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Spatial Patterns of Technology Diffusion: An
Empirical Analysis Using TFP

Maria Abreu∗ Henri de Groot† Raymond Florax‡

April 30, 2004

Abstract

We investigate the spatial distribution of TFP growth rates using ex-
ploratory spatial data analysis and other spatial econometric techniques.
Our sample consists of 73 countries and covers the period 1960-2000. We
identify significant positive spatial autocorrelation in TFP growth rates,
indicating that high and low values tend to be clustered in space. We
also find strong positive spatial autocorrelation in TFP levels, which has
increased over the period 1960-2000. This result may be indicative of a
tendency towards clustering over time, a conclusion reinforced by our find-
ing of two clusters of high TFP growth rates (in Europe and South East
Asia), and two clusters of low TFP growth rates (in the Andean region and
Sub-Saharan Africa). We estimate the Nelson and Phelps (1966) model
of technology diffusion while allowing for spatial dependence in the error
term. Our estimation results suggest that both the growth rate and the
level of human capital have an important effect on productivity growth
rates.

JEL: I2, O4, C21. Keywords: human capital, technology diffusion,
spatial econometrics.

1 Introduction
Is there a spatial dimension to the flow of technology across country borders?
Our aim is to investigate this question using exploratory spatial data analysis
and other spatial econometric techniques. Following Coe and Helpman (1995),
Keller (2001), Benhabib and Spiegel (1994, 2002) and others we study the effect
of knowledge spillovers on Total Factor Productivity (TFP).
There are two broad schools of thought in the literature on the diffusion

of technology across countries. The first one emphasizes the importance of
absorptive capacity, that is, the ability of nations to adopt foreign technology
for use in the domestic market. This view is based on the idea that there is a
common pool of knowledge to which all countries have access, so that technology
diffusion is constrained only by the receiving country’s ability to understand and
make use of the new technology. A prominent example of this view is the Nelson
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and Phelps (1966) model. The rate of adoption of new technology depends on
the capacity of individuals and firms to implement new ideas, and on the gap
between the technology they are currently using and the state of the art. The
determinant of absorptive capacity in this case is the level of education.
Several empirical studies have found evidence in support of the absorptive

capacity view. Benhabib and Spiegel (1994) use a growth accounting method to
study the effect of human capital on productivity growth, and find that human
capital has a positive and statistically significant effect when interacted with
the technology gap (as in Nelson and Phelps, 1966). Eaton and Kortum (1996)
find that inward technology flows (measured by patent citations) is increasing
in the level of human capital. Xu (2000) finds that richer countries benefit from
hosting US multinational subsidiaries while poor countries do not benefit as
much, and that the discrepancy can be explained in terms of the level of human
capital in the host country.
Absorptive capacity may also depend on the level of domestic R&D, so that

domestic innovation must already have reached a critical level before foreign
technology can be successfully adopted. Cohen and Levinthal (1989) show that
firms need to substantially invest in R&D in order to understand and evaluate
new technological trends and innovations. Griffith, Redding and Van Reenen
(2000) find that TFP growth is negatively correlated with the productivity gap
(to the technology leader), particularly when the productivity gap is interacted
with the level of domestic R&D.
Institutions may also influence absorptive capacity, an idea highlighted by

the literature on innovation systems (Acs and Varga, 2002). Government poli-
cies to promote research, networks of scientists and and good universities all
encourage R&D and the adoption of foreign technology. Parente and Prescott
(2000) argue that while technology is global, countries differ in their resistance
to adopt new technologies, due to the excessive influence of domestic lobbies
and state bureaucracies.
The second view on technology diffusion across countries emphasizes the

importance of bilateral ties. Countries have different stocks of knowledge, and
diffusion occurs through bilateral channels such as trade and Foreign Direct
Investment (FDI). In general two mechanisms have been identified: (1) direct
learning about foreign technology, and (2) employing specialised and advanced
intermediate products developed abroad.
Direct learning requires a channel of communication between the two parties,

especially since some knowledge may be tacit in that it cannot be codified and
can only be passed from one person to another (Polanyi, 1958). There is some
evidence that non-codified knowledge has a localised pattern: Feldman and
Lichtenberg (1997) construct a measure of the tacitness of knowledge for a
study of R&D activities in the EU. They find that the degree of tacitness of
knowledge has an effect on the location of R&D activities.
Codified forms of knowledge (patents, blueprints, articles in scientific jour-

nals) may also have a localised pattern. Eaton and Kortum (1996) study patent-
ing activity in the OECD, and find that patent citations decline with geograph-
ical distance (although this finding may be due to the importance of within-
country citations). Jaffe and Trajtenberg (2000) also find that intra-national
spillovers (measured by patent citations) are larger than those between coun-
tries. Part of this effect may be due to the sharing of a common language:
Keller (2001) finds that bilateral language skills explain about 16% of bilateral
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technology diffusion.
Direct learning in the form of tacit knowledge or via blueprints and arti-

cles can be described as active technology diffusion (Keller, 2002). The other
mechanism, known as passive diffusion, is the purchase and use in production of
intermediate goods with embodied foreign knowledge. It is still a form of knowl-
edge transfer, because it allows the buyer to implicitly use foreign technology in
production. It may also encourage further domestic innovation through reverse
engineering, or because it facilities domestic R&D (e.g. imports of computer
equipment).
The empirical literature on technological diffusion has focused on trade and

FDI. Coe and Helpman (1995) study the impact of trade on technology diffusion,
and find that international R&D spillovers are related to the composition of
imports (whether imports originated in high or low technology countries) and
that the overall level of imports is also important. Eaton and Kortum (1996)
and Keller (1998) provide evidence to suggest that import composition may not
matter much once distance has been accounted for. Xu and Wang (1999) show
that the import composition effect is robust when one considers trade in capital
goods only instead of trade in all manufacturing goods. Keller (2001) finds that
69% of bilateral technology diffusion can be explained by trade patterns (and
trade can be shown to be a function of bilateral distance).
In short, the empirical literature has found considerable evidence to suggest

that technology diffusion may follow a spatial pattern, and that country char-
acteristics such as the stock of human capital and the level of domestic R&D
affect the rate at which a country adopts foreign technology. We commbine
the two approaches by modifying the Nelson and Phelps (1966) model to allow
for spatial dependence in TFP growth rates. Spatial econometrics techniques
allow us to identify the type of spatial dependence present in the model and to
estimate it consistently. Moreover, spatial data analysis techniques allow us to
identify clusters and other anomalies such as spatial outliers, and to present the
results visually in the form of Moran scatterplots and Moran significance maps.
Spatial econometrics has mainly been used in applications at the level of re-

gions, with several authors applying the techniques to income levels and growth
rates, mostly in the context of models of income convergence. Rey and Montouri
(1999) study income convergence among the states of the US over the period
1929-1994, and find strong patterns of global and local spatial autocorrelation,
with some evidence that temporal changes in spatial autocorrelation are associ-
ated with changes in regional income dispersion. Mossi et al. (2003) use spatial
data analysis techniques and Markov transition matrices to study growth and
inequality in the regions of Brazil. They find evidence of the existence of two
spatial clusters: a low income one in the Northeast and a high-income one in
the Southeast. Lopez-Bazo et al. (1999), Le Gallo et. al (2003) and Fingleton
(1999) apply spatial econometric tools to the analysis of the convergence in the
European regions, and find evidence of spatial dependence and clustering.
Studies at the country level are scarce. Moreno and Trehan (1997) use two

different measures of distance: geographical distance and trade. They find that
a country’s growth rate is closely related to that nearby countries, and that
trade alone cannot explain the spatial dependence. Ramírez and Loboguerrero
(2002) apply spatial data analysis techniques to a sample of 98 countries over
three decades (1965-75, 1975-85, 1985-95) and estimate a spatial dependence
model that includes a number of political, economic and social variables.
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There has, to our knowledge, been no spatial econometric analysis of TFP,
either at the regional or country level.
The remainder of the paper is organised as follows. Section 2 describes our

data set, and the method used to construct our measure of TFP. In section 3 we
apply spatial data analysis techniques to investigate overall spatial patterns in
the data, and the presence of clusters and outliers. Section 4 discusses the Nelson
and Phelps (1966) model, and alternative specifications that allow for spatial
dependence. Section 5 presents our empirical results, and section 6 concludes.

2 Data
We constructed our measure of TFP using a constant returns to scale Cobb-
Douglas production function, with the capital share of income set to 1/3 and the
labour share set to 2/3. Gollin (2002) shows that these are reasonable estimates,
given that the share of labour lies between 0.65 and 0.85 for a large cross-section
of developed and developing countries. We then calculated TFP as a residual:

lnTFPit = lnYit − 1
3
lnKit − 2

3
lnLit (1)

where Yit is real output in country i and time t; Kit is the capital stock and Lit
is the total number of workers.
Our capital stock series was constructed using the perpetual inventory method:

Kit =
tX

j=0

(1− δ)t−jIij + (1− δ)tKi0 (2)

where Iit is aggregate investment in physical capital in country i and time t
and δ is the rate of depreciation. An estimate of the initial capital stock was
obtained from the expression for the capital/output ratio in the steady state:

Ki0

Yi0
=

(I/Y )i
γ + δ + ni

(3)

where Yi0 output in 1960; (I/Y )i is the investment share of output; γ is the
growth rate of output per capita in the steady state and ni is the rate of pop-
ulation growth. Following Mankiw, Romer and Weil (1992) we assume a fixed
value of γ + δ, although in our case we assume γ = 0.02 and δ = 0.07, a higher
depreciation rate (in line with recent estimates from microeconomic studies).
We used 1960-1965 averages of the investment share and the population growth
rate. The investment data is taken from PWT 6.1, using the real share of
investment in GDP multiplied by GDP in constant PPPs.
For robustness we also tried varying the initial capital stock, the rate of

depreciation (between 0.03-0.08), and the source of investment data (we also
used the gross fixed capital formation series from the WDI 2002), all of which
had little effect on the estimates. Our estimates of the capital stock are also
highly correlated with more sophisticated series based on disaggregated data
such as the PWT 5.6 capital stock series, Scarpetta et. al (2000) and Easterly
and Levine (1999).
Our labour series is taken from PWT 6.1, and consists of the total number of

workers. Our human capital data comes from the Barro and Lee (2001) dataset;
we use the average years of schooling in the population aged 25 and over.
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Our data covers a sample of 73 countries over the period 1960-2000 (see Table
1 in the appendix for a list of countries included in the analysis). Our sample is
somewhat restricted for two reasons: (1) only countries whose borders did not
change over the period can be included, this is because the weight matrix used in
the spatial analysis is exogenously determined, and must remain constant over
the whole period, (2) aggregate investment data is only available for a small
sample of countries.
In Figure 1 we have plotted the growth rate of TFP over the period 1960-

2000 against the logarithm of TFP in 1960. The result is a pattern frequently
found in the literature. There is a slight negative correlation, indicating some
tendency towards convergence in TFP levels. Figure 2 shows a scatter plot of
the growth rate of TFP against the logarithm of schooling in 1960. In this case
the correlation is more pronounced and positive, consistent with the hypothesis
that higher schooling encourages technology transfer (as measured by TFP).
The spatial distribution of TFP growth rates can also be seen in Figure 3.

Countries with high TFP growth rates over this period are Korea, Thailand,
Japan, Ireland, Pakistan, Greece, Gabon, Portugal, Spain and Italy. Note the
contrast with the distribution in Figure 4, showing the logarithm of TFP in
1960. There is some evidence that countries that lagged behind in terms of
TFP in 1960 experienced rapid TFP growth over the period 1960-2000.
A similar pattern is apparent when comparing Figure 5 and Figure 6, show-

ing the spatial distribution of schooling growth rates and schooling in 1960,
respectively. There is some evidence of clustering of schooling levels in Figure
6, particularly in Latin American and in Europe. A rapid improvement in the
average years of schooling of the population is particularly visible in Africa,
South Asia and South-East Asia.

3 Exploratory Analysis
Spatial autocorrelation can be defined as the coincidence of value similarity with
locational similarity (Anselin, 2001). There is positive spatial autocorrelation
when high or low values of a variable tend to cluster together in space, and
negative spatial autocorrelation if high values are surrounded by low values and
vice-versa. A standard measure for spatial autocorrelation is the Moran’s I
statistic. For a variable x and time t it is given by:

It =
n

S0

nP
i=1

nP
j=1

wij (xi,t − µt) (xj,t − µt)

nP
i=1
(xi,t − µt)

2

(4)

where xi,t is the observation for country i and time t; µt is the mean value of
variable x at time t; n is the number of countries and wij is one element of
the spatial weights matrix W and S0 is a scaling factor equal to the sum of
all the elements of W . The spatial weights matrix contains information on the
spatial interdependence of the countries in the sample, and in our case has been
constructed as follows:

wij = d−1ij if dij < 2000 miles (5)

wij = 0 otherwise (6)
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where dij is the distance between the centroids of countries i and j in miles. The
critical cut-off distance of 2000 miles implies that we expect all spatial interac-
tions above this distance to be negligible. Intuitively, our matrix in constructed
so that interactions between countries decline with distance. Our cut-off dis-
tance of 2000 miles was chosen in order to restrict technology spillovers to coun-
tries that are situated fairly close together in space e.g. in the same continent
(as a reference, the distance from coast to coast of the US is approximately 2500
miles).
Table 2 lists Moran’s I statistic and associated z- and p-values for three

variables: (1) TFP growth (1960-2000), (2) ln(TFP) in 1960 and (3) ln(TFP)
in 2000. Larger than expected values of Moran’s I indicate positive spatial
autocorrelation, while smaller than expected values indicate negative spatial
autocorrelation. Inference is (in our case) based on the normal approximation.
In all three cases the z-value for Moran’s I is positive and significant, indicat-

ing the presence of positive spatial autocorrelation. Intuitively, similar values
(either high or low) are more spatially clustered than could have been caused
by chance. The statistic is higher for TFP in 2000 than in 1960, indicating that
TFP levels are becoming more clustered over time (consistent with theories of
convergence clubs). Note also that TFP levels are more spatially autocorrelated
than TFP growth rates.
These results can also be seen visually by means of a Moran scatterplot

(Anselin, 1996), which plots the spatial lagWz against z, where z is the vector of
observations for variable x in deviations from the mean µ. Moran’s I is formally
equivalent to the slope coefficient of the linear regression ofWz on z, using a row-
standardised weights matrix (a matrix is row-standardised when the elements
wij in each row sum to 1). Figures 7, 8 and 9 are Moran scatterplots for the
variables TFP growth, ln(TFP) in 1960 and ln(TFP) in 2000 respectively. The
four quadrants in the plot provide a classification of the observations into four
types of spatial association: high values located next to high values (upper right-
hand corner), low values located next to low values (lower left-hand corner),
high values located next to low values (lower right-hand corner), and low values
located next to high values (upper left-hand corner).
Consider the scatterplot in Figure 7 for TFP growth rates over the period

1960-2000. The Moran’s I statistic in Table 1 already indicated a low degree
of spatial autocorrelation, and this can be seen in the plot (the observations
are fairly scattered). The slope of the fitted line corresponds to the value of
the Moran’s I statistic. There are two interesting results: a significant number
of African countries are situated in the lower left-hand corner of the plot (low
values close to low values), while a number of European countries are located
in the upper right-hand corner of the plot (high values close to high values).
The use of standardised variables allows us to compare Moran scatterplots

over time, so Figures 8 and 9 are directly comparable. It is immediately apparent
that (in contrast with Figure 7) most observations are located in the upper-
right and lower-left quadrants, corresponding to high-high and low-low values,
respectively. It is also apparent that the spatial distribution of TFP levels is
becoming more polarised over time. While in Figure 8 there are four or five
visible groups of countries with similar values, in Figure 9 there appear to be
only two clubs at the two extremes of the spatial distribution, with most other
countries scattered in between.
Another relevant statistic is the local Moran’s I, which gives an indication of
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significant spatial clustering of similar values around a particular observation.
For a row standardised weights matrix, the global Moran’s I equals the mean
of the local Moran’s statistics. Since there is a link between the local indicators
and the global statistic, local outliers are also associated with the countries that
exert the most influence on the global statistic. Figure 10 is a map showing the
countries with significant values of the Local Indicator of Spatial Association
(LISA) for TFP growth rates. The colour code also indicates the quadrant in
the Moran scatterplot to which these countries belong. There are two clusters of
low-low values: one comprises the Andean countries and Central America, the
other one several countries of Sub-Saharan Africa. There are also two high-high
clusters: one in Europe (including Turkey), and one in South-East Asia. Note in
particular that the European and Sub-Sahara African clusters were also visible
on the Moran scatterplot of Figure 7.

4 Model Specification

4.1 The Nelson-Phelps Model

In a seminal paper, Nelson and Phelps (1966) argue that the common practice
of viewing education as simply another input in the production function should
be ammended to take into account the observation that “educated people make
good innovators”, by which they mean that education affects the speed at which
new technologies are adopted. The authors make a distinction between the
theoretical level of knowledge, or the cutting edge of technology, and the level
of technology that prevails in practice. The theoretical level of knowledge is
assumed to grow at a constant and exogenous rate:

Tt = T0e
λt, λ > 0 (7)

where Tt is the best attainable level of technology at time t. In this sense
their model is equivalent to the standard neoclassical model of growth, where
the process creation of knowledge is exogenous, and technology is treated as a
public good.
The rate at which theoretical knowledge is turned into improved technology

in practice depends on the educational attainment of the adopters, and on the
gap between the theoretical level of technology and the level of technology in
practice:

Ȧt

At
= Φ(h)

·
Tt −At

At

¸
, Φ(0) = 0, Φ0(h) > 0 (8)

where At is the level of technology in practice and h is the level of educational
attainment. In the long run, the growth rate of technology in practice A(t) is
equal to the growth rate of theoretical knowledge Tt, with a constant technology
gap.
Although the Nelson-Phelps model was developed with a view to explain

technology adoption by individuals and firms, there is a suggestion by the au-
thors that the model might be applied to the study of economic growth. Ben-
habib and Spiegel (1994) adapt the Nelson-Phelps model to study the effect of
human capital levels in a growth accounting framework. To the Nelson-Phelps
model in (8) the authors add an innovation term, arguing that in addition to the
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successful adoption of foreign technology education also determines a nation’s
capacity to develop new ideas. The growth rate of technology is given by:

Ȧt

At
= g(h) + c(h)

·
Tt −At

At

¸
(9)

In order to estimate the model, they approximate the theoretical level of
knowledge Tt by the level of technology in the technology leader (the maximum
level of TFP at time t), and assume that the level of educational attainment
is constant over time (they use the average over the period). The level of
educational attainment enters the equation in logarithmic form, so that g(h) =
c(h) = ln(h). Their results broadly support the Nelson-Phelps model. The
logarithm of human capital is found to have a statistically significant positive
impact on productivity growth, both on its own and when interacted with the
technology gap (Nelson-Phelps term). The authors also show that while the
level of human capital is an important determinant of productivity growth, the
growth rate of human capital is not. This result provides some evidence against
the Lucas (1988) model of endogenous growth, where growth is driven by the
accumulation of human capital.
We extend the Benhabib and Spiegel (1994) model of equation (9) in two

ways. First, we allow the innovation term to depend on both the level and the
growth rate of human capital, thus nesting the Nelson and Phelps (1966) and
Lucas (1988) approaches. This allows us to test both approaches simultaneously.
The distinction between the two models is important because they have very
different implications for the effectiveness of investment in human capital. In
the Lucas (1988) model, an increase in the level of human capital has a level
effect on output, and long-run growth is only possible if human capital can grow
without bound (for example, through improvements in the quality of schooling).
In the Nelson and Phelps (1966) model an increase in the level of human capital
increases the rate of innovation, and therefore has a growth effect on output.
Our nested specification is the following:

Ȧt

At
= α+ β1 ln(ht) + β2

ḣt
ht
+ β3 ln (ht)

·
max(At)−At

At

¸
+ u (10)

where u ∼ N(0, σ2I).
Note that we approximate the level of theoretical knowledge by the maximum

level of technology at time t, and that human capital enters in logarithmic form.
Second, we consider two types of econometric model to deal with the presence
of spatial dependence: the spatial lag (or spatial autoregressive) model, and the
spatial error model.

4.2 The Spatial Lag Model

In this model, the growth rate of technology in a country depends on several
explanatory variables in that country (such as the human capital stock and the
Nelson-Phelps term) and on the growth rate of technology in other countries
located close to it in space. The extent of the spatial spillovers is given by
the exogenously determined weights matrix W . The model in equation (10)
becomes:

Ȧt

At
= α+ β1 ln(ht) + β2

ḣt
ht
+ β3 ln (ht)

·
max(At)−At

At

¸
+ ρW

Ȧt

At
+ u (11)
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where u ∼ N(0, σ2I) and ρ is the spatial autoregressive parameter indicating the
extent of the interaction between observations according to the spatial pattern
of the weights matrix W .
One important point to note is that this specification implies that the growth

rate of technology in one country is affected by the explanatory variables in all
other countries related to it by the spatial weights matrix. This can be seen by
expressing the model in reduced form:

(I − ρW )
Ȧt

At
= α+ β1 ln(ht) + β2

ḣt
ht
+ β3 ln (ht)

·
max(At)−At

At

¸
+ u (12)

Rearranging:

Ȧt

At
= (I − ρW )−1

"
α+ β1 ln(ht) + β2

ḣt
ht
+ β3 ln (ht)

·
max(At)−At

At

¸
+ u

#
(13)

Estimation of equation (11) by OLS results in biased and inconsistent es-
timates, because the spatially lagged dependent variable is correlated with ε.
Instead, the model can be estimated using instrumental variables or maximum
likelihood (Anselin, 1988).

4.3 The Spatial Error Model

The spatial error model is a special case of the spatial lag model, with the
spatial dependence restricted to the error term. Intuitively, we can think of the
spatial dependence working through omitted variables with a spatial dimension
(climate, social norms, exogenous shocks), so that the errors from different
countries are spatially correlated. Equation (10) becomes:

Ȧt

At
= α+ β1 ln(ht) + β2

ḣt
ht
+ β3 ln (ht)

·
max(At)−At

At

¸
+ ε (14)

ε = λWε+ u

u ∼ N(0, σ2I)

where λ is a parameter indicating the extent of the spatial correlation between
the regression residuals. Note that since ε = (I − λW )−1u, the model can be
rewritten as follows (compare with equation (13)):

Ȧt

At
= α+ β1 ln(ht) + β2

ḣt
ht
+ β3 ln (ht)

·
max(At)−At

At

¸
+ (I − λW )−1u (15)

Estimation of this model using OLS results in unbiased estimates of the
parameter values, but biased estimates of the paramater variances. This model
should therefore be estimated using maximum likelihood or general method of
moments.
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5 Empirical Findings

5.1 Standard Models

We start by estimating the standard model used by Benhabib and Spiegel (1994)
given in equation (9). It has been suggested in the literature (Benhabib and
Spiegel, 2002 and Engelbrecht, 2003) that the initial level of human capital
(in our case ln(schooling) in 1960) may not be an adequate measure of the
human capital available to countries in the spirit of the Nelson-Phelps model.
The reason is that for a number of countries the stock of human capital in-
creased dramatically over the period 1960-2000, and therefore the initial level
does not reflect the amount of human capital available for innovation and adop-
tion of foreign technology. We therefore estimate the model in equation (9)
using two different measures of the human capital stock: ln(schooling) in 1960,
and ln(schooling) average over the period 1960-2000. Our data on human capi-
tal is the average years of schooling in the population aged 25 and over, taken
from the Barro and Lee (2001) dataset.
Column (1) in Table 3 shows the results of estimating the standard model,

using ln(schooling) in 1960 as the measure of the human capital stock. The coef-
ficient of the Nelson-Phelps term (indicating technological catch-up) is positive
as expected, and highly significant, indicating that countries that are further
away from the technology leader experience higher productivity growth, given
their levels of human capital stock. The effect of initial schooling on produc-
tivity growth is also positive, although the estimated coefficient is fairly small
(and not statistically significant at the 5% level). Roughly, the effect of a unit
increase in ln(schooling) in 1960 (equivalent to about 2.72 years of schooling)
results in an extra 0.08% growth in TFP.
Column (2) shows the results using average ln(schooling) over the period

1960-2000. The coefficient of the Nelson-Phelps term is again positive and highly
significant, but also larger than in column (1). This could be an indication that
the average years of schooling over the whole period are a better measure of the
ability of countries to adopt foreign technology. The coefficient of ln(schooling)
is again positive, but now also highly significant. The size of the effect of
ln(schooling) on productivity growth is also larger, so that a unit increase in
ln(schooling) (equivalent to 2.72 years of schooling) results in an extra 0.47%
growth in TFP over the period. Our results confirm those of Benhabib and
Spiegel (2002), who also find that using the period average of ln(schooling)
results in larger coefficients for ln(schooling) and the Nelson-Phelps term. The
fit of the model in column (2) is also an improvement over that in column (1),
as indicated by the higher values of the adjusted R-squared and F-statistic.
Column (3) shows the results of estimating model (10) with the restriction

β1 = 0, so that the innovation term is a function of human capital accumulation
(as in the Lucas approach). The coefficient of the Nelson-Phelps term remains
positive and highly significant, and has a larger value than in columns (1) and
(2). The coefficient of schooling growth is also positive and significant at the
5% level. Roughly, an increase of 1% in the growth rate of schooling results in
a 0.25% increase in the growth rate of TFP.
Column (4) shows the results of estimating the nested model of equation

(10). Our aim with this specification was to test the relative merits of the
Nelson and Phelps (1966) and Lucas (1988) approaches. We find that both the
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growth rate of human capital and its level have a positive and significant impact
on the growth rate of productivity. Interestingly, both coefficients are larger and
more significant in the nested model than in the models where they appear on
their own (columns (1) and (3)). A possible explanation is that the models in
columns (1) and (3) suffer from omitted variable bias, since the growth rate
and the level of schooling are highly (and negatively) correlated. Both variables
have a positive impact on the growth rate of TFP, so omitting one or the other
causes the coefficient of the remaining one to fall. It would seem that neither
the Nelson and Phelps (1966) model or the Lucas (1988) model can fully explain
the growth rate of TFP over the period 1960-2000.
The Jarque-Bera (1987) statistic does not reject normality for any of the

models in Table 3, ensuring the validity of the spatial tests discussed below,
and of the maximum likelihood estimation method used in Table 3. The White
(1980) test for generic heteroscedasticity does not reject the null hypothesis of
homoscedasticity for any of the models, but the Breusch-Pagan (1979) test is sig-
nificant at the 5% level in columns (1) and (4), indicating that the residual vari-
ance is correlated with one of the explanatory variables (most likely ln(schooling)
in 1960). Since the tests for spatial dependence may be flawed in the presence
of heteroscedasticity and vice-versa (Anselin and Griffith, 1988), we estimate
a heteroscedatic error version of the model in column (4), using the following
variables in the (additive) specification of the error variance: ln(schooling) in
1960, schooling growth, the Nelson-Phelps term, area in sqkm and population.
These last two variables have been included because they are often found to be
the cause of heteroscedasticity in cross-sectional models in the presence of spa-
tial depedence (Anselin, 1988). The results are provided in column (1) of Table
4 (estimation is by feasible generalized least squares (FGLS)). The coefficients
and standard errors remain mostly unchanged, indicating that the presence of
heteroscedasticity had a minimal effect on the OLS results. Of the variables
included in the additive error variance function, area in sqkm, population and
ln(schooling) in 1960 were significant.

5.2 Spatial Diagnostics and Spatial Error Model

We consider five tests for spatial dependence. The test statistics are reported
at the end of each column in Table 3. The first is Moran’s I test, adapted to
regression residuals (Cliff and Ord, 1981). It is highly significant for all the
models in Table 3, indicating the presence of spatial dependence. To discrim-
inate between the two forms of spatial dependence outlined above (the spatial
lag and spatial error model), we compare the lagrange multiplier (LM) test for
spatial error and the LM test for spatial lag. Both are significant for all the
models in Table 3, suggesting that the observed spatial dependence could take
either form. The LM statistic for spatial error is larger in columns (1) and (3),
while in columns (2) and (4) the LM statistics for spatial error and spatial lag
are almost identical.
The robust LM tests for spatial error and spatial lag indicate the extent of

spatial dependence of one form in the presence of spatial dependence of the other
form. The statistics are very small and in most cases insignificant, reinforcing
our previous finding that the spatial dependence could take either form.
Given these results, we decide to focus on the spatial error model of equation

(14) for the following reasons: (1) our nested specification seems the most ap-
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propriate, because it avoids the possibility of omitted variable bias, and allows
us to test between the Nelson and Phelps (1966) and Lucas (1988) models; (2)
the LM statistic for spatial lag is slightly higher than the LM statistic for spatial
error for the model in column (4), but the difference between the two values is
very small; (3) the LM tests point to the spatial error model in all the other
specifications; (4) the spatial error model is more realistic from a theoretical
point of view, since we would not expect TFP growth in one country to be
affected by all the explanatory variables in another country.
Column (2) of Table 4 shows the estimation results of the spatial error model

of equation (14), corrected for heteroscedasticity using the same specification as
in column (1). The spatially adjusted Breusch-Pagan statistic (Anselin, 1988) is
not significant, indicating that the all the heteroscedasticity present in the OLS
regression has been accounted for. As with the OLS regression in column (4) of
Table 3, the coefficients of both the level and the growth rate of human capital
are positive and significant, although their values have dropped slightly. The
results now indicate that a 1% increase in the growth rate of schooling leads to
a 0.50% increase in the TFP growth rate. The coefficient of the Nelson-Phelps
term is positive and highly significant as before, and its value remains relatively
unchanged. It should be noted that the estimate of the spatial error coefficient
λ is positive and highly significant, indicating the presence of positive spatial
autocorrelation. Two additional test statistics are provided. The likelihood
ratio test for spatial error dependence is significant at the 5% level, indicating
that the spatial error model provides a better fit than the standard regression
model with the same set of explanatory variables (i.e. with λ set to zero). The
lagrange multiplier test for spatial lag dependence is not significant, indicating
that the spatial error model has been correctly specified.

6 Conclusions
We have shown that TFP growth rates are spatially autocorrelated, so that high
or low values tend to be clustered in space. There is also a significant amount of
positive spatial autocorrelation in TFP levels, which appears to have increased
over the period 1960-2000. We have used exploratory spatial data analysis
techniques to investigate the presence of clusters in TFP growth rates, and
have found two clusters of high values in Europe and South East Asia and two
clusters of low values in the Andean region and Sub-Saharan Africa. Estimation
of a standard model of technology diffusion such as the Nelson-Phelps results
in autocorrelated residuals, and the standard spatial dependence tests indicate
that a spatial error model would be more appropriate. We find that both the
growth rate and the level of human capital have significant and positive impacts
on the growth rate of TFP, and conclude that the Lucas (1988) and Nelson
and Phelps (1966) approaches both contribute to explaining the evolution of
productivity levels over time. One possibility that could be explored further is
that both approaches might apply, if we were to distinguish between different
types of human capital. The Nelson and Phelps (1966) model is related to the
notion of absorptive capacity, and it might be more appropriate to consider
only tertiary education and specialised training. The Lucas (1988) model, on
the other hand, might be more related to the raising of basic educational levels
across the population.
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A Tables and Figures

Table 1: Total Factor Productivity estimates

Country ISO code TFP growth ln(TFP) in 1960
Argentina ARG 0.0057 6.3508
Australia AUS 0.0123 6.4568
Austria AUT 0.0206 6.0663
Bangladesh BGD 0.0115 5.4228
Barbados BRB 0.0320 5.6936
Belgium BEL 0.0190 6.2358
Bolivia BOL 0.0016 5.8049
Brazil BRA 0.0169 5.6992
Cameroon CMR -0.0046 5.8287
Canada CAN 0.0086 6.6065
Chile CHL 0.0147 5.9919
Colombia COL 0.0045 5.9903
Costa Rica CRI 0.0009 6.2399
Denmark DNK 0.0138 6.3695
Dominican Rep. DOM 0.0127 5.9270
Ecuador ECU 0.0106 5.5571
El Salvador SLV 0.0027 6.2988
Finland FIN 0.0208 6.0684
France FRA 0.0169 6.2039
Ghana GHA 0.0160 4.7850
Greece GRC 0.0241 5.7204
Guatemala GTM 0.0089 6.0502
Honduras HND -0.0027 5.7931
Hong Kong HKG 0.0404 5.3483
Iceland ISL 0.0146 6.2577
India IND 0.0199 5.0205
Indonesia IDN 0.0117 5.4532
Iran IRN 0.0117 5.9634
Ireland IRL 0.0270 6.1730
Israel ISR 0.0201 6.0169
Italy ITA 0.0229 6.0445
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Table 1: (continued)

Country ISO code TFP growth ln(TFP) in 1960
Jamaica JAM 0.0020 5.5867
Japan JPN 0.0267 5.5644
Jordan JOR 0.0045 6.1180
Kenya KEN 0.0069 4.9786
Lesotho LSO -0.0043 5.2542
Malawi MWI 0.0144 4.5224
Malaysia MYS 0.0216 5.7238
Mali MLI -0.0087 5.5467
Mauritius MUS 0.0294 5.6932
Mexico MEX 0.0095 6.1577
Mozambique MOZ -0.0106 5.8766
Nepal NPL 0.0023 5.2414
Netherlands NLD 0.0130 6.4407
New Zealand NZL 0.0034 6.6360
Nicaragua NIC -0.0139 6.1203
Niger NER -0.0069 5.4611
Norway NOR 0.0174 6.2090
Panama PAK 0.0258 4.8754
Pakistan PAN 0.0119 5.7067
Paraguay PRY -0.0013 6.1440
Peru PER 0.0038 5.7569
Philippines PHL 0.0060 5.6526
Portugal PRT 0.0232 5.7695
Senegal SEN -0.0034 5.6820
South Africa ZAF 0.0088 6.3081
South Korea KOR 0.0281 5.5505
Spain ESP 0.0232 5.8987
Sri Lanka LKA 0.0070 5.6249
Sweeden SWE 0.0133 6.3418
Switzerland CHE 0.0072 6.5056
Syria SYR 0.0213 5.6287
Thailand THA 0.0272 4.8727
Togo TGO -0.0039 5.2493
Trinidad & Tobago TTO 0.0127 6.2789
Turkey TUR 0.0128 5.7144
Uganda UGA 0.0024 5.4164
United Kingdom GBR 0.0125 6.4045
United States USA 0.0105 6.7208
Uruguay URY 0.0052 6.3493
Venezuela VEN -0.0079 6.6422
Zambia ZMB -0.0016 5.1815
Zimbabwe ZWE 0.0173 4.4865
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Table 2: Moran’s I Statistics

Moran’s I Z-Value Probability
TFP growth (1960-2000) 0.2831 4.2419 0.0000
ln(TFP) in 1960 0.5770 8.4384 0.0000
ln(TFP) in 2000 0.6372 9.2986 0.0000

Table 3: Standard Models

(1) (2) (3) (4)
Constant 0.0078** -0.0027 0.0019 -0.0121*

(0.0016) (0.0023) (0.0032) (0.0052)
Nelson-Phelps term 0.0259** 0.0377** 0.0429 0.0312**

(0.0098) (0.0076) (0.0089) (0.0090)
ln(schooling) in 1960 0.0008 0.0078**

(0.0018) (0.0024)
ln(schooling) average 1960-2000 0.0047**

(0.0015)
Schooling growth (1960-2000) 0.2506 0.6418**

(0.1166) (0.1621)

Observations 73 73 73 73
F statistic 10.58 26.68 13.44 13.76
adj. R-squared 0.21 0.42 0.26 0.35
Jarque-Bera 0.14 1.21 0.90 0.97
Breusch-Pagan test 8.24* 5.16 0.43 7.61*
White 10.85 7.91 4.58 12.94

Moran’s I (error) 4.82** 4.10** 4.86** 3.04**
Lagrange multiplier (error) 13.93** 11.70** 13.39** 6.16**
Robust LM (error) 0.00 1.01 0.04 0.67
Lagrange multiplier (lag) 16.87** 11.92** 17.68** 5.77**
Robust LM (lag) 2.94 1.23 4.32* 0.29
Standard errors are in parentheses. ∗ significant at 5%; ∗∗ significant at 1%. (1), (2), (3)
and (4) estimated using OLS.
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Table 4: Heteroscedastic and Spatial Models

(1) (2)
Constant -0.0110* -0.0073

(0.0048) (0.0053)
Nelson-Phelps term 0.0351** 0.0345**

(0.0070) (0.0097)
ln(schooling) in 1960 0.0069** 0.0057*

(0.0021) (0.0025)
Schooling growth (1960-2000) 0.6375** 0.4921**

(0.1440) (0.1563)
Lambda (spatial error) 0.3787**

(0.1459)

Observations 73 73
Breusch-Pagan / Spatial B-P 8.97

Moran’s I (error)
Lagrange multiplier (error) 19.81**
Robust LM (error)
Lagrange multiplier (lag) 18.61** 0.13
Robust LM (lag)
Likelihood ratio (error) 5.39**
Standard errors are in parentheses. ∗ significant at 5%; ∗∗

significant at 1%. (1) heteroscedastic error model estimated

using FGLS; (2) spatial error model estimated using ML.
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Figure 1: Scatter of TFP growth (1960-2000) against ln(TFP) in 1960
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Figure 2: Scatter of TFP growth (1960-2000) against ln(schooling) in 1960
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Figure 3: Distribution of TFP growth rates (1960-2000)
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Figure 5: Distribution of schooling growth rates (1960-2000)
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Figure 7: Moran scatterplot of TFP growth (1960-2000) (note: both axis are in
deviations from the mean)
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Figure 8: Moran scatterplot of ln(TFP) in 1960 (note: both axis are in devia-
tions from the mean)
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Figure 9: Moran scatterplot of ln(TFP) in 2000 (note: both axis are in devia-
tions from the mean)
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Figure 10: LISA cluster map for TFP growth rates (1960-2000)
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