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Central Place Theory after Christaller and Losch:
Some further explorations.

Michael Sonis, Bar-llan University, Israel
E-mail: sonism@mail.biu.ac.il

This paper is prepared for the presentation 8t@&ngress of the Regional Science
Association, 23-27 August 2005, Vrije Universitéitnsterdam

In memory of AlfredLdsch, 15 October 1906- 30 May 1945.

ABSTRACT. This paper deals with the critical reaxalon of the methodology of classical Christaller
- LoschCentral Place Theoryin the beginning of the paper the reconstructio€efitral Place Geometry
on the basis of thdobiusBarycentric Calculus was considered. On this besisperposition model of the
actual Central Place System is constructed. Bugldilocks of this model are the Beckman-McPherson
models representing the main tendencies of optorgdnizations of space acting simultaneously in the
actual Central Place system. The weights of theddibg blocks represent the level of realizatidrtte
specific extreme tendencies in the real systene algorithm of decomposition of an actual Centfate
system into the weighted sum of the Beckman-McRimetsiilding blocks is elaborated and presented in
detail. This algorithm generates also the desonptf the interconnections of hexagon coveringshen
sequential hierarchical levels with the help ofv@ncombinations of hexagon coverings and homatheti
transformation of the coverings.
Next, the (jumping) catastrophic dynamics of theni€a Place hierarchies presented with the help of
geometrical scheme of the movement of the pointessmting actual Central Place system in the
polyhedron of all admissible Central Place systems.
Two main applications of this conceptual framewar& elaborated:

e« The enumeration of all structurally stable optini@inimal cost) transportation flows in the

hierarchical Central Place system and
e The merger of two major theories in the Region&Se: the classical Input-Output theory
of Leontief and the classical Christalldc&sch Central Place theory.

We hope that this critical reevaluation of the getnnal and conceptual basis of Central Place theor
will contribute to narrowing the existing gap beemethe formal theory and empirical studies.
Key words: Central Place theory, Barycentric Calculus; Supsitfum Model of
Central place Hierarchy,Jumping Catastrophe Dynamics of Central Place
Hierarchy;Structural Stability of Transportation flows in tentral Place system
The merger of Input-Output theory and Central Ptaeery.



1. Barycentric Calculus and Superposition Model oCentral Place Hierarchy

The Central Place theory established itself as aindhe most influential theories of
theoretical geography and theoretical spatial esvnoanalysis. The concepts and
methodological basis of Central Place theory weretilated in the first part of previous
century by two scientists in Germany: geographertéaChristaller (1933) and

economist AugustLosch (1940).

The ideas of Christaller were first introduced itite English language by Ullman (1941).
In 1954 appeared the English translation of thekbob LOSchand in 1966 the
translation of the book of Christaller. Since th#érg concept of central place hierarchy
captivated the imagination of spatial analysts. Eirgd evaluation of the ideas of the
Central Place theory began with papers by BrushBradey, 1955, and by Berry and
Garisson, 1958, which have influenced many lateguigoal studies. It is possible to find
a review of the early work in the Central Placeotlyeand its applications in studies of
Berry and Garrison, 1958, Berry and Pred, 196limtide books by Bunge, 1962, Lloyd
and Dicken, 1977 and Beavon, 1977.

It is important to note that from the first stefgte Central place theory a gap emerged
between the formal theory and empirical studie® mbed to close this gap caused the
appearance of critical methodological studies efltdgic of the Central Place theory in
the form of axiomatic method. The leading roleha tleveloping of the formal axiomatic
approach to the construction of the theory of Gdrfdlaces belongs to the American
geographer Michael Dacey who in 1960ies-1970iasteid (Dacey, 1964, 1965, 1970)
and inspired the studies of a large group of ggdwes (Dacey and Sen, 1968, Dacey,
Davies, Flowerdew, Huff, Ko, Pipkin, 1974; Alao, ¢xy, Davies, Denike, Huff, Parr,
Webber, 1977). Despite of the initial enthusiasih laig promises their work was heavily
based on the geometrical ideas of two geometiecds by Hilbert and Con-Fossen, 1932
(English translation 1952) and Coxeter, 1961, (bmih of date now). The axiomatic
approach became formal and abstract and did noemmée the new empirical studies of
actual Central Place systems. The gap betweeméoeyt and empirical studies remains
open till now. Although at present there is no doaffiout the conceptual usefulness of
the Central Place theory, its essential deficieetates to its applicability to the analysis
of an actual central place system. Moreover, thssital Central Place theory represents
the challenge to the New Urban Economics and Nean&mic Geography which both
fail to reproduce and incorporate the spatial bafsibe classical Central Place thearf (
David, 1999, Fujita, Krugman and Venables, 1999).this paper we try to close the



existing gap between the pure theoretical ChrestalhdLéschmodels and the empirical
structure of an actual central place system; weguriean alternative hierarchical model
based on the idea of mixed hierarchy of the CeRiade system (Christaller, 1950, p.12;
Woldenberg, 1968) and on the Beckmann-McPhersonetnaidCentral Place system
(Beckmann, McPherson, 1970), which are the interatedinks between the Christaller
and Loschmodels.

1. Elements of the Central Place geometry

The spatial description of the original Chrisrall@entral Place model is based on
following generic geometric properties of centriges associated with Central Place
system:

1. The first property is that all hinterland areas tfe central places at the same
hierarchical level form a hexagonal covering of filane with the centers on the initial
homogeneous triangular lattice presenting the aentef the hexagons from the
Christaller primary coveringThe properties of hexagonal coverings of the plartee
Christaller -L6sch Central Place theory are based on the followingotém from
elementary geometry:

The covering theorem: There are only three possible coverings of thaenpl by the
regular polygons with n sides: by triangles (n=@)adrates (n=4) and hexagons (n=6).



Figure 1. Derivation of the hexagonal coveringlué plane by section of the
arrangement of a layer of cubes in space

The covering theorem was known to Pythagoreans ifCeéntury B.C. Figure 1
demonstrated the interconnection between thediliihspace by a layer of cubes and the
hexagon covering of the plane: the section of tineg-dimension arrangement of layer
of cubes by the plane gives the covering of thenglady regular hexagons. This
three-dimensional arrangement of a layer of cubelsides cubes whose vertices are the
centers of quadrate faces of adjacent cubes. Topepy of section of the arrangement
of cubes will be used in the next chapter for thestruction of interconnection of the
system of barycentric coordinates in tkié@biusplane and usual Euclidean metrics in
space.

2. The second property is that the size of the hiateflareas increases from the
smallest (on the lower tier of Central Place hiextay) to the largest (on the highest tier
of hierarchy) by a constant nesting factor k.

By definition, the nesting factor is the ratio beem the are& of the hexagon belonging
to some hexagonal covering of the plane to the areahexagon belonging to the
primary Christaller covering by smallest hexagonishwthe property: the distance



between the centers of smallest hexagons equiats $7/ <

It is easy to see thatdfis the distance between the centers of adjacewigoms of some
hexagonal covering of the plane then the areadf Baxagon is equal &= 23, so
the area of smallest hexagon from the Christalfengry covering is equal &= 2./3.
Thus, the nesting factor equals to the square ®fdistance between the centers of

adjacent hexagons of hexagonal covering of theepllar d* .

3. The third property is that the center of a hintexdaarea of a given size is also the
center of hinterlands of each smaller size (Ghtier, 1933). The nesting factors 3, 4, 7
play the most important role in the Christaller @ Place theory: they express one of
the Christaller three principles, namely, marketifkg= 3), transportation (k = 4) and
administrative (k = 7) principlesThe nesting factors 3, 4, 7 generate three gecraétri
sequences of the hexagonal market area sizes9,123,...3",...; 1, 4, 16, 64,..4",...;
1,7,49,343,..7". ltis possible to interpret these Christallengiples as principles of
optimal organization of the central place marketar marketing principle represents the
minimal number of small market areas — thréecluded in a bigger market area; the
transportation principle presents such optimal oiggtion of space where the
transportation network between two bigger centfatgs passes through the smaller
central place; the administrative principle presesnich optimal organization of space
where the administrative hinterland of the largemtcal place includes almost
completely the set of administrative hinterlandsmgller central places.

5. The Loschian hexagonal landscapd_@sch 1940)is the superposition of all possible
coverings of a plane by hexagons whose centersareide with the vertices of the
triangular lattice and the sizes of market areasesfing factors) are integers:
k =1,3 4,7,9, 12, 13, 16, 19The geometric procedure for construction of the
Loschiarlandscape is simple and straightforward: for thevdéon of a part of the
Loschiarlandscape which corresponds to the hexagonal cayevrith a nesting factor
k = d?, one should chose on the Christaller primarydattivo points with the distande
between them, to derive the segment connected theseenters and from its middle
point to draw a perpendicular segment of the size/3. The end point of this
perpendicular segment is the vertex of the hexaguh thus defines the position of
whole hexagon and all hexagons from the correspgndoverings. Each hierarchical
level in theLdschiarlandscape includes the primary hexagonal coveriitly s own
geometric scale and secondary hexagon coveringamitéfinite nesting factor built up
on the primary covering.dsch himself constructed the coverings correspondinthi®
nesting factors. By rotating of the different camgs LOSCh show that in vicinity of an



origin the market areas are arranged into six Végti(center) rich” and six “activity
(center) poor” sectors. As Lloyd and Dicken, 1979, 48-49, commented, “this
particular section ofL6sch swork has been the subject of much controversy and
misinterpretation... The work by Tarrant, 1973, and®&m and Mabin, 1975, suggests a
rather different interpretation...According to bottudies, the production of “city-rich
“and “city-poor” sectors is not the result of rotain, as many have believed, but a
constant upon it. In other words, if the sectorattprn is to be achieved there is a very
limited number of ways in which the hexagonal &t loe arranged. Once certain ones
are oriented in a particular way the positions lé tothers are fixed.”

Moreover, as demonstrated by Marshall, 1977, thiangement of “city-rich “and
“city-poor” sectors is local and do not hold foethig distances from the origin. Parr
indicated (Parr, 1970, p.45) that thds@schiarlandscape nesting factors also present
the optimal organizations of space similar to Ghliesr marketing, transportation and
administrative principle; for example, the nestiiagtors 13 and 19 have the same
property of administrative convenience as factavhi|e factors 9 and 16 have the same
transportation efficiency as factor 4. Accordirg lloyd and Dicken, 1972, p. 49,

“ Loschsuggested that this spatial arrangement of urbamters was consistent with
what he saw to be a basic element in human orgtaizahe principle of least effort.”

6. The Beckmann-McPherson, 1970, Central Place mdiffers from the Christaller
framework by applying variable nesting factors daydusing the principle of possible

coverings of the plane by hexagons of variablegetesizes. Their centers are the
vertices of the initial Christaller triangular late.

The Christaller model is only a partial case of Beann-McPherson models.
Simultaneously, the Beckmann-McPherson modelsrameamplete case of the



Léschianmodel — incomplete in the sense that the BeckmaoRkdrson models
include only a small part of the hinterland argagifthe Loschiarlandscape (see figure
3). Parr, 1970, described the way to comparehiheretical models with the structure of
the actual central place system. His idea was ¢athis Beckmann-McPherson Central
place model as the best fitting approximation ofaatual central place hierarchy. Parr
also met with difficulties that arise from the osian of the analysis of the discrepancy
between the actual central place hierarchy antbett fitting Beckmann-McPherson

approximation.
3. The construction of the Central Place geometryn a basis of barycentric
coordinates on a plane.

The barycentric coordinates, i.e., coordinatesefcenter of gravity, are connected to the
concept of the center of gravity introduced att fing Archimedes in the second century
B.C. The barycentric coordinates
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appeared in the remarkable bookMgbius, 1837, as a basis for a projective geometry.
The construction of the barycentric coordinates iplane is based on a choice of the
Mobius triangle within the Mobius plane. This pdais in the two-dimensional space
defined by three barycentric coordinaXey, Zz X+ Y+ Z= 1. The scale element of
this plane is the M6bius equilateral triangle wifte unit scale on each side. This triangle
is generated by three coordinate axes (see figure 4

Each covering of the plane by equal hexagons gwmgethe system of barycentric
coordinates corresponding to tMBbiustriangle with different scales. It is possible to
measure the barycentric coordinates of each poittie Mobius plane by projecting it
(parallel to the sides) onto the sides of the MéMiiangle. If the poin®, lies within the

Mobius triangle, then its barycentric coordina¥sy, Z must be between 0 and 1. The

vertices of the Mobius triangle are:
X :x=14,y=0,z=0; Y :x 0,y 1L,z 0, Z :x 0O,y 0,z 1

The mechanical interpretation of the barycentriordmates as coordinates of center of
gravity (barycenter) is as follows: the poRtwith coordinatesx, Y, Z is the center of

gravity of the weightsx, Y, Z hanging in the verticeX,Y, Z of the Mdbius triangle.

If point P lies outside of the Mobius triangle. triangleg$egure 4) then one or two
barycentric coordinates must be negative, but timelitionx +y + z =1 always holds.

The barycentric coordinates of the central pladethe initial Christaller hexagonal



coverings of the Mdbius plane are positive or niggahtegers.

It is interesting to note that the barycentric choates appeared in a latent and
mysterious form in the geometry of the Central @l®ory — in the

form of the rhombic coordinatesandy in the primary Christaller triangular lattice
(Dacey, 1964, 1965) or in the form of the coordenaiples &, y, x+y), wherex, yare the
rhombic coordinates (Tinkler, 1978). Neither Daoey Tinkler realized that the triple
(X, y, 3 wherez = 1-x - ypresent three barycentigoordinates in aM6bius plane.

3. The Kanzig - Dacey formulae

The figure 1pointsout on the possibility to present the barycentric coortisaon a
Mdbbius plane as usual Euclidian coordinates onaamepl x + y + z = 1 in three
dimensional space. The equatior y + z = 1represents a plane in three-dimensional
space based on the triangle with the verticesvfBh is the Mdbius triangle (see figure
5). The transfer of the barycentric coordinatesfflane to space increases the scale by
the factor/2, and gives the simple way to obtain the Dacey tdanfor theoretical

nesting factors (Dacey, 1964, 19d6)- X+ y2 + Xy wherex, y, z=1- x are the

barycentric coordinates of the central plagey are arbitrary positive and negative

integers. To prove this formula we note that fdfedéent points X, y, 2 and ¢, u, W on
the plane %+ y + z = 1 the usual Euclidean distandés:

Dist=y(v- )" +(u- ) +(w- 3 =y2( v ¥+( & V+( v ) 6 )y

The distancel between the central places Y, 2 and ¢, u, w on the Mdébius plane can be

obtain fromDist by scaling in on paramete/rz, ie.

d=y(v-x"+(u= Y +(v Y( v Y

If the point ¢, u, W is the origin (0, 0, 1) of the lattice then tlgpiare of distance between
(x,y, 2 and (0, 0, 1) gives the Dacey generating fornfiotahe nesting factors in the
Loschiancentral place landscape:

k=X + Y+ Xy 1)
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Figure 5. The interconnection between the baryeemwordinates in the Mdbius plane
and the Euclidian coordinates in space.

wherex andy are arbitrary integer numbers.

If we introduce the new parametersx/2 andv=x/2 + ythen theDacey formula (1) will
be equivalent to the Kanzig formula:

k = 3L +v? 2)
whereu andv are arbitrary half-integer numbers. Werner Kanzegspnted his formula
empirically in the English translation of the Lodobiok “The Economics of Locatin

1954, p.119. Beavon and Mabin, 1975, proved aecbiiorm of the Kanzig formula.
Both formulas of Dacey and Kanzig are generatirgsdime sequence of the theoretical

Losch nesting factorsk = 1, 3, 4, 7, 9, 12, 13, 16, 18

4. Barycentric calculus of the Loschian hexagonabhdscape.

The universal geometrical procedure of the constrnof all hexagonal coverings from
Loschian hexagonal landscape (see chapter 1) caprdsented with the help of
barycentric coordinates of centers of hexagonssiden the center of the hexagon with
integer coordinatex(y ,3, X +y + z = 1, construct the segme8tconnecting the point

(X, y, 2 with the point (0, 0, 1). The squacla2 of the distancd between these two points
according to Kanzig-Dacey formula coincides with tlesting factor
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d>=k=x+ y+ xy. Further, let us draw from the middle point of $EgmentS a

perpendicular segment of the size/3. The end points of this perpendicular segment
are the vertices of the hexagon and, thus defia@dsition of whole hexagon covering
of the plane corresponding to the nesting faktor

Next we introduce two important operations with &gan coverings:
4.1. Convex combination of hexagon coverings

Consider two different hexagon coverings basechersame Christaller primary
covering. These two coverings can be constructé thée help of two points in the

Mdbius plane(xl, Yir 21) ,( %, Yo, %) . For arbitrary number (weighty the convex
combination of these points can be derived as iat moth following barycentric

coordinates(a'xl+(l—a') xz,a'yl+(1— a) Y, O Z_+(l—a') %)

This point can be used for the construction of\a hexagon covering which will be
called the convex combination of two hexagon caowgsi In a similar manner can be
constructed the convex combination of arbitrary ham of hexagon coverings with

weights,,@,,....a, , a, +a,+ ..+ a, = 1.
4.2. Homothetic transformation of hexagon coverings

Consider the arbitrary hexagon covering, constduetih help of the poin( X, Y, Z) in

the Mobius plane, corresponding to nesting faster X + y2 + Xy and the positive
number r > 0. The hexagon covering, constructed with thephef point

(\/FX,\/Fy,l—\/F'F\/I’_Z) , iIs called a homothetic transformation of hexagon
covering with radius of homothety The nesting factok. of the homothetic

transformation of hexagon covering equais= rk

As will be shown further, the convex combinatiorfshexagon coverings and their
homothetic transformations describe the trangtanfone hierarchical level of Central
place hierarchy to the next hierarchical level.
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5. Dual hierarchical structures of the central plae system

Each central place system characterized by two loieahrchical structures: a hierarchy of
market areas (hinterlands) and a hierarchy of cerftentral places) of market areas. The
first hierarchy was used as a city-size model bgkBeann, 1958, whereas Dacey, 1970, has
treated the second one without paying attentiaiutd interconnections between them. The
duality of the two hierarchies was discovered byr Fethe form of a similarity between the
Beckmann and Dacey city-size models (Parr, 1976; Panike, Mulligan, 1975).

The hierarchy of hinterlands (market areas) isiardichy by inclusion”, or by the size of
market areas: the market areas of the same sizedoel the same hierarchical level, and the
order of hierarchical levels and the dominancetimiahips are defined by the inclusion of
the market area of a smaller size in the market afe bigger size. This hierarchy implies
the triplicate interpretation of variable nestimagtors:

» the nesting factor is the ratio of areas of hiateds belonging to the different
consecutive hierarchical levels;

» the nesting factor is the number of market aredisegth hierarchical level included
in only one market area gf{l)th hierarchical level,

» the nesting factor is the ratio of frequencies @irket areas fronth and [+1)th
hierarchical levels.

The numerical description of the market place @ can be given by the vector of
market place frequencies in the actual centraleptystem:

m=(m,m,...,m_,1), 3
where n is the number of hierarchical levels in a centrdacp system and

m;, j=1,2,...n is the frequency of market areas frgimlevel.

The ratios
m

k, = ,1=142,..n-1 (4)
m

j+1
are the variable nesting factors. It is obvioud tha
m=kk,.k, j=12,..,n1 )

In the Christaller central place system
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k=3 4,7 k=09 16, 49,.k = "3 ,"4 " (6)

In the LOschor in the Beckmann-McPherson central place syskeane the Kanzig-Dacey

integers:kj =1, 3 4,7,9, 12, 13, 16, 19.The above-described hierarchy of market

areas generates the dual hierarchy of the centarsaket areas on the basis of duality
correspondenceéMarket area (hinterland of the central place) Central place (center of
market areakuch that the ord¢iof the hierarchical level of a given central placequal to
the order of hierarchical level of the biggest nedriarea with the same center; the
dominance relationship between the centers is éeéfiny the geometric inclusion of
corresponding hinterlands. It is possible to gheanalytical description of the hierarchy of
centers of market areas by means of a vector aécé&equencies

c=(C,Cs-,Ga s 1) (7)
wherec; is the frequency of center frojth hierarchical level. The duality correspondence

implies the connections between the vectorsf market area frequencies and vectoos
center frequencies:

¢ =m-m,=m,( k=1)=( k=1 Ky.iks

m=¢g+g,+.+¢,+1

) (8

6. Empirical Average Central Place hierarchies

In empirical studies of concrete Central Placeesystthe main measurable statistical
data is the vector ¢, =(¢,c,...,¢,,1) of empirical center frequencies is main
measurable statistical data. Formulae (11) angji® the coordinates of the vector of

empirical market areas frequencies=(nf, n,..., i ,,1) and the coordinates of the

vector of average nesting factégs= (k’, K,...,k’,) . The average nesting factors are

the arbitrary positive numbers, not necessary arteg

Christaller, 1950, himself came to realize that tharketing, transportation and
administration principles could be expected tosaoultaneously in geographical space.
He suggested modifying his original modeldynixingof the nesting factors 3, 4, and 7
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into the grouping non-integer nesting factor= 3.3 which generates the geometric
progression 1, 3.3, 10, 33,. Woldenberg, 1968, aeltbd on analogy between the
hierarchical structure of fluvial systems and tierdrchical structure of the hinterlands
of the central place systems, so as to be ablest®rgte the sequences of average
non-integer nesting factors for sizes of markeasufer central place systems. With the
help of numerical computer model Woldenberg, 1@€69pared the results of computer
simulations with a wide set of actual empirical ttahplace hierarchies and mentioned
certain difficulties that rise in attempting to debe an actual hierarchy in terms of the
numerical computer model. The week points of thgsmeric models are the
non-uniqueness of the procedure of grouping andrésnpin the underlying theoretical
reasoning.

The empirical central place hierarchies generathe vicinity of each central place the
local nested geometric structure of average maxtads, i. e. set of hexagons with the
centers located in the given central place. Thasaoé these hexagons correspond to the

vector of empirical market areas frequenams=(nf, nj,..., fi,,1)generating the

coordinates of the vector of average nesting factg=(k’,K,....k*,) The

construction the geometrical base of this locatdrighy of empirical average market
areas needs the elaboration of the theory of therposition, mixing and best fitting of
the theoretical central place hierarchies and tresttuction of the new superposition
model of the of the central place hierarchy whieflects the existence of different
extreme tendencies of the spatial organizationeotral places, developing within an
actual central place system (Sonis, 1970, 19825,18836). Therefore the geometry of
local hierarchy of empirical average market aredidwe presented in detail in chapter 9
after the introduction of the superposition modahe of the central place hierarchy.

7. The superposition model of central place hierafuy.

Now we will present a general superposition CerRtate model with arbitrary number of
hierarchical levels. For the construction of suemeayalization we will use the theory of
convex polyhedra in multi-dimensional space (segl\W&35)

The superposition model of central place hieraistifie application of the formalism of the
Superposition Principle (see Sonis, 1970, 1982)danalysis of the structure of an actual
central place system. At first we immerse an acavarage central place system into the
convex polyhedron of all admissible central plagstem. This immersion gives the
possibility to apply the analytical formalism ofetldecomposition of an average central
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place hierarchy into the convex combination of tBeckmann-McPherson extreme
hierarchies (Beckmann-McPherson, 1970), which lagerésults of the Parr “best fitting”
procedure (Parr, 1978a).

7.1.Polyhedron of Admissible Central Place Hieraeshfor an Actual Central Place
System

Let us consider an actual central place systermdiyea vector of market area frequencies

m, =(nf, nd,..., M ,,1) or by the sequence:

ko = (K, K5 K ) 9)

of average nesting factors calculated with a hetheformula (7). For the evaluation of
the hierarchical structure of an actual centrat@laystem, we shall place it into the

convex polyhedron of all admissible central plaiegdrchies. For this, we will choose on
each hierarchical level, the pair of theoreticalesting factorx,K; in such a way that

the segment I{(j,K]f] will include the average nesting factafs K, <k’<K;. This

choice of theoretical nesting factors defines thavex polyhedron of all admissible
central place hierarchies: it includes all sequenc# average nesting factors

k=(k,Kk,....k_,) such that:

K <k <K,j=12,..n-1 (10)

J J

This system of inequalities presents geometrictily (-1)-dimensional rectangular

parallelepiped, whose vertices have the coordinatgsal to the integer theoretical
nesting factorg; or K ; thus, these vertices correspond to the BeckmaoRHdrson

central place models. The actual central placeatgdy (19) corresponds to the inner
point of this polyhedron.

Let us introduce the slack variables, presentimgdéflection of some central place
hierarchy from the theoretical one on each hieiaathevelj:

y; =k - K 20; §=I§—Il<20, i=1,2,..n- 1 (11)

Then each admissible central place hierakchyk, ,k,,....k_,) can be presented as a

three-row matrix with non-negative components:
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ko koo Ky
X=1Y% Y% o Y (12)

2 AN
and the actual central place hierarchy correspontis the matrix
Xo = kf_Kl kg_Kz Iﬁo—l_ K1 (13)

K-kl Komkg o Koym ke
7.3. Decomposition of an Actual Central Place Hrehy
According to the superposition principle (see Spii870, 1980, 1982b, 1985), the
hierarchical analysis of an actual central placgesy represented by the non-negative
matrix X,is reduced to the decomposition of this matrix itthe weighted sum of

matricesX,, X,,..., X

r+1 :
Xo=p X+ X+ 4 py X, 1€ n (24)

where each matrixXX; represents the extreme state of the central psystem,
corresponding to some Beckmann-McPherson model thadweightsp, have the

property:
p+p,+.+Pp,,=L0<p<sLrsn (15)

If we take into consideration only the first rowezch matrix in the decomposition (14),
we obtain the decomposition of the actual centralacg hierarchy

k, =(k’, K,...,K,) into the convex combination of the Beckmann-McPbersentral

place hierarchie with the same weightg :

kO: plkl+ p2k2+"'+ p+1lr(+1 ! < n (16)

We interpret the decomposition (15, 16) in thedwihg way: in each actual central place
system, there is a set of substantially significteridencies towards the optimal
organization of space in the form of Beckmann-MaBbe hierarchies. Geometrically,
these tendencies define the simplex enclosed ir@golyhedron of admissible central
place hierarchies whose vertices correspond t@assemblage of the matricés . An
actual central place hierarchy, is the center of gravity of this simplex with the
weightsp, . It is possible to interpret the weighgs in a probabilistic form as the
frequencies of the partial realization of some comation of the Christaller-L6sch

optimization principles in the hierarchical struetwf the actual central place system.
7.3.Best Fitting Approximation Procedure and thgokithm of Decomposition
The best-fitting procedure of this chapter is agification of the procedure proposed by
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Parr (1978). This procedure will be used for teewdtion of the central place hierarchy
on each hierarchical level and in this way willthe basis for the construction of the best
fitting simplex that contains the actual centralga hierarchy matrix, corresponding to

the vectork, = (k’, KJ,...,k>,) of average nesting factors. The best-fitting proceds
as follows: for each hierarchical level the segmentK, <k’< K between the
theoretical nesting factor,,K; can be chosen, which includes the average nesting
factor k° . In this way, the first best fitting Beckman-Ma?®son model

k =(k, k,....k,) can be constructed with the help of “best fittirfgtmulae (Sonis,

1085):
K, if Ws&;&
1
‘ K it ko> Ktk
i i 2

+ K
In this procedure the value}é'Z—K' define the boundaries of the domain of structural

stability of the decomposition (14, 15).
The weight p, of the Beckmann-McPherson mod&, can be found by the

requirement to choose the biggest positiva(0<p<]) satisfying the

conditionX, - p X, =0 , or in the coordinate form:

_ain g KKK K=K
=min {,—, — 18
pl i { ki]_ Kl_ K K _ ll(l} ( )
The place of the components of the matriXgsnd X, , yielding the minimum in (28),

defines the hierarchical level on which there exigte strongest interdiction to the
extreme tendency represented by the chosen BeckMaRherson modeX; , on the

part of other tendencies acting in the actual e¢éplace hierarchy.
The residuak, , defined by the equality:

Xo~ B X = (1_ pl) X, (19)

represents the mutual action of other tendenciesloeing in the central place hierarchy
with the weightl— p, . This may be interpreted geometrically by corging a straight
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line that passes the verté& and the pointX, of the actual central place hierarchy and
crosses the opposite face of the parallelepipeatinfissible central place hierarchies at
the point X, . Moreover, if one hangs the weightg, and - p, on points
X, andX, then the center of gravity of the segment with eothts X; and X, will
coincide with the pointX, . For study of the residua{, , one should apply the “best
fitting” procedure to theX, , and so forth.

8. Hierarchical analysis of the Christaller origind central place system in Munich,

Southern Germany.

After the decades of empirical studies, the purasBiller-Loschtheoretical hierarchies of

several hierarchical levels with the same nestaujors have rarely if ever observed. The
reason for this is that each actual central pldeealthy is the superposition of various
theoretical hierarchies. It is interesting to nthtat even Christaller’s original study of the
Munich central place hierarchy confirms the phenoomeof superposition. The Christaller
original Munich central place hierarchy (Christgll2933; Woldenberg, 1979, Table 5, p.
446.) can be presented with the help of the follmwector of market area frequencies

n’b=(519,249,127,39,12,3)1 with the corresponding sequence of average nesting

factorsk, =(2.0843,1.9606,3.2564,3.25,4,:. The polyhedron of admissible central place

hierarchies includes all matrices of the form (2

k kK k k=4 k=3
X=|k-1 k-1 k-3 k-3 0 0
3-k 3-k, 4-k 4-k O 0

The Munich central place hierarchy is represented matrix:

2.0843 1.9606 3.2564 3.25 4
1.0843 0.9606 0.2564 0.25 O
0.9157 1.0394 0.7436 0.75 O

xo = (20)

The best-fitting approximation of the vector of eage nesting factors

k, =(2.0843,1.9606,3.2564,3.25,4, has a formk, =(3, 3, 3, 3, 4, 3) which generates the

Beckmann-McPherson model

X, = (21)

SO N W
O N W
R O W
R O W
o O b
o O w
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The weightp, of this Beckmann-McPherson model is equal to ($8%){(

o, = min 1’2.0849, l.960§ 1.084,3 0.96016 0.74,36 07:5 0'990(94803 (22)
3 3 2 2 1 1

i.e.

X, =0.4803X, + 0.519% (23)

where X' is a residual. Thus, the real central place sys¥nincludes only 48.03% of the

extreme tendency;, corresponding to the best fitting Beckmann-McPhenswdel. The

residual X' can be calculated from equation (23). The bestditprocedure applied to this
residual will give us the second extreme tendeXgyand its weighp, . Such a procedure

can be repeated once more. After 5 steps theda@mposition of the Munich central place
hierarchy can be obtained:

X, =0.4803X, + 0.263X,+ 0.1948,+ 0.0554+ 0.0084=

3 33343 11334
=04803 2 2 0 0 O O+ 0.2633 O 0 0 0|8

001100
114443 {31444I (24)
401946 0+ 1 1 O O+ 005542 1 1 0@
2 2+ 0 0 0 « 2+ 00
3 1 43 4 3
+0.00642 « 1+ 0 O
+ 2+ 10 0

The first row of this matrix equality gives the detposition of the vector of average nesting

factors:

k, =(2.0843,1.9606, 3.2564, 3.25, 4,3
=0.480% + 0.2638 + 0.1946+ 0.05E4 0.0064
=0.480% 3,3,3,3,4)3
+0.263% 1,1,3,3,4)3 (25)
+0.1944 1,1,4,4,4)3
+0.0554 3,1,4,4,4)3
+0.0064 3,1,4,3,4)3

This decomposition means that the Munich centi@tghierarchy consists of five extreme
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tendencies. The first most prominent tendency spoads to the Beckmann-McPherson
model with nesting factoks = (3, 3,3,3,4,3. This tendency consists of the economizing of

the number of market areas on almost each hieraiclgivel; only the second hierarchical
level corresponds to economizing of transportatarnes. This tendency is very closed to a
perfect Christaller hierarchy (3,3,3,3,3,3) and b&ythis was a reason for the introduction
by Christaller of his market principle. Neverthalethe weight of this extreme tendency is
equal top, =0.480Z only, i.e., it accounts only for 48.03% of the attaentral place
phenomenon. The second extreme tendency, corresgotadthe Beckmann-McPherson

model with the vector of nesting factdts= (1,1, 3, 3,4,3, interdicts the first tendency on

three lower hierarchical levels and representsghdency of merging of these hierarchical
levels, since the vector of nesting factégsncludes the nesting factors equal to 1.The
second extreme tendency accounts for an additR$8B% of the phenomenon. The third

extreme tendency, =(1,1,4,4,4,3 counteracts the first and second tendencies by

implying the passage from market principle to teesportation principle on the forth and

fifth hierarchical levels. It explains additionally.46% of the phenomenon, so first three
extreme tendencies together explain 93.82% of theahacentral place hierarchy. The forth

and fifth extreme tendencies are not so essentiale they explain together only 6.18% of

the rest of phenomenon. It is possible to predemtcumulative action of the market and

transportation optimization principles of all extre tendencies separately on each
hierarchical level, by accounting the weight oftmesfactors 3 and 4 on each hierarchical
level (see table 1).

Table 1. Hierarchical structure of the original Gstaller central place system of Munich,
Southern Germany.
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) ) Average Nesting factors for
Hierarchical ) Structure of
nesting Beckmann-McPherson _ _
level hierarchical levels
factors models
J k0 kl k2 kS k4 kS
7 —_ —_ —_ — — —
6 3 3 3 3 3 3 3:100%
5 4 4 4 4 4 4 4100%
4 3.25 3 3 4 4 3 3:75% 4:25%
3 3.2564 3 3 4 4 4 3:74.35% 4:25.65%
2 1.9606 3 1 1 1 1 1:51.97% 3:48.03%
1 2.0843 3 1 1 3 3 1:51.32% 3:48.68%
Weigths of Beckmann-
48.03 26.32 19.34 5.66 0.65
McPherson model§ ¥

The last right column of the table 1 presents thecture of all hierarchical levels of Munich
central place hierarchy. We may see that the sirahtchical level includes the hexagonal
covering corresponding to the market optimizationgple; this covering is generated by
the point (1, 1,-1) giving the nesting factor 3. @fth hierarchical level only the
transportation principle appears; the correspondea@gon covering generated by the point
whose barycentric coordinates on the corresponttiiedvidbius plane are (2,0,-1). On the
fourth hierarchical levels the market and transggarh principles are acting in proportion
75%/25%. The corresponding hexagon covering is gerteraith the help of two
operations: first operation is the convex comboratf market and transportation coverings
with the weights 0.75 and 0.25: the correspondmigtpyenerated this hexagon covering is:

0.75 (1, 1,-1) +0.25 (2, 0,-1) = (1.25, 0.75,-1) (26)

corresponding to the nesting factor 3.0625. theorseé operation is the homothetic
transformation of transfer from this nesting factorthe average nesting factor 3.25; the

radius of the homothety | 33622;1.1262, the homothetic transformation (36) has a
form (1.2878, 07727, -1.0605) with correspondingtimg factor 3.25.
The third hierarchical level has almost the samectire as fourth level.

The second hierarchical level includes the weigltahbination of the market principle

covering generated by point (1, 1, -1) and #méncy of merging of hierarchical levels
generated by point (1, 0, 0):
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0.4803 (1, 1, -1) +0.5197 (1, 0, 0) = (1, 0.48MB4803)
with average nesting factor 1.9606.
The first hierarchical level has almost the samecstire as second hierarchical level

Thus, the decomposition analysis of the Christafieample of the Munich, Southern
Germany central place hierarchy, hints on the osigof appearance of Christaller
optimization principles in the Central Place Theory

9. Structural Stability, Structural Changes and Catstrophes in Central place
Hierarchical Dynamics.

The hierarchical dynamics of the Central place esyst are the reflection of the
socio-economic spatial complication process ofuttiean/regional system. The hierarchical
dynamics represent both the rapid change and @owtand functional inertia within the
urban system. The major reason of catastrophicatukical change in an evolving
urban/regional system is the transfer of a fewemsrfrom one hierarchical level to another
as a result of changes in allocation of individeemttral place functions within the hierarchy,
i.e., in the modification in the functional extaithe level ¢f. Parr, 1981, pp. 105-108). The
complication process is also reflecting the appesg@r disappearance of centers as a result
of regional growth, decline or regional competitigee Batty and Friedrich, 2000).

Next we will consider the implementation of the noiple of structural stability and
structural changes into the dynamics of centradelaierarchies.

The main questions of the structural stability atrdctural changes are:

» What types of central place hierarchies are pasgililhe Central place theory in its
new form, presented in this chapter, is givingpgbesible answer on this question.

* What kind of structural changes are admissible \ahdt types of structures are
preserved (at list partially) under these changes?

* How do the transitions from one type of structwramnother occur?

The first question immediately points to the gajwleen the pure theoretical central place
models, based on tHaescheconomic landscape, and the hierarchical struciuae actual
central place system; two other questions undetl@efact that existing central place
theory is mostly static and tells us little abolé tcomplication process of emergence
transformations and stability of an urban hieraréhyast body of literature expanding the
classical central place theory since its initiahfiation includes only a small part relevant to
the current focus on structural changes withinddetral place hierarchy. The polyhedral
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catastrophic dynamics of the states of the ceptaale hierarchy represents its comparative
statics and may be considered as a necessanostapltthe dynamic theory of the central
place hierarchy, which is waiting till now its ctea Between the earlier attempts to
construct the dynamic Central place theory the kitan efforts of Morrill (1962), White
(1977, 1978), Allen and Sanglier, 1979, Camagil., 1986and Diappet.al 1990, should
be mentioned.

Geometrically, three different types of hierarchidaanges are possible.

The first type of changeis connected with the case of global structurddibtg when the

average nesting factors are changing slowly, setiyhedron of admissible central place
hierarchies remains the same and the point of botméral place hierarchy is moving within
the same simplex. That means that in the deconiqosit

Xo= pX + pXo+..+ P X, 1< 1 the verticesX; remains the same and only the

coefficients p. are slowly changing preserving the propguty p,+...+ p,,=1,0< p< 1.

The domain of such movement in the polyhedron afiasible central place hierarchies is
the domain of global structural stability. In réglithe domain of structural stability is
usually very narrow, and small changes in the ayeereesting factors caused the crossing the
boundary of this domain. This implies the exchaimgthe decomposition (VI1.9) of some
extreme tendencies with others, and further, alleven the complete change of
composition and ranking of the Beckman-McPhersodetsoentering the decomposition.

The second type of hierarchical changes connected with the transfer of the point of an
actual central plac&,from one convex polyhedron of admissible hierargh@ another
convex polyhedron, defined by the different KanBigeey nesting factors. Geometrically
this means the crossing the boundary of the irgidyhedron. In this case, the best we can
expect is the partial structural stability, i.@g stable inclusion in the decomposition (l1.9) of
only a part of previous extreme tendencies. Inityeahe case of the partial structural
stability is a most expected one.

The third essentially different type of changean the hierarchical structure is the change
in the dimension of the polyhedron of admissibkraichies. This type of the catastrophic
change is caused by the change in a number anentafthierarchical levels as a result of
a split or merging of hierarchical levets.(Parr, 1981, pp. 101-110). The split of a level is
characterized by the increase in the number otémral places on the same hierarchical
level and a differentiation in the functional camttef the level. The merging of the levels is
connected with the decrease of a degree of furdtidifferentiation and with the
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appearance of a new tendency corresponding to éck&rBan-McPherson model with the
nesting factor equal 1 on the same hierarchicallev

10. Further theoretical developmentsshort reviews.

The existence of the axiomatic theory of CentrakB$ presented in this paper is pointed
on the further directions in empirical studies afudther directions of theoretical
developments.

In the field of empirical studies the use of supsifion model supported by easily
assessable computer software the analysis of original Christaller Central playstem

of Southern Germany in chapter 8) will eventualygult in the taxonomy of types of
evolution of hierarchical central place systemsuch a way the gap between the theory of
central place system and its empirical justificatiall be narrowed.

In the field of theoretical studies the axiomaliedry of Central Places is presented a wide
range of possibilities of constructing of stylizexhmples of the development of evolving
socio-economic systems in geographical space. Taio applications of this conceptual
framework are elaborated

Structurally stable optimal (minimal cost) trangation flows in the
hierarchical Central Place system.

The merger of two major theories in the Regionaésee: the classical
Input-Output theory of Leontief and the classicdiri€taller -Losch Central Place
theory.

The application | consider the possibilities of theension of optimal transportation flow
in expending urban system. It is quite understaleddiat the actual central place hierarchy
puts strong restrictions on the type of optimalrimial cost) flows between the central
places. In turn, the spatial and temporal stabditythe transportation flows may be an
essential factor of growth and decline of the iidlial central place in the hierarchy.
Moreover, usually the optimal transportation flowed not cover all linkages of the
transportation network between the central places.

The problem of enumeration of all possible extemsiof minimal cost transportation
flows is purely combinatorial and hence formidallemnbersome and tedious. Its solution
for each given Beckmann-McPherson central placeatghical model can be found with
the help of aggregated schemes for the transpamtédibles scheme includes one or two
arcs, which present the set of possible linkagésd®en the central places. These arcs are
presented as lines in the cells of the aggregateshse (see Sonis, 1982a;1984; 1986;2000,
Huff et al. 1986)
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Application Il describes the mutual penetration andication two central theories in the
Regional Science: the classical Input-Output theofyLeontief and the classical
ChristallerL.dschCentral place theory (see Sonis, Hewings, 200Rls)expected that the
proposed theoretical methodology will be useful tlee analysis of organization of the
production economics in geographical space. Inghidy the tripldJDL-factorization is
applied to the decomposition of the Leontief Ineefsr Input-Output System within the
Central Place System of the Christalledsch, Bekmann-McPherson type. Such a
factorization reflects the process of gradual esitimand complication of the Central Place
Hierarchy (see Sonis, Hewings, 2000a).

The idea to investigate the Input-Output relatigmstithin the Central Place system is not
a new one. The necessity to combine togetheri#hrarhical structure of Central Place
system with Input-Output structure of the transacflows within one unifying framework
was stresses in the programmatic book of WaltedIEE960, p.141). The first systematic
treatment of this problem was undertaken by Robesath Miller (1991). They used the
rudimentary structure of intercommunity centralgelaystem, without paying attention on
the fine structure of the central place hierarchfhe complexity of mathematical
presentation stops them on the level of a simptedeammunity two-order sub region level
with one dominant central place.

In the study (Sonis, Hewings 2000b) the centrakel&ierarchy and multi-regional
input-output analysis are fusing together, and iesallt the decomposition of the Leontief
Inverse for Input-Output Central Place system ot$lehe process of complication of the
evolving hierarchy of Central places
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