (1994), Garcia-Mila and McGuire and
Porter (1996) estimate production function models including public capital
infrastructure using data on the US States (all these studies do not explic-
itly consider the non-stationary nature of the data). Canning (1999) uses
annual cross-country data for the period 1960-1990 to analyse an aggregate
production function incorporating labour, physical capital, human capital
and infrastructure adopting non-stationary panel data approaches under the
assumption of cross-section independence. McCoskey and Kao (1999) esti-
mate a production function incorporating capital, labour and a measure of
the urbanization level adopting non-stationary panel data approaches under
the assumption of cross-section independence. A methodology alternative
to the econometric estimation of production function is the so-called ”level
accounting” approach (e.g. Hall and Jones, 1999[15] and Aiello and Scoppa,
2000[1]). This methodology has been criticized on the grounds of the re-
strictive assumptions needed for the computation of the Solow residual. For
example, under the hypothesis of constant return to scale (i.e. β = 1 − α)
and a fixed value for the parameter, Hall and Jones (1999) calculate the level
of total factor productivity (TFP) for a sample of OECD countries. In par-
ticular, they use a human-capital augmenting production function, like the
one reported in equation (1), but with a Harrod-neutral technology and with
the assumption of constant return to scale. This specification allows them
to decompose differences in output per worker across countries into differ-
ences in the capital-output ratio, differences in educational attainment and
differences in TFP. The same approach has been used by Aiello and Scoppa
(2000) to derive the TFP for Italian regions. They have used the national
capital elasticity (given by the ratio of gross profits to value added, set equal
to 0.38) to all the Italian regions in order to compute the regional TFP lev-
els. As already emphasized by Marrocu et al. (2000[28]), this procedure has
a crucial weakness since it does not take into account the high heterogeneity
among regions and sectors. However, Marrocu et al. uses a non-stationary
panel approach for cross-sectional independence. Following the estimation
approach rather than ”level accounting” approach, in the present paper no
restrictive assumptions on the parameters are imposed and, in particular,
the hypothesis of constant return to scale is released. Working with a long
panel data set, methods for non-stationary panels which allow the inclusion
of the effect of common time are used. In such a way, the effect of some
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cross-regional dependence is captured.3.

3 Econometric methodology

The empirical analysis consists in three steps. First, the panel proper-
ties of the variables are properly investigated. In the first generation of
panel unit root (Levin and Lin, 1992[23], 1993[24]; Levin, Lin and Chu,
2002[25]; Im Pesaran and Shin, 1997[18], 2003[19]; Choi, 2001[7]; Mad-
dala and Wu, 1999[26]) correlations across units constitute nuisance pa-
rameters. The cross-sectional independence hypothesis is rather restrictive
and somewhat unrealistic in the majority of macroeconomic applications of
unit root tests (Phillips and Sul, 2003[40]; O’Connel, 1998[32]), where co-
movements of economies are often observed. Rather than considering corre-
lations across units as nuisance parameters, the second generation of panel
unit root (Phillips and Sul, 2003; Chang, 2002[5] and 2003[6]; Choi, 2004[8];
Bai and Ng, 2003[3]; Moon and Perron, 2004[30]; Pesaran, 2005[39]) aims at
exploiting these co-movements in order to define new test statistics.4 In this
paper four cross-sectional dependent panel unit root tests are performed:
Choi (2004, hereafter CH), Bai and Ng (2003), hereafter BNG), Moon and
Perron (2004, hereafter MP) and Pesaran (2005, hereafter PS).5 Second, a
set of panel cointegration tests are applied. The ADF test (Kao, 1999[21]),
Panel-t test statistic (Pedroni, 1995[34], 2004[38]), the CUSUM test (West-
erlund, 2005a[44]) and the WRM test (Westerlund, 2004[43]) are applied. In
Kao (1999) the hypothesis of homogeneity of the cointegrating vector among
individual members of the panel is assumed while in Pedroni’s approach this
hypothesis is released and heterogeneity is considered. Westerlund (2005a)
proposes a simple residual-based panel CUSUM test of the null hypothesis
of cointegration. The test has a limiting normal distribution that is free
of nuisance parameters, it is robust to heteroskedasticity and it allows for
mixtures of cointegrated and spurious alternatives. Unlike previous panel
cointegration tests, the WRM test allows for cross-sectional dependence. Fi-
nally, the long run relationship is estimated by using the DOLS and FMOLS

3Another problem pertains to the direction of causality in the relationship between
output and physical and human capital. Capital inputs may determine output, but output
may have a feedback into capital accumulation. Thus, when we estimate equation (3),
possible endogeneity problems might be solved using dynamic OLS estimators

4A macroeconomics application is, e.g, in Hurlin (2004[17])
5Gutierrez (2003[14]) shows that the Moon and Perron (2004) tests have good size and

power in finite samples for different specifications and different values of T and N, and that
the Bai and Ng’s (2004) pooled tests of the null hypothesis that idiosyncratic components
are non-stationary also have good size and power, especially when the Dickey-Fuller-GLS
version of the test is used, while the ADF test used to analyze the nonstationary properties
of the common component has low power. The Choi’s (2004) tests are largely oversized.
Gutierez shows that all tests lack power when a deterministic trend is included in the data
generating process
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estimators developed by Pedroni (1996, 2000 and 2001, hereafter PED) and
the PDOLS estimator provided by Mark and Sul (2003, hereafter MS). In
the PED and MS approaches a certain form of cross-sectional dependence
through the presence of common time effects is assumed.

3.1 Panel unit root with cross-sectional dependence

CH proposed new panel unit root tests for cross-sectionally correlated panels.
The cross-sectional correlation is modelled by a two-way error-component
model. The test statistics are derived from combining p-values from the Aug-
mented Dickey-Fuller test applied to each time series whose non-stochastic
trend components and cross-correlation are eliminated by Elliot, Rothen-
berg and Stock’s (1996[10]) GLS-based de-trending and the conventional
cross-sectional demeaning panel data. The panel unit root tests developed
by CH are:

Pm = − 1√
N

N∑
i=1

(ln(pi) + 1) (4)

Z =
1√
N

N∑
i=1

Φ−1(pi) (5)

L∗ =
1√
π2N

3

N∑
i=1

ln
(

pi

1− pi

)
(6)

where Pm test is a modification of Fisher (1932[11]) inverse chi-square, Φ(·)
is the standard normal cumulative distribution function and pi indicates
the asymptotic p-value of one the Dickey-Fuller-GLS test for region i.6 For
T −→∞ and N −→∞ one has that Pm, Z, and L∗ =⇒ N(0, 1).

BNG consider the factor model:

Yit = Dit + λ
′
iFt + eit (7)

where Dit is a polynomial trend function, Ft is an r × 1 vector of common
factors, and λi ia vector of factor loading. The series Yit is decomposed into
three components: a deterministic one, a common component with factor
structure and an idiosyncratic error component. The process Yit may be
non-stationary if one or more of the common factors are non-stationary, or
the idiosyncratic error is non-stationary, or both. To test the stationarity
of the idiosyncratic component, BNG propose to pool the individual ADF
t-statistics with de-factored estimated components êit in a model with no

6The percentiles of the asymptotic p-values of the Dickey-Fuller-GLS tests are simu-
lated by choi
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deterministic trend:

∆eit = δi,0êi,t−1 +
p∑

j=1

δi,j∆êi,t−j + µi,t. (8)

Let ADF c
ê (i) be the ADF t-statistic for the i-th country. The asymptotic

distribution of the ADF c
ê (i) coincides with the Dickey-Fuller distribution

for the case of no constant. However, these individual time series tests have
the same low power as those based on the initial series.

BNG (2004) proposed pooled tests based on Fisher’s type statistics de-
fined as in Choi (2001) and Maddala and Wu (1999). Let P c

ê (i) be the
p-value of the ADF c

ê (i), then

Zc
ê =

−2
∑N

i=1 log P c
ê (i)− 2N√

4N
−→ N(0, 1) (9)

MP (2004) developed several unit root tests in which the cross-sectional
units are correlated. To model the cross-sectional dependence, MP (2004)
provided an approximate linear dynamic factor model in which the panel
data are generated by both idiosyncratic shocks and unobservable dynamic
factors that are common to all individual units but to which each individual
reacts heterogeneously. In our analysis, we apply the following tests:

t∗a =

√
NT (ρ̂+

pool − 1)√
2φ̂4

e
ω4

e

(10)

t∗b =
√

NT (ρ̂+
pool − 1)

√
1

NT 2
tr(Y−1QBY

′
−1)(

ω̂2
e

φ4
e

) (11)

where ρ̂+
pool is the bias-corrected pooled autoregressive estimated of ρ+

pool, ω̂4
ê

and φ̂4
ê are respectively the estimates of the cross sectional average of the

long run variance of êit and the cross sectional average of ω4
ê,i

.7

To deal with the problem of cross-sectional dependencies PS does not
consider the deviations from the estimated common factor, but he proposed
to augment the standard DF (or ADF) regression with the cross section av-
erages of lagged levels and first-differences of the individual series. The panel
unit root tests are then based on the average of individual cross-sectionally
augumented ADF statistics (CADF). The individual CADF statistics may
be used to build modified versions of the t-bar test developed by Im, Pe-
saran and Shin (2003), the inverse chi-square test (P test) developed by
Maddala and Wu (1999) and the inverse normal test (Z test) proposed by
Choi(2001). PS presented also a truncated version of the test in order to

7for details see Appendix
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avoid undue influences of extreme outcomes that could emerge in the case
of small T. The simple average of cross-sectionally augmented IPS test and
its truncated version are:

CIPS(N,T ) = N−1
N∑

i=1

ti(N,T ) (12)

CIPS∗(N,T ) = N−1
N∑

i=1

t∗i (N,T ) (13)

where ti(N,T ) and t∗i (N,T ) are the cross-sectionally augmented Dickey-
Fuller statistic for the i−th cross section unit and the truncated version
respectively given by the t-ratio of the OLS estimate of bi (b̂i) in the CADF
regression:

∆yit = αi + biyi,t−1 + ciȳt−1 + di∆ȳt−1 + eit. (14)

3.2 Panel cointegration tests

Kao (1999) proposed an Augmented Dickey-Fuller (ADF) panel cointegra-
tion test in which cointegrating vectors are assumed to be homogeneous.
Let êit be the estimated residual from the following regression:

yit = αi + βxit + eit (15)

The ADF test is applied to the estimated residual: where p is chosen so
that the residual νi,tp are serially uncorrelated. The ADF test statistic is
the usual t-statistic of in the previous equation. With the null hypothesis
of no cointegration, the ADF test statistics can be constructed as:

ADF =
tADF + (

√
6Nσ̂ν
2σ̂0ν

)√
( σ̂2

0ν
2σ̂2

ν
) + (10σ̂2

0ν)
(16)

where σ̂2
ν = Σµε − ΣµεΣ1

ε, σ̂2
0ν = Ωµε − ΩµεΩ1

ε, Ω is the long-run covariance
matrix and tADF is the t-statistic of in the ADF regression. Kao shows that
the ADF test converges to a standard normal distribution N(0,1).

Pedroni (1995 and 2004) developed a method for testing the null hypoth-
esis of no co-integration in dynamic panels with multiple regressors. The
panel co-integration tests proposed allow the co-integrating vector to differ
across members under the alternative hypothesis (heterogeneity). Imposing
homogeneity of the co-integrating vectors in the regression would lead to re-
ject the null hypothesis of no co-integration when the variables are actually
co-integrated. To develop panel co-integration tests, Pedroni considered the
following model:

yit = αi + δit + β1ix1i,t + β2ix2i,t + ..... + βMixMi,t + eit (17)
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where T (t=1,....T) denotes the number of observations over time, N (i=,.....N)
indicates the number of individuals in the panel and M (m=1,.....,M) refers
to the number of regression variables. In the previous equation,αi is the
fixed effect parameter, δit is the ”time trends” parameter and β1i, β2i, ...βMi

are the slope coefficients which vary across individuals. In many applica-
tions,it could also be useful to include a set of common-time dummies in
order to capture disturbances which may be shared across the individuals
of the panel. Pedroni proposed seven different panel co-integration tests
which are constructed using the residual of the co-integrating regression in
the equation (17). Four tests are referred to as within dimension and three
as the between-dimension. The first class of the panel tests is constructed
by summing both the numerator and the denominator over the N dimension
separately. The second class is constructed by first dividing the numera-
tor by the denominator prior to summing over the N dimension. In our
empirical analysis, the fourth parametric panel-t test is applied:

Z∗
tT,N

≡ (s̃∗2N,T

N∑
i=1

T∑
i=1

L̂2
11iê

2
i,t−1)

− 1
2

N∑
i=1

T∑
i=1

L̂2
11iê

∗
i,t−1∆ê∗i,t (18)

where s̃∗2N,T ≡
∑N

i=1 s̃∗2i is the contemporaneous panel variance estimator,
s̃∗2i is the standard contemporaneous variance of the residual from the ADF
regression and L2

11i is a nuisance parameter estimator that is used in Pe-
droni’s tests and corresponds to the member specific long run conditional
variance for the residuals. At least, a panel co-integration test for the null
hypothesis of no co-integration with cross-sectional dependence is applied.

Westerlund (2005a) develops a simple residual-based panel CUSUM test
of the null hypothesis of cointegration. The test has a limiting normal distri-
bution that is free of nuisance parameters, it is robust to heteroskedasticity
and it allows for mixtures of co-integrated and spurious alternatives. The
null hypothesis in this paper is that all the individuals of the panel are co-
integrated and the alternative is that a nonempty subset is not co-integrated.
It’s often argue that cointegration would be a more natural choice of null
hypothesis in many empirical applications. Moreover, failure to reject the
null of no cointegration could be caused not by the underline characteristic
of the data, but rather then the low power of the test itself. Westerlund
(2005a) consider the following model:

yit = X
′
it = δi + uit (19)

where Xit = (z
′
t) is a vector of right hand side variables and δi = (γi, βi)

′
is a

conformable vector of parameters. The vector xit = xit−1+νit has dimension
K × 1 and contains the regressors, whereas zt is a vector of deterministic
component such that zt = � in Model 1, zt = 1 in Model 2 and zt =
(1, t) in Model 3. The vectors γi and βi are conformable with zt and xit,
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respectively. In each model, to enable general forms of temporal dependence
within each cross-section, we assume that the error vector wit = (uit, v

′
it)

′

satisfies the linear process conditions of Phillips and Solo (1992[41]). The
null hypothesis is that all the individuals of the panel are cointegrated and
the alternative is that a nonempty subset is not cointegrated. Formally, if
N1
N −→∞ as N −→∞ where N1 denotes the number of individual processes
u∗it possessing a unit root and Ψε(0, 1), then we may formulate the null and
alternative hypotheses as H0 : Ψ = 0 against H1 : Ψ > 0. This hypothesis
allows for a nonzero subset of the processes uit to be nonstation- ary under
the alternative and it includes the full panel nonstationary alternative as a
special case. Then, if yit and xit are co-integrated, the residual series û∗it it
should be stable around a fixed mean and its fluctuations should reflect only
equilibrium errors. Conversely, if yit and xit are unrelated, then û∗it becomes
a unit root process. As a result,the fluctuations in û∗it can be expected to
be of a larger order magnitude than if yit and xit were co-integrated. This
suggests that the null hypothesis of co-integration can be tested by looking
at the fluctuation of û∗it. If û∗it display very large fluctuation, we should reject
the null hypothesis. To measure the fluctuation in û∗it, Westerlund (2005a)
proposes the a panel CUSUM test statistic, which is the cross-sectional
average of the univariate statistic of Xiao and Phillips (2001[?]) applied to
each individual i. The statistic is defined as follows:

CSNT ≡
1
N

N∑
i=1

( max
t=1,....T

1
ω̂i1.2T 1/2

|S∗
it|) (20)

where S∗
it =

∑t
j=1 û∗ij and ω̂∗

i1.2 = ω̂i11 − ω̂
′
i21Ω̂

−1
i22ω̂i21 may be any consistent

semiparametric kernel estimator of ω∗
i1.2, which depends on the bandwidth

parameter M. ω̂∗
i1.2 represents the long-run variance of uit. The CUSUM sta-

tistics measures the magnitude of the residual variation from the regression
of yit on xit against the magnitude of the estimated long-run conditional
variance of uit given vit. If yit and xit are co-integrated, then the statistic
should stabilize asymptotically. If not, then the increased residual variation
will cause the statistic to diverge.

Westerlund (2004) proposed a non-parametric modified variance ratio
test. He considers the following model:

yit = z
′
tδ̂i + x

′
itβ̂i + êit (21)

where zt is the deterministic component.zt may include a constant and linear
time trend. The variance ratio test is applied to the residual of the previous
regression equation. The residual eit are stationary when yit and xit are co-
integrated. In other words, testing the null hypothesis of no co-integration
is equivalent to testing the regression residuals for a unit root using the
following auto-regression:

êit = γêi,t−1 + µit (22)
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For the test statistic, the null hypothesis is formulated as:

H0 : γi = 1, for all i

against the alternative,

H1 : γi = γ < 1, for all i.

Now, let Êt = (Êi1, ......., ÊiT ), Ê = (Ê1, ......., ÊN ), Ûi = (êi1, ......., êiT )
′

and Û = (ê1, ......., ÛN )
′
. The modified variance ratio statistic developed by

Westerlund is:
V RM ≡ tr(Ê

′
Ê(Û

′
Û)−1) (23)

3.3 Panel estimation of the long-run relationship

PED provided the between-dimension ”group mean” DOLS and FMOLS
estimators. The advantage of using the between estimators is that the form
in which the data is pooled allows for greater flexibility in the presence of
heterogeneity of the cointegrating vectors. The test statistics derived from
the between-dimension estimators are constructed to test the null hypothesis
H0 : βi = β0 for all i against the alternative H1 : βi 6= β0, so that the values
for βi are not constrained to be the same under the alternative hypothe-
sis. Consider the following co-integrated system for a panel of i = 1, 2, .N
members,

Yit = αi + βXit + µit (24)

Xit = Xit−1 + εit (25)

where Zit = (Yit, Xit) ∼ I(1)it and ξi = (µit, εit) ∼ I(0), with long run
covariance matrix Ωi = LiL

′
i (Li is a lower triangular decomposition ofΩi.

In this case, the variables are said to be cointegrated for each member of
the panel, with cointegrating vector β. The terms αi allow the cointegrating
relationship to include member specific fixed effect. The covariance matrix
can also be decomposed as Ωi = Ω0

i + Γi + Γ
′
i, where Ω0

i is the contempo-
raneous covariance and is a weighted sum of autocovariances. The Panel
FMOLS estimator for the coefficient β is defined as follows:

β∗NT = N−1(
N∑

i=1

(Xit − X̄i)2((Xit − X̄i)Y ∗
it − T τ̂i) (26)

where Y ∗
it = (Yit−Ȳi)− L̂21i

L̂22i
∆Xit,τ̂i ≡ Γ̂21i+Ω̂0

21i−
L̂21i

L̂22i
(Γ̂22i+Ω̂0

22i) and L̂i is a

lower triangular decomposition of Ω̂i defined as follows: Ωi =
(

Ω11i Ω
′
21i

Ω21i Ω22i

)
.
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For the panel DOLS estimation, the cointegration equation (24) is aug-
mented as follows:

Yit = αi + βXit +
Ki∑

k=−Ki

+µ∗it (27)

and the estimated coefficient β is given by:

β̂∗GD = N−1(
N∑

i=1

ZitZ
′
it)

−1(
N∑

i=1

ZitY
∗
it) (28)

where Zit = (Xit − X̄i,∆Xit−k, ......, ∆Xit+k) is 2(K + 1) × 1 vector of re-
gressors.

MS assume the hypothesis that the cointegrating vector is homogenous
across individuals, but they allow for individual heterogeneity through dis-
parate short-run dynamics, individual-specific fixed effects and individual-
specific time trends. Their approach also allows for some degree of cross-
sectional dependence through the presence of time-specific effects. The panel
estimator for the fixed effect model is βNT , where

(βNT − β) = [
N∑

i=1

T∑
t=1

q̃
it
q̃
′

it
]−1[

N∑
i=1

T∑
t=1

q̃
it
µ̃

′
it] (29)

When individual-specific fixed effects and heterogeneous time trends are
included in the model, the panel DOLS estimator is:

(βNT − β) = [
N∑

i=1

T∑
t=1

q̃
it
q̃
′

it
]−1[

N∑
i=1

T∑
t=1

q̃
it
ỹ
′
it] (30)

The panel DOLS estimator with common time dummies in the model is:

γNT = [
N∑

i=1

T∑
t=1

x‡∗it x‡∗0it ]−1[
N∑

i=1

T∑
t=1

x‡∗it y‡∗it ] (31)

In our empirical analysis all estimators are used.8

4 Data and Empirical results

In our empirical analysis, we use a panel of Italian regions over the period
1970-1998. Annual data on value added and labor units in the industrial
sector are taken from the Prometeia Regional Accounting data-set. The
data for the stock of private capital in the industrial sector over the period
1970 − 1994 are provided by Paci and Pusceddu from CRENOS (Univer-
sity of Cagliari). Paci and Pusceddu (2000[33]), as well as Gleed and Rees

8for details on these estimators see the Appendix
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(1979[13]), obtained the regional stocks of capital by distributing across re-
gions the national stock of capital through two indicator variables, namely
the regional share of gross investments (given a weight of 0.75) and the re-
gional share of labour units (given a weight of 0.25).9 Following the same
procedure, the time series of regional physical capital has been extended
until 1998.10 Value added and stock of capital are measured at 1995 con-
stant prices. As mentioned in Section 2, the technique suggested in Hall and
Jones (1999) has been adopted in order to estimate human capital. Let Lit

be the number of employees in region i at time t, and Fit and Mit be the
female and male average number of years of education in region i at time
t.11 Then, labor augmented for human capital accumulation in region i at
time t can be defined by:

Lithite
[φF Fit+φMMit] (32)

where φF and φM are the coefficients on education in the Mincer earning
functions. To obtain Lithit, the coefficients estimated by Brunello et al.
(1999[4]) for Italy, are used.12 In Tables 1-3 panel unit root test results are
reported. Strong evidence of unit root processes for all variables is found.
With regard to the value added, only the Choi test allows rejection of the
null hypothesis of nonstationarity at the 5% significance level. Other tests
show significant evidence in favor of a unit root process.

Table 1 about here.

Concerning the stock of physical and human capital, the null hypothesis of
nonstationarity cannot be rejected at the 5% significance level, except for
MP tests. However, the results of the Moon and Perron test are more ’radi-
cal’ since they do not test for the unit root in common factors. The rejection
of the null hypothesis does not imply that non-stationarity is rejected for the
idiosyncratic component of all regions, but that the null hypothesis is only
rejected for a sub-group of regions. In addition, the rejection of the non-
stationarity of the idiosyncratic component does not imply that the series
is stationary, since the common factor may be non-stationary.

Tables 2 and 3 about here.

In table 4 results of the panel cointegration tests are reported. All tests
show evidence of a cointegrating relationship between the three variables

9The data on the national stock of capital are provided by the National Institute of
Statistics (ISTAT).

10In these circumstances there is clearly some collinearity between the capital and the
labour input, and while we can regard with some confidence the sum of the input elastic-
ities, not much weight should be given to size and significance of any of them in isolation
(this is especially true for the stock of capital).

11Fit and Mit data are taken from Destefanis et al. (2004[9]).
12The φF and φF coefficients are respectively equal to 0.077 and 0.062
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considered at the 5% level, meaning that the residuals in the equation (3)
are stationary.

Table 4 about here.

Given the evidence of stationarity of the residuals in equation (3), we pro-
ceed to estimate the long-run relationship. In Table 5, Pedroni’s DOLS and
FMOLS estimates are reported. The signs of coefficients are consistent with
economic theory and all t-statistics are significant at the 5% level. Common
time dummies are included to control for cross-sectional dependence. Evi-
dence of constant or even decreasing returns to scale (scale elasticities are
0.99 for DOLS and 0.76 for FMOLS) is found when common time effects are
included in the model. Otherwise, the regional production function exhibits
slightly increasing returns to scale (scale elasticities are 1.05 and 1.15 for
DOLS and FMOLS, respectively). These findings are consistent with the
New Endogenous Growth Theory that points out the existence of increasing
returns to scale due to spillover effects. It makes sense that the evidence of
increasing returns should disappears once one controls for spillovers through
the common time dummies. Low coefficients on physical capital (ranging
from 0.16 to 0.26) were expected given the characteristics of the data on
physical capital stock.

Table 5 about here.

The PDOLS estimates are presented in Table 6. The signs of the coefficients
are always consistent with economic theory. The coefficients on physical
capital are again rather low (ranging from 0.09 to 0.20) and not significant
in the estimation of the model with individual effects and heterogenous
trends as well as in the estimation of the model with individual, common
time effect and heterogenous trends (see columns 3 and 4). Given the way
in which the data on physical capital are constructed, these findings must
be carefully considered. The values of the scale elasticities slightly diminish
when common time effects are included in the regional production function:
from 1.27 to 1.24 (see the first and the second columns) and from 0.81 to
0.76 (see the third and the fourth columns). A much bigger impact is found
when individual time trends are included in the model: the scale elasticities
decline from 1.27 to 0.81 in the model without common time effects and
from 1.24 to 0.76 in the model with common time effects.

Table 6 about here.

In a nutshell, the estimation results reported in Tables 5-6 suggest that the
presence of increasing returns to scale on physical and human capital may
be due to the omission of some relevant factors (such as common time effects
and individual trends) from the production function. When these factors
are included in the model, constant or even decreasing returns to scale are
found.
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5 Conclusions

Whether they are based on non-stationary panel data techniques or not,
aggregate production functions estimated on macro panel data for countries
usually assume the hypothesis of cross-section independence. However this
assumption is too strong, especially for regional data. Co-movements of eco-
nomic variables between one region and another should be expected because
of spill-over effects, and empirical analysis should take this into account. In
this paper, we exploit the time length of our panel data set (1970-98) by
using non-stationary panel methods explicitly allowing for a common time
effect in order to take into account cross-regional dependence. In provid-
ing estimates for a regional production function for the industrial sector
across Italian regions, unit root properties of the panel data set are firstly
investigated through newly developed tests for cross-section dependence. Af-
ter having ascertained the existence of a cointegrating relationship between
value added, human capital-augmented labor and physical capital, the long
run relationship between the variables of interest is estimated through new
procedures that allow for some degree of cross-section dependence. These
panel methods, which also allow for heterogeneity across regions, provide
strong evidence in favour of a cointegrating relationship between regional
value added, physical capital and human capital-augmented labour. When
common time effects and individual trends are included in the model, the
regional production function tends to be characterized by constant or even
decreasing returns to scale. Otherwise, the production function exhibits
slightly increasing returns to scale in particular with the Pedroni’s estima-
tor. This in line with the new growth theories. Thus, we are more confident
on Pedroni’s results rather than Mark and Sul results, also because the
Pedroni’s group-mean panel DOLS estimator used in this analysis exhibits
much less size distortion relative to the within-dimension panel DOLS es-
timators (see Pedroni, 2001). A further step in our research agenda could
be the adoption of recently developed estimators that model cross-section
dependence using a common factor structure (Westerlund, 2005b[45]).
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6 Appendix

6.1 Bai and NG panel unit root test

Consider the following model with individual effect and without time trend:

yit = αi + βxit + eit (33)

where Ft is a r × 1 vector of common factors and λt is a vector of factor
loadings.13 Among the r common factors, we allow r0 and r1 to be stochastic
common trends with r0+r1 = r. The corresponding model in first difference
is:

∆yit = λ
′
i + zit (35)

where zit = ∆eit and f = ∆Fit with E(ft) = 0. Applying the principal-
components approach to ∆yit yields r estimated factors f̂t, the associ-
ated loadings λ̂t, and the estimated residuals, zit = yit − λ̂

′
if̂t. Define for

t = 2...., T

êit =
∑t

s=2 ẑit (i=1,....N)

F̂t =
∑t

s=2 ẑit, an r × 1 vector.

1. Let ADF c
ê (i) be the t statistics for testing di0 = 0 in the univariate

augmented autoregression (with no deterministic terms):

∆êit = di0êit−1 + di1∆êit−1 + dip∆êit−p + error (36)

2. If r = 1, let ADFF
ê be the t statistics for testing δi0 in the univariate

augmented autoregression (with an intercept):

∆F̂it = c + δ0F̂t−1 + δ1∆êt−1 + δp∆F̂it−p + error (37)

3. If r > 1, demean F̂t and denote F̂ c
t = F̂t − ¯̂

Ft, where ¯̂
Ft = (T −

1)−1
∑T

t=2 F̂t. Start with m = r:

A: β̂⊥ denotes the m eigenvectors associated with the m largest eigen-
values of T−2

∑T
t=2 F̂ c

t F̂ c′
t . Two different statistics may be con-

sidered:

B.I: Let K(j) = 1− j
(j+1) , j = 0, 1, ......J

i) Let ξ̂c
t be the residuals from estimating a first-order V AR in Ŷ c

t .
In addition, let

∑̂c

1 =
∑J

j=1 K(j)(T−1
∑T

t=2 ξ̂c
t−j ξ̂

c′
t )

13Specifically, the idiosyncratic error follows this process:

(1− ρiL)eit) = Di(L)εit. (34)
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ii) Let vM
c be the smallest eigenvalue of:

Φc
c(m) = 0.5[

T∑
t=2

(Ŷ c
t Ŷ c′

t−1 + Ŷ c
t−1Ŷ

c′
t )−T (Σ̂c

1 +Σ̂c′
1 )](

T∑
t=2

Ŷ c
t Ŷ c′

t−1)
−1

(38)
iii) Define MQc

c(m) = T [ν̂c
c(m)− 1].

B.II: For p fixed that does not depend on N and T
i)Estimate a VAR of order p in ∆Ŷ c

t to get
∏̂

(L) = Im−
∏̂

1L−
....−

∏̂
pLp and filter Ŷ c

t by
∏̂

(L), we have: ŷc
t =

∏̂
(L)Ŷ c

t

ii) Let ν̂c
f (m) be the smallest eigenvalue of:

Φf
c (m) = 0.5[

T∑
t=2

(ŷc
t ŷ

c′
t−1 + ŷc

t−1ŷ
c′
t )](

T∑
t=2

ŷc
t ŷ

c′
t−1)

−1 (39)

iii) Define the statistics MQc
f (m) = T [ν̂c

f (m)− 1].
C: If H0 : r1 = m is rejected, set m = m − 1 and return to step A.

Otherwise, r̂1 = m and stop.

6.2 Moon and Perron panel unit root test

The simple dynamic model provided by MP consists in the following equa-
tions:

yit = αi + y0
it (40)

y0
it = ρiy

0
it−1 + εit, (41)

where y0
it = 0 for all i.14To model the cross-correlation, BM assume that the

error term follows a factor model:

εit = β0t
i f0

t + eit, (42)

where f0
t are K-vectors of unobservable random factor, β0

i are non-random
factor loading coefficient vectors (also K-vectors), eit are idiosyncratic shocks,
and the number of factor K is possibly unknown.

Under the null hypothesis of ρi = 1 for all i = 1, 2, .., N , yit is influenced
by two components: the integrated factor

∑T
s=1 f0

t and the idiosyncratic
errors

∑T
s=1 es .With respect to the BNG test, the MP test is based only on

the estimated idiosyncratic component. MP treat the factors as a nuisance
parameter and propose to pool de-factored data. MP suggest removing
cross-sectional dependence in the model (40 − 41) by multiplying the ob-
served matrix Y of the dimension (N ×T ) by the projection matrix QB and
compute the unbiased pooled autoregressive estimator as:

ρ+
pool =

tr(Y1QBY
′ −NTλN

e )
tr(Y−1QBY

′
−1)

(43)

14MP also consider a model with incidental trend
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where N and T are the cross and time dimension respectively, Y−1 is the
matrix of the lagged observed data, tr(·) is the trace operator and λN

e is the
cross-sectional average of the one-sided long run variance of the idiosyncratic
errors eit. The vector of factor loading β̂ and the projection matrix QB are
obtained by estimating the principal component of ê

′
ê = (Y −ρ̂poolY−1)

′
(Y −

ρ̂poolY−1) where ρ̂pool is the OLS pooled autoregressive estimate.

6.3 Mark and Sul estimation procedure

Mark and SUL start from the Kao and Chang(2000[22]) approach by as-
suming the hypothesis that the cointegrating vector is homogenous across
individuals, but they allow for individual heterogeneity through disparate
short-run dynamics, individual-specific fixed effect and individual-specific
time trends. In addition, a limited degree of cross-sectional dependence
through the presence of time-specific effects is considered. Consider the
following model:

yit = αi + λit + θt + γ
′
xit + u†it (44)

∆xit = νit (45)

where (1,−γ
′
) is the cointegrating vector between and which is identical

across individuals. The equilibrium error may include an individual-specific
effect αi, an individual-specific linear trend λit, and a common time-specific
factor θt. The remaining idiosyncratic error is independent across i but
possibly dependent across t. An alternative representation of the previous
equation allows xit to have an individual-specific vector of drift terms and
for the trend in the same equation to be induced by this drift. Mark and
Sul consider the panel DOLS estimator of the vector of slope coefficients
γ. When the individual-specific constant (λt = 0, θt = 0)is included in the
regression (44), we have:

yit = αi + γ
′
xit + u†it (46)

MS assume that u†it is correlated with at most pi leads and lags of ∆xit = νit.
In order to control for endogeneity problems, MS choose to project u†it onto
these pi leads and lags:

u†it =
i∑

s=−pi

δ
′
i,sνit−s + uit =

pi∑
s=−pi

δ
′
i,s∆xit−s + uit = δ

′
izit + uit (47)

where δi,s is a k×1 vector of projection coefficients, δi = (δi,−pi
, ...., δi,0, ...., δ

′
i,pi

)
is a (2pi+1)k dimensional vector and zit = (∆xit−pi

, ......, ∆xit−pi
, ....∆xit+pi

)
is (2pi +1) vector of leads and lags of the first difference of the variables x

′
it.

By substituting the projection representation for in the equation (47) into
the equation (46), we obtain:

yit = αi + γ
′
xit + δ

′
izit + uit (48)
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The projection defines the new covariance stationary process, wit = (uit, ν
′
it)

′
,

where for each i: wit = Ψi(L)εit, Ψi(L) =
(

Ψuu,i(L) 0
′

0 Ψνν,i(L)

)
. wit sat-

isfies the functional central limit theorem 1√
T

∑[tr]
t=1 wit → Bi = Ψi(1)W i,

where → denotes convergence in distribution, Bi = (Bui, B
′
νi)

′
, Bui and Bνi

are independent, and

Ωi = E[Bi(1)Bi(1)
′
] =

(
Ψuu,i(1)2 0

′

0 Ψνν,i(1)Ψνν,i(1)
′

)
=

(
Ωuu,i 0

′

0 Ωνν,i(1)

)
.

If we take the time-series average of the equation (48), we have

1
T

T∑
t=1

yit = αi + γ
′ 1
T

T∑
t=1

xit + δ
′
i

1
T

T∑
t=1

zit +
1
T

T∑
t=1

uit (49)

By subtracting the previous equation from the equation (46), we obtain:

ỹit = γ
′
x̃it + δ

′
izit + ũit (50)

where ỹit = yit − 1
T

∑T
t=1 yit, x̃it = xit − 1

T

∑T
t=1 xit, ỹit = zit − 1

T

∑T
t=1 zit,

ũit = uit − 1
T

∑T
t=1 uit.

To solve the estimation problem, let q̃
it

is the 2k(1+
∑N

i=1 pi) dimensional
vector of which the first k elements are x̃it, elements k(1 +

∑i−1
j=1(2pj + 1))

to k(1 +
∑1

j=1(2pj + 1)) are z̃it and 0s elsewhere.
In other words,

q̃
1t

= (x̃1t z̃1t 0
′
.... 0

′
)

q̃
2t

= (x̃2t 0
′
z̃2t .... 0

′
) (51)

...
...

q̃
Nt

= (x̃Nt 0
′
0
′
.... z̃Nt)

Let the grand coefficient vector be β = (γ
′
, δ

′
1, ......, δ

′
N )

′
and the compact

form of the regression ỹit = β
′
+ q̃

it
+ ũit. The panel DOLS estimator for

the fixed effect model is βNT , where

(β
NT

− β) = [
N∑

i=1

T∑
t=1

q̃
it
q̃
′

it
]−1[

N∑
i=1

T∑
t=1

q̃
it
ũit] (52)

When we consider both individual effects and heterogeneous time trends in
the specification of the model and substitute the projection representation
for the equilibrium error,

u†it =
pi∑

s=−pi

δ
′
i,sνit−s + uit =

pi∑
s=−pi

δ
′
i,s∆xit−s + uit = δ

′
izit + uit (53)
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into equation (46), we have:

ỹit = αi + λit + γ
′
xit + δ

′
iz̃it + ũit (54)

If we take the time series average of the previous equation, we obtain:

1
T

T∑
t=1

yit = αi + λi(
t + 1

2
) + γ

′ 1
T

T∑
t=1

xit + δ
′
i

T∑
t=1

zit +
1
T

T∑
t=1

uit (55)

where 1
T

∑T
t=1 t = ( t+1

2 ). By subtracting the equation (53) from the equation
(52), we obtain:

ỹit = λit̃ + γ
′
x̃it + δ

′
iz̃it + ũit (56)

where we use a ’tilde’ to indicates the deviation of an observation from its
time-series averages, ỹit = yit − 1

T

∑T
t=1 yit, x̃it = xit − 1

T

∑T
t=1 xit, ỹit =

zit − 1
T

∑T
t=1 zit, ũit = uit − 1

T

∑T
t=1 uit and t̃ = t − (T+1)

2 . To set up the
panel DOLS estimator, let λN = (λ1, λ2, ....., λN )

′
, β = (λ

′
, λ

′
N , δ

′
1, ....., δ

′
1)

′

and,

q̃
′

1t
= (x̃1t t 0 .... 0 z̃

′
1t 0

′
.... 0

′
)

q̃
2t

= (x̃2t 0
′

t .... 0 0′ z̃2t .... 0
′
) (57)

...

q̃
Nt

= (x̃Nt 0
′
0
′
.... t 0

′
0
′
.... z̃Nt)

The panel DOLS estimator of β is:

βNT = [
N∑

i=1

T∑
t=1

q̃
it
q̃
′

it
]−1[

N∑
i=1

T∑
t=1

q̃
it
ỹit] (58)

When we introduce the common time effect in order to allow a limited
form of cross-sectional dependence and substitute the projection represen-
tation for u†it in the equation (46), we have:

ỹit = αi + λit + θt + γ
′
xit + δ

′
iz̃it + ũit (59)

Controlling for the common time effect requires an analysis of the cross-
sectional average of the observations. Because MS admit heterogeneity in
the projection coefficients δi across i, the resulting cross-sectional averages
will involve sums such as

∑N
j=1 δ

′
jzjt which complicates estimation of the

δi coefficients. The estimation problem can be simplified by proceeding se-
quentially and addressing the endogeneity correction separately from coin-
tegration vector estimation.

To this end, let y‡it be the error from projecting each element of yit onto
nit = (1,t, z

′
it) and x‡it = xit − Φinit be the vector of projection errors from
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projecting each element of xit onto nit, where Φi is a (k + 2) × pi matrix
of projection coefficients. By substituting the projection representations for
yit and xit into equation (59), we have:

ỹ‡it = γ
′
x‡it + θt + uit (60)

To estimate the parameter γ in the equation (59), equation (60) is used.
Taking the cross-sectional average of equation (60), we have:

1
N

N∑
j=1

y‡it = γ
′
[
1
N

N∑
j=1

x‡it] + θt +
1
N

N∑
j=1

ujt (61)

Subtracting equation (61) from equation(60) eliminates the common time
effect giving:

ỹ‡it = γ
′
x‡it∗+ u∗it, (62)

where the ’asterisk’ indicates the deviation of an observation from its cross-
sectional average. The panel DOLS estimator of γ is:

γNT = [
N∑

i=1

T∑
t=1

x‡∗it x‡∗0it ]−1[
N∑

i=1

T∑
t=1

x‡∗it y‡∗it ] (63)
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Table 1: Panel unit root tests. Variables:lnVA

CH panel tests
Pm Z L∗

3.066
(0.000)

−3.103
(0.000)

−2.979
(0.001)

MP panel tests
r̂ t∗a t∗b t∗Ba t∗Bb

1 −0.990
(0.161)

−1.083
(0.139)

−1.237
(0.128)

−1.048
(0.147)

BNG panel tests
r̂ Zc

ê P c
ê ADF c

F̂
1 −1.589

(0.943)
25.879
(0.959)

−0.787
(0.801)

PS panel tests
p∗ CIPS CIPS∗

1 −2.238
(0.035)

−2.238
(0.035)

2 −2.141
(0.075)

3 −1.910
(0.280)

4 −1.641
(0.635)

Notes:

(a) CIPS is the mean of individual cross-sectionally augmented ADF statistics (ADF).

CIPS∗ indicates the mean of truncated individual CADF statistics. The truncated sta-

tistics are reported only for one lag since they are always equal to not truncated one

for higher lag lengths. p∗ denotes the nearest integer of the mean of the individual lag

lengths in ADF tests. (b) For each variable, the number of common factor estimated (r̂) is

estimated by the BIC3 criterion, with a maximum number of factor equal to 5. For idio-

syncratic components êit, the pooled unit root statistic test are reported. P c
ê is a Fisher’s

type statistic based on a p-valued of the individual ADF tests. Under the null hypothesis,

P c
ê has a distribution whet T tends to infinity and N is fixed. Zc

ê is the standardized

Choi’s type test statistic. Under the null hypothesis, Zc
ê has a N(0, 1) distribution. For

the idiosyncratic components F̂t, two different cases must be distinguished: if r̂ = 1 ,

only the standard ADF t-statistic, ADF c
F̂

is reported. If r̂ > 1 the estimated number of

independent stochastic trends in the common factors a reported. (c) t∗a and t∗b tests based

on de-factored panel data and computed with a quadratic spectral kernel function. (d)

t∗B
a and t∗B

b are computed with a Barlett kernel function. (e) p-values are in parenthesis.
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Table 2: Panel unit root tests. Variables:lnK

CH panel tests
Pm Z L∗

1.812
(0.350)

1.588
(0.944)

2.153
(0.984)

MP panel tests
r̂ t∗a t∗b t∗Ba t∗Bb

1 −11.383
(0.000)

−5.719
(0.000)

−12.765
(0.000)

−6.260
(0.000)

BNG panel tests
r̂ Zc

ê P c
ê ADF c

F̂
1 0.859

(0.185)
48.011
(0.180)

−2.534
(0.120)

PS panel tests
p∗ CIPS CIPS∗

1 −1.853
(0.370

−1.853
(0.370)

2 −1.525
(0.805)

3 −1.704
(0.550)

4 −1.349
(0.915)

Notes:

(a) CIPS is the mean of individual cross-sectionally augmented ADF statistics (ADF).

CIPS∗ indicates the mean of truncated individual CADF statistics. The truncated sta-

tistics are reported only for one lag since they are always equal to not truncated one

for higher lag lengths. p∗ denotes the nearest integer of the mean of the individual lag

lengths in ADF tests. (b) For each variable, the number of common factor estimated (r̂) is

estimated by the BIC3 criterion, with a maximum number of factor equal to 5. For idio-

syncratic components êit, the pooled unit root statistic test are reported. P c
ê is a Fisher’s

type statistic based on a p-valued of the individual ADF tests. Under the null hypothesis,

P c
ê has a distribution whet T tends to infinity and N is fixed. Zc

ê is the standardized

Choi’s type test statistic. Under the null hypothesis, Zc
ê has a N(0, 1) distribution. For

the idiosyncratic components F̂t, two different cases must be distinguished: if r̂ = 1 ,

only the standard ADF t-statistic, ADF c
F̂

is reported. If r̂ > 1 the estimated number of

independent stochastic trends in the common factors a reported. (c) t∗a and t∗b tests based

on de-factored panel data and computed with a quadratic spectral kernel function. (d)

t∗B
a and t∗B

b are computed with a Barlett kernel function. (e) p-values are in parenthesis.
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Table 3: Panel unit root tests. Variables:lnLh

CH panel tests
Pm Z L∗

2.830
(0.002)

−2.426
(0.058)

−2.407
(0.061)

MP panel tests
r̂ t∗a t∗b t∗Ba t∗Bb

1 −7.036
(0.000)

−3.893
(0.000)

−7.031
(0.000)

−3.858
(0.000)

BNG panel tests
r̂ Zc

ê P c
ê ADF c

F̂
2 0.859

(0.185)
48.011
(0.180)

−

PS panel tests
p∗ CIPS CIPS∗

1 −1.853
(0.370

−1.853
(0.370)

2 −1.525
(0.805)

3 −1.704
(0.550)

4 −1.349
(0.915)

Notes:

(a) CIPS is the mean of individual cross-sectionally augmented ADF statistics (ADF).

CIPS∗ indicates the mean of truncated individual CADF statistics. The truncated sta-

tistics are reported only for one lag since they are always equal to not truncated one

for higher lag lengths. p∗ denotes the nearest integer of the mean of the individual lag

lengths in ADF tests. (b) For each variable, the number of common factor estimated (r̂) is

estimated by the BIC3 criterion, with a maximum number of factor equal to 5. For idio-

syncratic components êit, the pooled unit root statistic test are reported. P c
ê is a Fisher’s

type statistic based on a p-valued of the individual ADF tests. Under the null hypothesis,

P c
ê has a distribution whet T tends to infinity and N is fixed. Zc

ê is the standardized

Choi’s type test statistic. Under the null hypothesis, Zc
ê has a N(0, 1) distribution. For

the idiosyncratic components F̂t, two different cases must be distinguished: if r̂ = 1 ,

only the standard ADF t-statistic, ADF c
F̂

is reported. If r̂ > 1 the estimated number of

independent stochastic trends in the common factors a reported. (c) t∗a and t∗b tests based

on de-factored panel data and computed with a quadratic spectral kernel function. (d)

t∗B
a and t∗B

b are computed with a Barlett kernel function. (e) p-values are in parenthesis.
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Table 4: Panel cointegration tests results.

Variables ADF
(Kao)

Panel−t
(Pedroni)

CUSUM
(Westerlund)

WRM
(Westerlund)

lnV A, lnK, lnLh −2.601
(0.004)

2.857
(0.002)

0.911
(0.181)

17.461
(0.005)

Notes:

(a) All tests are used to test the null hypothesis of no cointegration . (b) For the ADF

test, the lag order is set to one. Results are robust to different lag lengths. Under the

null, the ADF and the Panel-t tests have a standard Normal distribution. (c) In the

CUSUM test the null hypothesis is that all individuals of the panel are co-integrated. The

Bartlett kernel is ω( j
M

) = 1 − j
(1+M)

. The optimal Bandwidth for the Bartlett Kernel

is M = [T 1/3]. (d) The WRM test is developed under the assumption of cross-sectional

dependence. The distribution depends on the number of regressors (2, in our case), the

deterministic specification of the spurious regression (in our analysis only the constant

is included) and the number of the cross-sectional units. (e) numbers in parenthesis are

p-values.

Table 5: Estimation Results. Methods: DOLS and FMOLS (Pe-
droni’s estimators).

DOLS
(1)

DOLS
(2)

FMOLS
(3)

FMOLS
(4)

lnK 0.26
[2.12∗]

0.17
[3.21∗]

0.26
[14.27∗]

0.16
[4.18∗]

lnLh 0.79
[(4.56∗]

0.82
[(2.63∗]

0.89
[16.75∗]

0.60
[5.31∗]

Notes:

(a) (1) denotes the DOLS estimator without common time dummies. (b) (2) indicates

the DOLS estimator with common time dummies.(c) (3) denotes the FMOLS estima-

tor without common time dummies. (d) (4) indicates the FMOLS with common time

dummies. (e) common time are included to control for cross-sectional dependence. (f)

numbers in brackets are the t-statistics. (g) ∗ denotes significant at 5% level
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Table 6: Estimation Results. Methods: PDOLS (Mark and Sul
estimators).

PDOLS
(1)

PDOLS
(2)

PDOLS
(3)

PDOLS
(4)

lnK 0.20
[2.22∗]

0.13
[2.18∗]

0.10
[0.62]

0.09
[0.65]

lnLh 1.07
[(4.54∗]

1.11
[6.43∗]

0.71
[3.10∗]

0.67
[2.61∗]

Notes:

(a) (1) denotes the PDOLS estimator with individual effect and without common time

dummies. (b) (2) indicates the PDOLS estimator with individual effect and common time

dummies.(c) (3) denotes the PDOLS estimator with individual effect and heterogenous

trends and without common time dummies. (d) (4) indicates the PDOLS estimator

with individual effect, heterogenous trends and common time dummies. (e) common time

dummies allows to control for cross-sectional dependence. (d) numbers in brackets are the

t-statistics based on corrected parametric standard errors. (f) numbers in brackets are the

t-statistics. (g) ∗ denotes significant at 5% level.
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