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Central Place Theory after Christaller and Losch&& :  
Some further explorations. 

 
Michael Sonis, Bar-Ilan University, Israel 

E-mail: sonism@mail.biu.ac.il 

 

This paper is prepared for the presentation at 45th Congress of the Regional Science 

Association, 23-27 August 2005, Vrije Universiteit  Amsterdam 

 

In memory of Alfred Losch&& , 15 October 1906- 30 May 1945. 

 

ABSTRACT. This paper deals with the critical reevaluation of the methodology of classical Christaller 

- Losch&& Central Place Theory.  In the beginning of the paper the reconstruction of Central Place Geometry 

on the basis of the Mobius&& Barycentric Calculus was considered. On this basis a superposition model of the 

actual Central Place System is constructed. Building blocks of this model are the Beckman-McPherson 

models representing the main tendencies of optimal organizations of space acting simultaneously in the 

actual Central Place system. The weights of these building blocks represent the level of realization of the 

specific extreme tendencies in the real system.  The algorithm of decomposition of an actual Central place 

system into the weighted sum of the Beckman-McPherson building blocks is elaborated and presented in 

detail. This algorithm generates also the description of the interconnections of hexagon coverings on the 

sequential hierarchical levels with the help of convex combinations of hexagon coverings and homothetic 

transformation of the coverings. 

Next, the (jumping) catastrophic dynamics of the Central Place hierarchies presented with the help of 

geometrical scheme of the movement of the point representing actual Central Place system in the 

polyhedron of all admissible Central Place systems. 

Two main applications of this conceptual framework are elaborated:  

• The enumeration of all structurally stable optimal (minimal cost) transportation flows in the 

hierarchical Central Place system and  

• The merger of two major theories in the Regional Science: the classical Input-Output theory 

of Leontief and the classical Christaller -Losch&&  Central Place theory. 

We hope that this critical reevaluation of the geometrical and conceptual basis of Central Place theory 

will contribute to narrowing the existing gap between the formal theory and empirical studies. 

Key words: Central Place theory, Barycentric Calculus; Superposition Model of 

Central place Hierarchy; Jumping Catastrophe Dynamics of Central Place 

Hierarchy; Structural Stability of Transportation flows in the Central Place system; 

The merger of Input-Output theory and Central Place theory. 
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1.  Barycentric Calculus and Superposition Model of Central Place Hierarchy 

The Central Place theory established itself as one of the most influential theories of 

theoretical geography and theoretical spatial economic analysis. The concepts and 

methodological basis of Central Place theory were formulated in the first part of previous 

century by two scientists in Germany: geographer Walter Christaller (1933) and 

economist August  Losch&&  (1940).  

The ideas of Christaller were first introduced into the English language by Ullman (1941). 

In 1954 appeared the English translation of the book of Losch&& and in 1966 the 

translation of the book of Christaller. Since then, the concept of central place hierarchy 

captivated the imagination of spatial analysts. Empirical evaluation of the ideas of the 

Central Place theory began with papers by Brush and Bracey, 1955, and by Berry and 

Garisson, 1958, which have influenced many later empirical studies. It is possible to find 

a review of the early work in the Central Place theory and its applications in studies of 

Berry and Garrison, 1958, Berry and Pred, 1961 and in the books by Bunge, 1962, Lloyd 

and Dicken, 1977 and Beavon, 1977.  

It is important to note that from the first steps of the Central place theory a gap emerged 

between the formal theory and empirical studies. The need to close this gap caused the 

appearance of critical methodological studies of the logic of the Central Place theory in 

the form of axiomatic method. The leading role in the developing of the formal axiomatic 

approach to the construction of the theory of Central Places belongs to the American 

geographer Michael Dacey who in 1960ies-1970ies initiated (Dacey, 1964, 1965, 1970) 

and inspired the studies of a large group of geographers (Dacey and Sen, 1968, Dacey, 

Davies, Flowerdew, Huff, Ko, Pipkin, 1974; Alao, Dacey, Davies, Denike, Huff, Parr, 

Webber, 1977). Despite of the initial enthusiasm and big promises their work was heavily 

based on the geometrical ideas of two geometrical texts by Hilbert and Con-Fossen, 1932 

(English translation 1952) and Coxeter, 1961, (both out of date now).  The axiomatic 

approach became formal and abstract and did not influence the new empirical studies of 

actual Central Place systems. The gap between the theory and empirical studies remains 

open till now. Although at present there is no doubt about the conceptual usefulness of 

the Central Place theory, its essential deficiency relates to its applicability to the analysis 

of an actual central place system. Moreover, the classical Central Place theory represents 

the challenge to the New Urban Economics and New Economic Geography which both 

fail to reproduce and incorporate the spatial basis of the classical Central Place theory (cf. 

David, 1999, Fujita, Krugman and Venables, 1999).. In this paper we try to close the 
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existing gap between the pure theoretical Christaller and Losch&& models and the empirical 

structure of an actual central place system; we present an alternative hierarchical model 

based on the idea of mixed hierarchy of the Central Place system (Christaller, 1950, p.12; 

Woldenberg, 1968) and on the Beckmann-McPherson model of Central Place system 

(Beckmann, McPherson, 1970), which are the intermediate links between the Christaller 

and Losch&& models. 

1. Elements of the Central Place geometry 

The spatial description of the original Chrisraller Central Place model is based on 

following generic geometric properties of central places associated with Central Place 

system: 

1. The first property is that all hinterland areas of the central places at the same 

hierarchical level form a hexagonal covering of the plane with the centers on the initial 

homogeneous triangular lattice presenting the centers of the hexagons from the 

Christaller primary covering. The properties of hexagonal coverings of the plane in the 

Christaller -Losch&&  Central Place theory are based on the following theorem from 

elementary geometry: 

The covering theorem: There are only three possible coverings of the plane by the 

regular polygons with n sides: by triangles (n=3), quadrates (n=4) and hexagons (n=6). 
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Figure 1. Derivation of the hexagonal covering of the plane by section of the 

arrangement of a layer  of cubes in space  

The covering theorem was known to Pythagoreans in V Century B.C. Figure 1 

demonstrated the interconnection between the filling of space by a layer of cubes and the 

hexagon covering of the plane: the section of the three-dimension arrangement of layer 

of cubes by the plane gives the covering of the plane by regular hexagons. This 

three-dimensional arrangement of a layer of cubes includes cubes whose vertices are the 

centers of quadrate faces of adjacent cubes. This property of section of the arrangement 

of cubes will be used in the next chapter for the construction of interconnection of the 

system of barycentric coordinates in the Mobius&& plane and usual Euclidean metrics in 

space. 

2. The second property is that the size of the hinterland areas increases from the 

smallest (on the lower tier of Central Place hierarchy) to the largest (on the highest tier 

of hierarchy) by a constant nesting factor k. 

By definition, the nesting factor is the ratio between the area S of the hexagon belonging 

to some hexagonal covering of the plane to the area s of hexagon belonging to the 

primary Christaller covering by smallest hexagons with the property: the distance 
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between the centers of smallest hexagons equals 1:/k S s=                                                                                                             

It is easy to see that if d is the distance between the centers of adjacent hexagons of some 

hexagonal covering of the plane then the area of each hexagon is equal to 22 3S d= , so 

the area of smallest hexagon from the Christaller primary covering is equal to 2 3s = . 

Thus, the nesting factor equals to the square of the distance between the centers of 

adjacent hexagons of hexagonal covering of the plane: 2k d=   .                                                                                                          

3. The third property is that the center of a hinterland area of a given size is also the 

center of   hinterlands of each smaller size (Christaller, 1933). The nesting factors 3, 4, 7 

play the most important role in the Christaller Central Place theory: they express one of 

the Christaller three principles, namely, marketing (k = 3), transportation (k = 4) and 

administrative (k = 7) principles. The nesting factors 3, 4, 7 generate three geometrical 

sequences of the hexagonal market area sizes: 1, 3, 9, 27,…,3n ,…; 1, 4, 16, 64,…,4n ,…; 

1, 7, 49, 343,…,7n .  It is possible to interpret these Christaller principles as principles of 

optimal organization of the central place market areas: marketing principle represents the 

minimal number of small market areas – three - included in a bigger market area; the 

transportation principle presents such optimal organization of space where the 

transportation network between two bigger central places passes through the smaller 

central place; the administrative principle presents such optimal organization of space 

where the administrative hinterland of the larger central place includes almost 

completely the set of administrative hinterlands of smaller central places.  

5. The  Loschian&& hexagonal landscape ( ,  1940)Losch&& is the superposition of all possible 

coverings of a plane by hexagons whose centers are coincide with the vertices of the 

triangular lattice and the sizes of market areas (nesting factors) are integers: 
  1,  3,  4,  7,  9,  12,  13,  16,  19,...k = The geometric procedure for construction of the 

Loschian&& landscape is simple and straightforward: for the derivation of a part of the 

Loschian&& landscape which corresponds to the hexagonal covering with a nesting factor 
2k d= , one should chose on the Christaller primary lattice two points with the distance d 

between them, to derive the segment connected these two centers and from its middle 

point to draw a perpendicular segment of the size / 3d .  The end point of this 

perpendicular segment is the vertex of the hexagon and, thus defines the position of 

whole hexagon and all hexagons from the corresponding coverings.  Each hierarchical 

level in the Loschian&& landscape includes the primary hexagonal covering with its own 

geometric scale and secondary hexagon covering with a definite nesting factor built up 

on the primary covering. Losch && himself constructed the coverings corresponding to 150 

nesting factors. By rotating of the different coverings Losch && show that in vicinity of an 
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origin the market areas are arranged into six “activity (center) rich” and six “activity 

(center) poor” sectors. As Lloyd and Dicken, 1972, pp. 48-49, commented, “this 

particular section of '  Losch s&& work has been the subject of much controversy and 

misinterpretation…The work by Tarrant, 1973, and Beavon and Mabin, 1975, suggests a 

rather different interpretation…According to both studies, the production of “city-rich 

“and “city-poor” sectors is not the result of rotation, as many have believed, but a 

constant upon it. In other words, if the sectoral pattern is to be achieved there is a very 

limited number of ways in which the hexagonal net can be arranged. Once certain ones 

are oriented in a particular way the positions of the others are fixed.” 

 Moreover, as demonstrated by Marshall, 1977, this arrangement of “city-rich “and 

“city-poor” sectors is local and do not hold for the big distances from the origin. Parr 

indicated (Parr, 1970, p.45) that these Loschian&& landscape nesting factors also present 

the optimal organizations of space similar to Christaller marketing, transportation and 

administrative principle; for example, the nesting factors 13 and 19 have the same 

property of administrative convenience as factor 7, while factors 9 and 16 have the same 

transportation efficiency as factor 4.  According to Lloyd and Dicken, 1972, p. 49, 

“ Losch&& suggested that this spatial arrangement of urban centers was consistent with 

what he saw to be a basic element in human organization: the principle of least effort.” 

6. The Beckmann-McPherson, 1970, Central Place model differs from the Christaller 

framework by applying variable nesting factors and by using the principle of possible  

coverings of the plane by hexagons of variable integer sizes. Their centers are the 

vertices of the initial Christaller triangular lattice.  

The Christaller model is only a partial case of Beckmann-McPherson models. 

Simultaneously, the Beckmann-McPherson models are an incomplete case of the  
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Loschian&& model – incomplete in the sense that the Beckmann-McPherson models 

include only a small part of the hinterland areas from the Loschian&& landscape (see figure 

3).  Parr, 1970, described the way to compare the theoretical models with the structure of 

the actual central place system. His idea was to use the Beckmann-McPherson Central 

place model as the best fitting approximation of an actual central place hierarchy. Parr 

also met with difficulties that arise from the omission of the analysis of the discrepancy 

between the actual central place hierarchy and its best fitting Beckmann-McPherson 

approximation. 

3.  The construction of the Central Place geometry on a basis of barycentric 

coordinates on a plane. 

The barycentric coordinates, i.e., coordinates of the center of gravity, are connected to the 

concept of the center of gravity introduced at first by Archimedes in the second century 

B.C. The barycentric coordinates  
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appeared in the remarkable book byMobius&& , 1837, as a basis for a projective geometry. 

The construction of the barycentric coordinates in a plane is based on a choice of the 

Möbius triangle within the Möbius plane.  This plane is in the two-dimensional space 

defined by three barycentric coordinates, , ,    1 x y z x y z+ + = .  The scale element of 

this plane is the Möbius equilateral triangle with the unit scale on each side.  This triangle 

is generated by three coordinate axes (see figure 4).  

Each covering of the plane by equal hexagons generates the system of barycentric 

coordinates corresponding to the Mobius&& triangle with different scales. It is possible to 

measure the barycentric coordinates of each point in the Möbius plane by projecting it 

(parallel to the sides) onto the sides of the Möbius triangle.  If the point, P, lies within the 
Möbius triangle, then its barycentric coordinates,, ,x y z must be between 0 and 1. The 

vertices of the Möbius triangle are:     

 : 1,  0,  0;    :  0,  1,  0;    :  0,  0,  1.  X x y z Y x y z Z x y z= = = = = = = = =   

The mechanical interpretation of the barycentric coordinates as coordinates of center of 
gravity (barycenter) is as follows: the point P with coordinates , ,  x y z is the center of 

gravity of the weights , ,  x y z hanging in the vertices , ,  X Y Z  of   the Möbius triangle. 

If point P lies outside of   the Möbius triangle. triangle (see figure 4) then one or two 

barycentric coordinates must be negative, but the condition x + y + z = 1 always holds.  

The barycentric coordinates of the central places of the initial Christaller hexagonal 
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coverings of the Möbius plane are positive or negative integers. 

It is interesting to note that the barycentric coordinates appeared in a latent and 

mysterious form in the geometry of the Central Place theory – in the  

form of the rhombic coordinates x and y in the primary Christaller triangular lattice 

(Dacey, 1964, 1965) or in the form of the coordinate triples (x, y, x+y), where x, y are the 

rhombic coordinates (Tinkler, 1978). Neither Dacey nor Tinkler realized that the triple   

(x, y, z) where z = 1 –x - y present three barycentric coordinates in a Mobius&&  plane. 

3. The Kanzig - Dacey formulae. 

The figure 1 points out on the possibility to present the barycentric coordinates on a   

Möbius plane as usual Euclidian coordinates on a plane   x + y + z = 1 in three 

dimensional space. The equation x + y + z = 1 represents a plane in three-dimensional 

space based on the triangle with the vertices (5) which is the Möbius triangle (see figure 

5). The transfer of the barycentric coordinates from plane to space increases the scale by 

the factor 2 , and gives the simple way to obtain the Dacey formula for theoretical 

nesting factors (Dacey, 1964, 1965) 2 2  k x y xy= + +  where , , 1  x y z x= − are the 

barycentric coordinates of the central place: ,  x y are arbitrary positive and negative 

integers. To prove this formula we note that for different points (x, y, z) and (v, u, w) on 

the plane x + y + z = 1 the usual Euclidean distance d is:  

( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 2 2
2[ ]Dist v x u y w z v x u y v x u y= − + − + − = − + − + − −

The distance d between the central places (x, y, z) and (v, u, w) on the Möbius plane can be 

obtain from Dist by scaling in on parameter2 , i.e. 

( ) ( ) ( )( )2 2
d v x u y v x u y= − + − + − −  

If the point (v, u, w) is the origin (0, 0, 1) of the lattice then the square of distance between 

(x, y, z) and (0, 0, 1) gives the Dacey generating formula for the nesting factors in the 

Loschian&& central place landscape: 

2 2k x y xy= + +                                                                                                    (1) 
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Figure 5. The interconnection between the barycentric coordinates in the Möbius plane 

and the Euclidian coordinates in space.  

where x and y are arbitrary integer numbers. 

If we introduce the new parameters u=x/2 and v=x/2 + y then the Dacey formula (1) will 

be equivalent to the Kanzig formula: 

k = 3u2 +v2                                                                                                                      (2) 

where u and v are arbitrary half-integer numbers. Werner Kanzig presented his formula 

empirically in the English translation of the Lösch book “The Economics of Location”, 

1954, p.119.  Beavon and Mabin, 1975, proved a correct form of the Kanzig formula.  

Both formulas of Dacey and Kanzig are generating the same sequence of the theoretical 

Lösch nesting factors:    1,  3,  4,  7,  9,  12,  13,  16,  19,...k =  

4. Barycentric calculus of the Löschian hexagonal landscape. 

The universal geometrical procedure of the construction of all hexagonal coverings from 

Löschian hexagonal landscape (see chapter 1) can be presented with the help of 

barycentric coordinates of centers of hexagons: consider the center of the hexagon with 

integer coordinates (x, y ,z),  x + y + z = 1; construct the segment S connecting the point 

(x, y, z) with the point (0, 0, 1). The square 2  d of the distance d between these two points 
according to Kanzig-Dacey formula coincides with the nesting factor  
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2 2 2  d k x y xy= = + + . Further, let us draw from the middle point of the segment S a 

perpendicular segment of the size/ 3d .  The end points of this perpendicular segment 

are the vertices of the hexagon and, thus define the position of whole hexagon covering 

of the plane corresponding to the nesting factor k.  

Next we introduce two important operations with hexagon coverings: 

4.1. Convex combination of hexagon coverings 

Consider two different hexagon coverings based on the same Christaller primary 

covering. These two coverings can be constructed with the help of two points in the 

Möbius plane:( ) ( )1 1 1 2 2 2, , , , ,  x y z x y z . For arbitrary number (weight) α  the convex 

combination of these points can be derived as a point with following barycentric 

coordinates ( ) ( ) ( )( )1 2 1 2 1 21 , 1 , 1  x x y y z zα α α α α α+ − + − + −  

This point can be used for the construction of a new hexagon covering which will be 

called the convex combination of two hexagon coverings. In a similar manner can be 

constructed the convex combination of arbitrary number r of hexagon coverings with 

weights 1 2 1 2, ,..., ,  ... 1 r rα α α α α α+ + + = . 

4.2. Homothetic transformation of hexagon coverings. 

Consider the arbitrary hexagon covering, constructed with help of the point ( ), ,  x y z in 

the Möbius plane, corresponding to nesting factor 2 2k x y xy= + +  and the positive 

number r > 0. The hexagon covering, constructed with the help of point 

( ), ,1  rx r y r rz− +  , is called a homothetic transformation of hexagon 

covering with radius of homothety r.  The nesting factor  rk of the homothetic 

transformation of hexagon covering equals:  rk rk=  

As will be shown further, the convex combinations of hexagon coverings and their 

homothetic transformations  describe the transfer from one hierarchical level of Central 

place hierarchy to the next hierarchical level.  
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5. Dual hierarchical structures of the central place system. 

Each central place system characterized by two dual hierarchical structures: a hierarchy of 

market areas (hinterlands) and a hierarchy of centers (central places) of market areas. The 

first hierarchy was used as a city-size model by Beckmann, 1958, whereas Dacey, 1970, has 

treated the second one without paying attention to dual interconnections between them. The 

duality of the two hierarchies was discovered by Parr in the form of a similarity between the 

Beckmann and Dacey city-size models (Parr, 1970; Parr, Denike, Mulligan, 1975). 

The hierarchy of hinterlands (market areas) is a “hierarchy by inclusion”, or by the size of 

market areas: the market areas of the same size belong to the same hierarchical level, and the 

order of hierarchical levels and the dominance relationships are defined by the inclusion of 

the market area of a smaller size in the market area of a bigger size. This hierarchy implies 

the triplicate interpretation of variable nesting factors: 

• the nesting factor is the ratio of areas of hinterlands belonging to the different 

consecutive hierarchical levels; 

• the nesting factor is the number of market areas of the jth hierarchical level included 

in only one market area of (j+1)th hierarchical level;  

• the nesting factor is the ratio of frequencies of market areas from jth and (j+1)th 

hierarchical levels.  

The numerical description of the market place hierarchy can be given by the vector of 

market place frequencies in the actual central place system: 

 m 1 2 1( , ,..., ,1)nm m m−= ,                                                                            (3) 

where n is the number of hierarchical levels in a central place system and 

, 1,2,..., ,jm j n= is the frequency of market areas from jth level. 

 The ratios 

  
1

, 1,2,..., 1j
j

j

m
k j n

m +

= = −                                                                            (4) 

are the variable nesting factors. It is obvious that 

1 1... , 1,2,..., 1j j j nm k k k j n+ −= = −                                                                (5) 

In the Christaller central place system  
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1 23,  4,  7; 9,  16,  49,..., 3 ,  4 ,  7m m m
mk k k= = =                                               (6) 

 In the Losch&& or in the Beckmann-McPherson central place system jk are the Kanzig-Dacey 

integers:   1,  3,  4,  7,  9,  12,  13,  16,  19,...jk = .The above-described hierarchy of market 

areas generates the dual hierarchy of the centers of market areas on the basis of duality 

correspondence: Market area (hinterland of the central place) ⇔ Central place (center of 

market area) such that the order j of the hierarchical level of a given central place is equal to 

the order of hierarchical level of the biggest market area with the same center; the 

dominance relationship between the centers is defined by the geometric inclusion of 

corresponding hinterlands. It is possible to give the analytical description of the hierarchy of 

centers of market areas by means of a vector of center frequencies 

 c 1 2 1( , ,..., ,1)nc c c −=                                                                                         (7) 

 where jc is the frequency of center from jth hierarchical level.  The duality correspondence 

implies the connections between the vectors m of market area frequencies and vectors c of 

center frequencies: 

( ) ( )1 1 1 1

1 1

1 1 ...

... 1

j j j j j j j n

j j j n

c m m m k k k k

m c c c

+ + + −

+ −

= − = − = −

= + + + +
                                                 (8) 

6. Empirical Average Central Place hierarchies. 

In empirical studies of concrete Central Place systems the main measurable statistical 

data is the vector  0 0 0
0 1 2 1( , ,..., ,1)nc c c c −=  of empirical center frequencies is main 

measurable statistical data. Formulae (11) and (7) give the coordinates of the vector of 

empirical market areas frequencies 0 0 0
0 1 2 1( , ,..., ,1)nm m m m−=  and the coordinates of the 

vector of average nesting factors 0 0 0
0 1 2 1( , ,..., ) nk k k k −= . The average nesting factors are 

the arbitrary positive numbers, not necessary integers.  

Christaller, 1950, himself came to realize that the marketing, transportation and 

administration principles could be expected to act simultaneously in geographical space. 

He suggested modifying his original model by a mixing of the nesting factors 3, 4, and 7 
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into the grouping non-integer nesting factor k = 3.3 which generates the geometric 

progression 1, 3.3, 10, 33,. Woldenberg, 1968, elaborated on analogy between the 

hierarchical structure of fluvial systems and the hierarchical structure of the hinterlands 

of the central place systems, so as to be able to generate the sequences of average 

non-integer nesting factors for sizes of market areas for central place systems. With the 

help of numerical computer model Woldenberg, 1979, compared the results of computer 

simulations with a wide set of actual empirical central place hierarchies and mentioned 

certain difficulties that rise in attempting to describe an actual hierarchy in terms of the 

numerical computer model. The week points of these generic models are the 

non-uniqueness of the procedure of grouping and empirism in the underlying theoretical 

reasoning. 

The empirical central  place hierarchies generate in the vicinity of each central place the 

local nested geometric structure of average market areas, i. e. set of hexagons with the 

centers located in the given central place. The areas of these hexagons correspond to the 

vector  of empirical market areas frequencies 0 0 0
0 1 2 1( , ,..., ,1)nm m m m−= generating the 

coordinates of the  vector of average nesting factors 0 0 0
0 1 2 1( , ,..., ) nk k k k −= The 

construction the geometrical base of this local hierarchy of empirical average market 

areas needs the elaboration of the theory of the superposition, mixing and best fitting of 

the theoretical central place hierarchies and the construction of the new superposition 

model of the of the central place hierarchy which reflects the existence of different 

extreme tendencies of the spatial organization of central places, developing within an 

actual central place system (Sonis, 1970, 1982, 1985, 1986). Therefore the geometry of 

local hierarchy of empirical average market areas will be presented in detail in chapter 9 

after the introduction of the superposition model of the of the central place hierarchy. 

7. The superposition model of central place hierarchy. 

Now we will present a general superposition Central Place model with arbitrary number of 

hierarchical levels. For the construction of such generalization we will use the theory of 

convex polyhedra in multi-dimensional space (see Weyl, 1935) 

The superposition model of central place hierarchy is the application of the formalism of the 

Superposition Principle (see Sonis, 1970, 1982b) to the analysis of the structure of an actual 

central place system. At first we immerse an actual average central place system into the 

convex polyhedron of all admissible central place system. This immersion gives the 

possibility to apply the analytical formalism of the decomposition of an average central 
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place hierarchy into the convex combination of the Beckmann-McPherson extreme 

hierarchies (Beckmann-McPherson, 1970), which are the results of the Parr “best fitting” 

procedure (Parr, 1978a).  

7.1.Polyhedron of Admissible Central Place Hierarchies for an Actual Central Place 

System 

Let us consider an actual central place system given by a vector of market area frequencies 

0 0 0
0 1 2 1( , ,..., ,1) nm m m m−=  or by the sequence:  

0 0 0
0 1 2 1( , ,..., ) nk k k k −=      (9) 

of average nesting factors calculated with a help of the formula (7).  For the evaluation of 

the hierarchical structure of an actual central place system, we shall place it into the 

convex polyhedron of all admissible central place hierarchies.  For this, we will choose on 
each hierarchical level, j, the pair of theoretical nesting factors ',j jK K  in such a way that 

the segment [ ',j jK K ] will include the average nesting factors0
jk : 0 '

j j jK k K≤ ≤ .  This 

choice of theoretical nesting factors defines the convex polyhedron of all admissible 

central place hierarchies: it includes all sequences of average nesting factors 

1 2 1( , ,..., ) nk k k k −= such that: 

' , 1,2,..., 1 j j jK k K j n≤ ≤ = −  (10) 

This system of inequalities presents geometrically the (n-1)-dimensional rectangular 

parallelepiped, whose vertices have the coordinates equal to the integer theoretical 
nesting factors ' or  j jK K ; thus, these vertices correspond to the Beckmann-McPherson 

central place models.  The actual central place hierarchy (19) corresponds to the inner 

point of this polyhedron. 

Let us introduce the slack variables, presenting the deflection of some central place 

hierarchy from the theoretical one on each hierarchical level j: 

'0; 0, 1,2,..., 1 j j j j j jy k K z K k j n= − ≥ = − ≥ = −  (11) 

Then each admissible central place hierarchy 1 2 1( , ,..., ) nk k k k −= can be presented as a 

three-row matrix with non-negative components: 
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1 2 1

1 2 1

1 2 1

...

...

...

n

n

n

k k k

X y y y

z z z

−

−

−

 
 =  
  

 (12) 

and the actual central place hierarchy corresponds to the matrix    
0 0 0
1 2 1

0 0 0
0 1 1 2 2 1 1

' 0 ' 0 ' 0
1 1 2 2 1 1

...

...

...

n

n n

n n

k k k

X k K k K k K

K k K k K k

−

− −

− −

 
 = − − − 
 − − − 

 (13) 

7.3. Decomposition of an Actual Central Place Hierarchy 
According to the superposition principle (see Sonis, 1970, 1980, 1982b, 1985), the 

hierarchical analysis of an actual central place system represented by the non-negative 

matrix 0X is reduced to the decomposition of this matrix into the weighted sum of 

matrices 1 2 1, ,...,  rX X X + : 

0 1 1 2 2 1 1,...  r rX p X p X p X r n+ += + + + ≤  (14) 

where each matrix  iX  represents the extreme state of the central place system, 

corresponding to some Beckmann-McPherson model and the weights  ip  have the 

property: 

1 2 1... 1; 0 1;  r ip p p p r n++ + + = ≤ ≤ ≤  (15) 

If we take into consideration only the first row of each matrix in the decomposition (14), 

we obtain the decomposition of the actual central place hierarchy 

0 0 0
0 1 2 1( , ,..., ) nk k k k −= into the convex combination of the Beckmann-McPherson central 

place hierarchies  ik  with the same weights  ip : 

0 1 1 2 2 1 1... ,  r rk p k p k p k r n+ += + + + ≤  (16) 

We interpret the decomposition (15, 16) in the following way: in each actual central place 

system, there is a set of substantially significant tendencies towards the optimal 

organization of space in the form of Beckmann-McPherson hierarchies.  Geometrically, 

these tendencies define the simplex enclosed into the polyhedron of admissible central 

place hierarchies whose vertices correspond to the assemblage of the matrices iX .  An 

actual central place hierarchy0  X is the center of gravity of this simplex with the 

weights  ip . It is possible to interpret the weights  ip  in a probabilistic form as the 

frequencies of the partial realization of some combination of the Christaller-Lösch 

optimization principles in the hierarchical structure of the actual central place system.  
7.3.Best Fitting Approximation Procedure and the Algorithm of Decomposition 
The best-fitting procedure of this chapter is a simplification of the procedure proposed by 
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Parr (1978).  This procedure will be used for the derivation of the central place hierarchy 

on each hierarchical level and in this way will be the basis for the construction of the best 

fitting simplex that contains the actual central place hierarchy matrix 0X corresponding to 

the vector 0 0 0
0 1 2 1( , ,..., ) nk k k k −= of average nesting factors.  The best-fitting procedure is 

as follows: for each hierarchical level i, the segment 0 '  i i iK k K≤ ≤ between the 

theoretical nesting factors ',  i iK K can be chosen, which includes the average nesting 

factor 0  ik .  In this way, the first best fitting Beckman-McPherson model 

1 1 1
1 1 2 1( , ,..., ) nk k k k −= can be constructed with the help of “best fitting” formulae (Sonis, 

1985):  
'

0

1

'
' 0

  
2

  
2

i i
i i

i

i i
i i

K K
K if k

k
K K

K if k

 +≤= 
+ >



 (17) 

In this procedure the values 
'

 
2

i iK K+
define the boundaries of the domain of structural 

stability of the decomposition (14, 15). 

The weight 1 p  of the Beckmann-McPherson model 1 X can be found by the 

requirement to choose the biggest positive ( )0 1  p p< <  satisfying the 

condition 0 1 0 X p X− ≥ , or in the coordinate form:  
0 0 ' 0

1 1 1 ' 1
min  {1, , , }  i i i i i

i
i i i i i

k k K K k
p

k k K K k

− −=
− −

 (18) 

The place of the components of the matrices0 1 and   X X , yielding the minimum in (28), 

defines the hierarchical level on which there exists the strongest interdiction to the 

extreme tendency represented by the chosen Beckmann-McPherson model 1 X , on the 

part of other tendencies acting in the actual central place hierarchy. 

The residual 2  X , defined by the equality: 

( )0 1 1 1 21  X p X p X− = −  (19) 

represents the mutual action of other tendencies developing in the central place hierarchy 

with the weight 11  p− .  This may be interpreted geometrically by constructing a straight 
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line that passes the vertex 1 X and the point 0  X of the actual central place hierarchy and 

crosses the opposite face of the parallelepiped of admissible central place hierarchies at 

the point 2  X . Moreover, if one hangs the weights 1 1 and 1  p p−  on points 

1 2 and  X X then the center of gravity of the segment with end points 1 2 and   X X will 

coincide with the point 0  X .  For study of the residual 2  X , one should apply the “best 

fitting” procedure to the 2  X , and so forth. 

8. Hierarchical analysis of the Christaller original central place system in Munich, 

Southern Germany. 

After the decades of empirical studies, the pure Christaller-Losch&& theoretical hierarchies of 

several hierarchical levels with the same nesting factors have rarely if ever observed. The 

reason for this is that each actual central place hierarchy is the superposition of various 

theoretical hierarchies. It is interesting to note that even Christaller’s original study of the 

Munich central place hierarchy confirms the phenomenon of superposition. The Christaller 

original Munich central place hierarchy (Christaller, 1933; Woldenberg, 1979, Table 5, p. 

446.) can be presented with the help of the following vector of market area frequencies 

( )0 519,249,127,39,12,3,1  m = with the corresponding sequence of average nesting 

factors ( )0 2.0843,1.9606,3.2564,3.25,4,3  k = . The polyhedron of admissible central place 

hierarchies includes all matrices of the form (see 12): 

1 2 3 4 5 6

1 2 3 4

1 2 3 4

4 3

1 1 3 3 0 0

3 3 4 4 0 0

k k k k k k

X k k k k

k k k k

= = 
 = − − − − 
 − − − − 

 

The Munich central place hierarchy is represented by a matrix: 

0

2.0843 1.9606 3.2564 3.25 4 3

1.0843 0.9606 0.2564 0.25 0 0

0.9157 1.0394 0.7436 0.75 0 0

X

 
 =  
  

                                                            (20) 

The best-fitting approximation of the vector of average nesting factors 

( )0 2.0843,1.9606,3.2564,3.25,4,3  k = has a form 1k = (3, 3, 3, 3, 4, 3) which generates the 

Beckmann-McPherson model 

1

3 3 3 3 4 3

2 2 0 0 0 0   

0 0 1 1 0 0

X

 
 =  
  

                                                                           (21) 
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The weight 1 p of this Beckmann-McPherson model is equal to (see (18)): 

1

2.0849 1.9606 1.0843 0.9606 0.7436 0.75 0.9606
min 1, , , , , , 0.4803 

3 3 2 2 1 1 2
p

 = = = 
 

     (22) 

i.e. 

'
0 10.4803 0.5197  X X X= +                                                                             (23) 

where '  X is a residual. Thus, the real central place system 0  X includes only 48.03% of the 

extreme tendency 1 X corresponding to the best fitting Beckmann-McPherson model. The 

residual 'X  can be calculated from equation (23). The best fitting procedure applied to this 
residual will give us the second extreme tendency 2  X and its weight 2  p . Such a procedure 

can be repeated once more. After 5 steps the final decomposition of the Munich central place 

hierarchy can be obtained: 

                 

0 1 2 3 4 50.4803 0.2633 0.1946 0.0554 0.0064

3 3 3 3 4 3 1 1 3 3 4 3

0.4803 2 2 0 0 0 0 0.2633 0 0 0 0 0

0 0 1 1 0 0 2 2 1 1 0 0

1 1 4 4 4 3 3 1 4 4 4 3

0.1946 0 1 1 0 0 0.0554 2 1 1 0 0

2 2 0 0 0 2 0 0 0

3 1 4

0.0064

X X X X X X= + + + + =

   
   = + • +   
      

   
   + • + • +   
   • • •   

+
3 4 3

2 1 0 0

2 1 0 0

 
 • • 
 • • 

       (24) 

The first row of this matrix equality gives the decomposition of the vector of average nesting 

factors: 

                 

( )

( )
( )
( )
( )
( )

0

1 2 3 4 5

2.0843,1.9606, 3.2564, 3.25, 4, 3

   0.4803 0.2633 0.1946 0.0554 0.0064

   0.4803 3,3,3,3,4,3

   0.2633 1,1,3,3,4,3

   0.1946 1,1,4,4,4,3

   0.0554 3,1,4,4,4,3

   0.0064 3,1,4,3,4,3

k

k k k k k

= =
= + + + + =
= +

+ +

+ +

+ +

+

         (25) 

This decomposition means that the Munich central place hierarchy consists of five extreme 
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tendencies. The first most prominent tendency corresponds to the Beckmann-McPherson 

model with nesting factors ( )1 3,3,3,3,4,3k = . This tendency consists of the economizing of 

the number of market areas on almost each hierarchical level; only the second hierarchical 

level corresponds to economizing of transportation routes. This tendency is very closed to a 

perfect Christaller hierarchy (3,3,3,3,3,3) and maybe, this was a reason for the introduction 

by Christaller of his market principle. Nevertheless, the weight of this extreme tendency is 

equal to 1 0.4803p =  only, i.e., it accounts only for 48.03% of the actual central place 

phenomenon. The second extreme tendency, corresponding to the Beckmann-McPherson 

model with the vector of nesting factors ( )2 1,1,3,3,4,3k = , interdicts the first tendency on 

three lower hierarchical levels and represents the tendency of merging of these hierarchical 

levels, since the vector of nesting factors 2k includes the nesting factors equal to 1.The 

second extreme tendency accounts for an additional 26.33% of the phenomenon. The third 

extreme tendency ( )3 1,1,4,4,4,3k =  counteracts the first and second tendencies by 

implying the passage from market principle to the transportation principle on the forth and 

fifth hierarchical levels. It explains additionally 19.46% of the phenomenon, so first three 

extreme tendencies together explain 93.82% of the actual central place hierarchy. The forth 

and fifth extreme tendencies are not so essential, since they explain together only 6.18% of 

the rest of phenomenon. It is possible to present the cumulative action of the market and 

transportation optimization principles of all extreme tendencies separately on each 

hierarchical level, by accounting the weight of nesting factors 3 and 4 on each hierarchical 

level (see table 1). 

Table 1. Hierarchical structure of the original Christaller central place system of Munich, 

Southern Germany. 
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0 1 2 3 4 5

Average Nesting factors for
Hierarchical Structure of

nesting Beckmann-McPherson
level hierarchical levels

factors models

7

6 3 3 3 3 3 3 3:100%

5 4 4 4 4 4 4 4 :

4 3.25 3 3 4 4 3

3 3.2564 3 3 4 4 4

2 1.9606 3 1 1 1 1

1 2.0843 3 1 1 3 3

j k k k k k k

− − − − − −

( )

100%

3:75% 4: 25%

3: 74.35% 4: 25.65%

1:51.97% 3: 48.03%

1:51.32% 3: 48.68%

Weigths of Beckmann-
48.03 26.32 19.34 5.66 0.65

McPherson models %

The last right column of the table 1 presents the structure of all hierarchical levels of Munich 

central place hierarchy. We may see that the six hierarchical level includes the hexagonal 

covering corresponding to the market optimization principle; this covering is generated by 

the point (1, 1,-1) giving the nesting factor 3. On fifth hierarchical level only the 

transportation principle appears; the corresponding hexagon covering generated by the point 

whose barycentric coordinates on the corresponding the Möbius plane are (2,0,-1).  On the 

fourth hierarchical levels the market and transportation principles are acting in proportion 

75%/25%. The corresponding hexagon covering is generated with the help of two 

operations: first operation is the convex combination of market and transportation coverings 

with the weights 0.75 and 0.25: the corresponding point generated this hexagon covering is: 

0.75 (1, 1,-1) +0.25 (2, 0,-1) = (1.25, 0.75,-1)                                      (26) 

 corresponding to the nesting factor 3.0625. the second operation is the homothetic 

transformation of transfer from this nesting factor to the average nesting factor 3.25; the 

radius of the homothety is
3.25

1.1262 
3.0625

= , the homothetic transformation (36) has a 

form (1.2878, 07727, -1.0605) with corresponding nesting factor 3.25. 

The third hierarchical level has almost the same structure as fourth level. 

The second hierarchical level includes the weighted combination of  the market principle 

covering generated by point (1, 1, -1)   and  the tendency of merging of hierarchical levels 

generated by point (1, 0, 0): 
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0.4803 (1, 1, -1) +0.5197 (1, 0, 0) = (1, 0.4803, -0.4803) 

with average nesting factor 1.9606. 

The first hierarchical level has almost the same structure as second hierarchical level 

Thus, the decomposition analysis of the Christaller example of the Munich, Southern 

Germany central place hierarchy, hints on the origins of appearance of Christaller 

optimization principles in the Central Place Theory.  

9. Structural Stability, Structural Changes and Catastrophes in Central place 

Hierarchical Dynamics. 

The hierarchical dynamics of the Central place systems are the reflection of the 

socio-economic spatial complication process of the urban/regional system. The hierarchical 

dynamics represent both the rapid change and locational and functional inertia within the 

urban system. The major reason of catastrophic hierarchical change in an evolving 

urban/regional system is the transfer of a few centers from one hierarchical level to another 

as a result of changes in allocation of individual central place functions within the hierarchy, 

i.e., in the modification in the functional extent of the level (cf. Parr, 1981, pp. 105-108). The 

complication process is also reflecting the appearance or disappearance of centers as a result 

of regional growth, decline or regional competition (see Batty and Friedrich, 2000). 

Next we will consider the implementation of the principle of structural stability and 

structural changes into the dynamics of central place hierarchies.  

The main questions of the structural stability and structural changes are:  

• What types of central place hierarchies are possible?  The Central place theory in its 

new form, presented in this chapter, is giving the possible answer on this question. 

•  What kind of structural changes are admissible and what types of structures are 

preserved (at list partially) under these changes? 

• How do the transitions from one type of structure to another occur? 

The first question immediately points to the gap between the pure theoretical central place 

models, based on the Losch&& economic landscape, and the hierarchical structure of an actual 

central place system; two other questions underline the fact that existing central place 

theory is mostly static and tells us little about the complication process of emergence 

transformations and stability of an urban hierarchy. A vast body of literature expanding the 

classical central place theory since its initial formation includes only a small part relevant to 

the current focus on structural changes within the central place hierarchy. The polyhedral 
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catastrophic dynamics of the states of the central place hierarchy represents its comparative 

statics and may be considered as a necessary step toward the dynamic theory of the central 

place hierarchy, which is waiting till now its creator. Between the earlier attempts to 

construct the dynamic Central place theory the simulation efforts of Morrill (1962), White 

(1977, 1978), Allen and Sanglier, 1979, Camagni et al., 1986 and Diappi et.al, 1990, should 

be mentioned. 

Geometrically, three different types of hierarchical changes are possible. 

The first type of change is connected with the case of global structural stability, when the 

average nesting factors are changing slowly, so the polyhedron of admissible central place 

hierarchies remains the same and the point of actual central place hierarchy is moving within 

the same simplex. That means that in the decomposition 

0 1 1 2 2 1 1,... r rX p X p X p X r n+ += + + + ≤  the vertices iX  remains the same and only the 

coefficients ip  are slowly changing preserving the property1 2 1... 1; 0 1r ip p p p++ + + = ≤ ≤ . 

The domain of such movement in the polyhedron of admissible central place hierarchies is 

the domain of global structural stability. In reality, the domain of structural stability is 

usually very narrow, and small changes in the average nesting factors caused the crossing the 

boundary of this domain. This implies the exchange in the decomposition (VII.9) of some 

extreme tendencies with others, and further, allows even the complete change of 

composition and ranking of the Beckman-McPherson models entering the decomposition. 

The second type of hierarchical change is connected with the transfer of the point of an 

actual central place 0X from one convex polyhedron of admissible hierarchies to another 

convex polyhedron, defined by the different Kanzig-Dacey nesting factors. Geometrically 

this means the crossing the boundary of the initial polyhedron. In this case, the best we can 

expect is the partial structural stability, i.e., the stable inclusion in the decomposition (II.9) of 

only a part of previous extreme tendencies. In reality, the case of the partial structural 

stability is a most expected one. 

The third essentially different type of change in the hierarchical structure is the change 

in the dimension of the polyhedron of admissible hierarchies. This type of the catastrophic 

change is caused by the change in a number and content of hierarchical levels as a result of 

a split or merging of hierarchical levels (cf. Parr, 1981, pp. 101-110). The split of a level is 

characterized by the increase in the number of the central places on the same hierarchical 

level and a differentiation in the functional content of the level. The merging of the levels is 

connected with the decrease of a degree of functional differentiation and with the 
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appearance of a new tendency corresponding to the Beckman-McPherson model with the 

nesting factor equal 1 on the same hierarchical level.. 

10. Further theoretical developments: short reviews. 

The existence of the axiomatic theory of Central Places presented in this paper is pointed 

on the further directions in empirical studies and further directions of theoretical 

developments.  

In the field of empirical studies the use of superposition model supported by easily 

assessable computer software (cf. the analysis of original Christaller Central place system 

of Southern Germany in chapter 8) will eventually result in the taxonomy of types of 

evolution of hierarchical central place system. In such a way the gap between the theory of 

central place system and its empirical justification will be narrowed. 

In the field of theoretical studies the axiomatic theory of Central Places is presented a wide 

range of possibilities of constructing of stylized examples of the development of evolving 

socio-economic systems in geographical space. Two main applications of this conceptual 

framework are elaborated 

I. Structurally stable optimal (minimal cost) transportation flows in the 

hierarchical Central Place system.  

II.  The merger of two major theories in the Regional Science: the classical 

Input-Output theory of Leontief and the classical Christaller -Losch&&  Central Place 

theory. 

The application I consider the possibilities of the extension of optimal transportation flow 

in expending urban system. It is quite understandable that the actual central place hierarchy 

puts strong restrictions on the type of optimal (minimal cost) flows between the central 

places. In turn, the spatial and temporal stability of the transportation flows may be an 

essential factor of growth and decline of the individual central place in the hierarchy. 

Moreover, usually the optimal transportation flow does not cover all linkages of the 

transportation network between the central places. 

The problem of enumeration of all possible extensions of minimal cost transportation 

flows is purely combinatorial and hence formidable, cumbersome and tedious. Its solution 

for each given Beckmann-McPherson central place hierarchical model can be found with 

the help of aggregated schemes for the transportation tables scheme includes one or two 

arcs, which present the set of possible linkages between the central places. These arcs are 

presented as lines in the cells of the aggregated scheme (see Sonis, 1982a;1984; 1986;2000, 

Huff et al.,1986) 
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Application II describes the mutual penetration and unification two central theories in the 

Regional Science: the classical Input-Output theory of Leontief and the classical 

Christaller-Losch&& Central place theory (see Sonis, Hewings, 2000b.)  It is expected that the 

proposed theoretical methodology will be useful for the analysis of organization of the 

production economics in geographical space. In this study the triple UDL-factorization is 

applied to the decomposition of the Leontief Inverse for Input-Output System within the 

Central Place System of the Christaller-Losch&& , Bekmann-McPherson type. Such a 

factorization reflects the process of gradual extension and complication of the Central Place 

Hierarchy (see Sonis, Hewings, 2000a). 

The idea to investigate the Input-Output relationship within the Central Place system is not 

a new one.  The necessity to combine together the hierarchical structure of Central Place 

system with Input-Output structure of the transaction flows within one unifying framework 

was stresses in the programmatic book of Walter Isard (1960, p.141). The first systematic 

treatment of this problem was undertaken by Robison and Miller (1991). They used the 

rudimentary structure of intercommunity central place system, without paying attention on 

the fine structure of the central place hierarchy.  The complexity of mathematical 

presentation stops them on the level of a simple two-community two-order sub region level 

with one dominant central place. 

In the study (Sonis, Hewings 2000b) the central place hierarchy and multi-regional 

input-output analysis are fusing together, and in a result the decomposition of the Leontief 

Inverse for Input-Output Central Place system reflects the process of complication of the 

evolving hierarchy of Central places 
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