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Abstract

The regional specialization via differences in transport costs are observed in Japanese
manufacturing industries. Concretely, industries with high transport costs for their products,
such as iron and steel, petroleum and coal products, remained close to the core region while
industries with low transport costs, such as electrical machinery, precision instruments, have
relocated to the periphery region. The purpose of this paper is to give a theoretical foundation
for this fact by use of a new economic geography model with multiple industries. The
urban costs and congestion are explicitly included in the model. We obtain the following
results. First, if congestion does not exist, at most one industry disperses when transport
and commuting costs are sufficiently small. Furthermore, regional specialization occurs in
which industries having higher adjusted transport costs (which are defined as the ratios of
transport costs to the number of varieties) than that of the dispersing industry agglomerate
in one region. Second, in the case of strong congestion, plural industries might disperse even
if transport and commuting costs are small, but as the degree of congestion decreases, the
location will change to complete regional specialization.

Key words: regional specialization, economic geography, transport costs, urban costs, con-
gestion.
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1 Introduction

During the past four decades many Japanese manufacturing industries have spread from the

‘core’ region to the ‘periphery’ region1. Figures 1a and 1b show changes of regional shares in

value of products and in employment, respectively. In 1960 Japanesemanufacturing produced

(resp. absorbed) nearly 55% (resp. 50%) of product-value (resp. workers) in the core, but in

2000 it only produced (resp. absorbed) nearly 35% (resp. 30%) of product-value (resp. workers)

there.

However, we should note that all manufacturing industries have not similarly dispersed but

they differ in degree. Concretely, industries with high transport costs for their products, such

as transport equipment, printing and publishing, petroleum and coal products, iron and steel,

remained close to the core while industries with low transport costs for their products, such as

electrical machinery, precision instruments, have considerably relocated to the periphery (see

Figure 2).2 For example, in precision instruments, 75% was produced in the core in 1960 but

only 32% was produced there in 2000, when the periphery share (35%) has exceeded the core

share. On the other hand, in petroleum and coal products, for example, regional shares have

been almost constant since 1960.

Figure 1: Changes in regional shares [manufacturing total] (Source: Japanese Census of Manu-
factures)

1According to Fujita and Hisatake (1999), 47 Japanese prefectures are divided into three macroregions as
follows: Core consists of Tokyo and Kanagawa (the core of Tokyo @Metropolitan@ area [MA]), Aichi (containing
Nagoya MA), Osaka and Hyogo (the core of Osaka MA); Semi-Core consists of the Pacific belt zone excluding
the Core (18 prefectures) and Periphery is the rest of Japan.

2By the regional shares in product-value from the latest Japanese Census of Manufactures in 2000, we di-
vide 21 types of manufacturing industries into following 4 groups: (a) Core oriented industries [Core>Semi-
Core>Periphery]: General machinery, Transportation equipment, Printing and publishing, Leather and leather
products (4 types); (b) Semi-core oriented industries I [Semi-Core>Core>Periphery]: Chemicals, Petroleum
and coal products, Plastic, Rubber, Iron and steel, Non-ferrous metals, Fabricated metal products (7 types);
(c) Semi-core oriented industries II [Semi-Core>Periphery>Core]: Processed foods, Textiles, Apparel, Lumber
and wood, Furniture, Paper and pulp, Ceramics, stone, clay and glass (7 types); (d) Periphery oriented indus-
tries [Periphery>Semi-Core>Core]: Electrical machinery, Precision instruments, Beverage, forage and tobacco (3
types).
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Figure 2: Changes in regional shares in value of products (Source: Japanese Census of Manu-
factures)

The differences in changes of industrial locations can be viewed as a consequence of regional

policies aiming to invite new industries with high value-added, such as electrical and informa-

tion technology (IT) related industries. Those industries are called ‘close-to-airport industries’

since their products are conveniently transported by airplanes, and some Japanese regional gov-

ernments (e.g. Ishikawa Prefecture, Chitose City, Kita-kyushu City) are actually inviting such

industries by improving facilities of local airports.

We do not deny the possibility that such regional policies in the periphery brought the

asymmetricindustrial location, i.e., regional specialization.via differences in transport costs. In

this paper, however, we show that the regional specialization occur even if regions are symmetric
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without heterogeneous policies.

Our framework is based on and extends the new economic geography (NEG) model of Krug-

man (1991). The NEG model has successfully clarified the relation between transport costs and

industrial location, however, regional specialization of individual industries has not been ex-

plained in the NEG literature yet because most authors assume that there is only one industry

in the manufacturing sector for simplicity. To fill this theoretical gap, this paper establishe-

san NEG model with multiple industries, which are expected to clarify how different industries

present different locations when the transportation system improves.

Our model is roughly sketched as follows. The industries are differentiated by their transport

costs for their products. Similar to most models of NEG, we assume the consumers’ love-for-

variety and firm-level increasing returns as the agglomeration force (Krugman, 1991) and urban

costs (i.e., housing and commuting costs) as the dispersion force (Tabuchi, 1998; Helpman,

1998). The distribution of industries is determined by the balance of these two forces. The

results here show that, in a space with sufficiently developed transportation system, industries

with lower transport costs may leave the core for the periphery, since their gains from reducing

urban costs become larger than losses from increasing transport costs.

There are some authors who consider similar multi-industry location problems based on

NEG. From the viewpoint of international economics, Puga and Venables (1996) and Krug-

man and Venables (1997) have examined the situation of multiple industries. These studies

have succeeded to describe the international spread of industry under increasing in demand of

manufacturing goods and industrial clustering under decreasing trade costs, respectively. How-

ever, workers are supposed to be immobile in their models, so their results are restricted to

international situations. Fujita, Krugman and Mori (1999) first find multiple industries form a

hierarchical urban system when the whole population increases. Their model assumes a continu-

ous space and residents are mobile. Although the industries are differentiated by their transport

costs, the costs are supposed to be constant there. Recently, Tabuchi and Thisse (2003), have

investigated location patterns of industries with different transport costs and urban costs. How-

ever, their analysis has been limited to the case of only two industries, and we will find that

some properties for multiple industries do not hold for the case of only two industries. Further-

more, they have focused on location changes with only decreasing commuting costs and have

not analyzed the case with decreasing simultaneously both transport and commuting costs. A

recent paper of Zeng (2003) has also described the regional specialization by a model of multiple

industries. There are two main differences between his model and the model here. First, Zeng

(2003) differentiates the industries by the numbers of unskilled workers necessary in their pro-

ductions, and the industries are supposed to have the same transport costs in the framework. In

contrast, industries are differentiated by their transport costs in our model. Second, the disper-
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sion force of Zeng (2003) is the agricultural sector, while the dispersion force here is originated

from urban costs and congestion. Both papers reveal the evolution process of a multi-industry

manufacturing sector in a complimentary way.

Each industry requires some skilled workers in its production. This paper supposes that

different industries require different kinds of skilled workers. In other words, interindustrial

mobility of skilled workers is not allowed here. We have several reasons. First, modern indus-

tries indeed depend on peculiar and special technologies and workers choose jobs according to

their educational experiences and abilities. Second, our main goal is to describe the regional

specialization via differences in transport costs, and we will find that the basic results are true

even if there are only three industries. Someone, who rejects our assumption by the fact that

some brilliant workers change their jobs quite often, might accept the assumption when we only

divide the skills roughly into three categories. Third, the model is analytically solvable by this

assumption. In contrast, if skilled workers are mobile across industries, the model becomes

intractable. (see Tabuchi and Thisse, 2003).

This paper has two main results. First, if population externality (i.e. congestion) does not

exist, at most one industry disperses when transport costs and commuting costs are sufficiently

low. Furthermore, industries having larger (resp. smaller) adjusted transport costs (defined as

the ratio of transport costs to the size of the industry) than that of the dispersing industry ag-

glomerate in one region (resp. the other region). The reason why transport costs are discounted

by size of the industry is that demand is less elastic against prices for industries with more

firms. Second, in the case of strong congestion, more than one industry might disperse even

if transport costs are sufficiently low. However, as the degree of congestion decreases, partial

regional specialization, in which multiple industries disperse, emerges first and then complete

regional specialization occurs.

The remainder of this paper is organized as follows. In Section 2, we give the NEG model

with multiple industries in the manufacturing sector. Then we examine all possible location

patterns in the model without congestion in Section 3 and with congestion in Section 4. Section

5 concludes.

2 The model

The economy has two regions, called H and F , and three goods, i.e. an initially endowed

homogeneous good which is chosen as the numéraire, a differentiated variety produced by firms

in each industry under increasing returns technology, and land. We assume that there are K

(≥ 2) types of industries and a continuum Ni of differentiated varieties supplied by industry i

(= 1, ..., K). It should be noted that there is also a continuum Ni of firms in industry i since

there are no scope of economies due to increasing returns technology.
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Firms use only labor for their production and there are K types of workers corresponding to

the types of industries because a special training is necessary for working in a particular industry.

In other words, for the reasons stated in Section 1, workers are immobile across industries.

Therefore, the number (measure) of workers in industry i is fixed to Li. On the other hand, we

assume that workers are mobile between regions. In other words, workers relocate without any

costs.

Land is not used by firms but by workers for their housing. Specifically, each region has

the central business district (CBD) as a point, and all firms in the region locate there. The

space is linearly distributed around the CBD and each location has one unit amount of land.

Each worker consumes one unit amount of land for residing and commutes to the CBD. In

addition, we assume that the commuting cost per unit of distance is θ units of numéraire, the

opportunity cost of land is normalized to zero, and the total land rent of one region is evenly

distributed to all residence in the region. Under these assumptions, net urban cost (i.e., land

rent payment+commuting cost−land rent revenue) per worker is given by (θ/4)×(population in

the region), which is independent of workers’ locations.

Generalizing the framework of Tabuchi and Thisse (2003) from two types of industries to K

types, workers are assumed to hold the same preference, which are described by a quasi-linear

utility with quadratic subutility:

U(q0, qi(j), j ∈ [0, Ni], i = 1, ..., K) =
K∑

i=1

[
α

∫ Ni

0
qi(j)dj

− (β − γ)Ni

2
K∑

k=1

Nk

∫ Ni

0
[qi(j)]2dj − γ

2
K∑

k=1

Nk

(∫ Ni

0
qi(j)dj

)2]
+ q0, (1)

where q0 stands for the consumption of the homogeneous good and qi(j) is the consumption of

variety j ∈ [0, Ni] in industry i. We assume that α > 0, β > 0, and β > γ, which means that this

utility function represents workers’ love for variety. We should note that the second term (which

represents the degree of love for variety) in the squared parenthesis is weighted by the relative

size of its industry (Ni/
∑K

k=1 Nk). This means that an industry with more firms (varieties) has

a greater impact on workers’ utility than an industry with fewerfirms.3 This utility function

also generalizes the one proposed by Ottaviano et al. (2002) for one industry only.

Each worker in region r (= H, F ) maximizes (1) under budget constraint

K∑

i=1

[∫ Ni

0
pir(j)qir(j)dj +

θ

4
Lir

]
+ q0 = wir + q0,

where pir(j) and qir(j) are the price and the consumption amount of variety j in industry i for

workers in region r, respectively, and where Lir and wir are the number (measure) of workers
3This weighting also significantly simplifies our mathematical analysis later.
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and the wage of workers in industry i and region r, respectively. Finally, q0 is the quantity of

the initially endowed homogeneous good.

Workers’ utility maximization gives the following individual demand function qir(j) and

indirect utility function Vir:

qir(j) =
∑K

k=1 Nk

Ni

[
a− bpir(j) + c

Pi

Ni

]
, (2)

Vir = (
K∑

k=1

Nk)
[

Ka2

2(b− c)
− a

K∑

k=1

∫ Nk

0 pkr(j)dj
Nk

+
b

2

K∑

k=1

∫ Nk

0 {pkr(j)}2dj

Nk

− c

2

K∑

k=1

{∫ Nk

0 pkr(j)dj}2

N2
k

]
+ wir + q0 −

θ

4

K∑

i=k

Lkr,

where a ≡ α/β, b ≡ 1/(β− γ), c ≡ γ/[β(β− γ)], and Pi ≡
∫ Ni

0 pir(k)dk, which is the price index

of industry i in region r. Since β > γ, we have 2b > b > c.

The demand function is linear with respect to prices. We should note that, however, coef-

ficients of prices are different between industries. Therefore, the demand is less elastic against

price for an industry with more firms (varieties). This is due to the specification of (1), where

the second term (the degree of love for variety) is weighted by the relative size of the industry.

Each firm produces a differentiated variety in a monopolistically competitive way. We assume

that each firm is negligible so its pricing has not influence on the price index P in (2). It is also

assumed that all industries could produce any amount of their varieties by using one unit of

worker, thus we obtain Ni = Li. Interregional transport costs of varieties are different between

industries and the transport cost of one unit of a variety in industry i is denoted by τ i. Under

these assumptions, all firms in the same industry and the same region are symmetric and a

typical firm in industry i and region r maximizes the following profit:

Πir = pirrqirr(pirr)
K∑

i=1

Lir + (pirs − τ i)qirs(pirs)
K∑

i=1

Lis − wir,

where qirs and pirs are the individual demand and the price in region s for firms of industry i

and located in region r.

The FOC of the profit maximization and the assumption of free entry givethe following

equilibrium price and wage:

p∗irr =
2a + cτ i(Lis/Li)

2(2b− c)
, p∗irs = p∗iss +

τ i

2
,

w∗ir =
b
∑K

k=1 Lk

Li

[
(p∗irr)

2
K∑

k=1

Lkr + (p∗irs − τ i)2
K∑

k=1

Lks

]
.

From these equations, we obtain the utility differential between two regions for workers of

industry i, ViH − ViF :

ViH − ViF = (SH − SF ) + (wiH − wiF ),
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SH − SF =
K∑

i=1

(
1
2
− λi)

[
L

b2(b− c)τ2
i − 2ab2τ i

(2b− c)2
+

θ

2
Li

]
,

wiH − wiF = bL

[
(
1
2
− λi)

{b + c
2( L

Li
− 2)}τ2

i − 2aτ i

(2b− c)
+

(b− c)τ2
i − 2aτ i

(2b− c)Li

∑

j 6=i

Lj(
1
2
− λj)

]
.

where Sr is the consumer’s surplus in region r, λi is the share of workers of industry i residing

in H, and L is the total number of workers,
∑K

k=1 Lk.

In addition, it is assumed that τ i = ωiτ , θ = ρτ for simplicity. This means that transport

costs and the commuting cost decrease proportionally when τ falls. The assumption is restrictive

but it enables us to describe the progress of transportation technology by only one parameter

(τ). Under this assumption, the utility differential ViH − ViF is rewritten as

ViH − ViF =(
1
2
− λi)

[
ω2

i ν1i − ωiν2 +
ρ

2
Liτ

]

+
∑

j 6=i

(
1
2
− λj)

[
ω2

jµ1 − ωjµ2 + ω2
i ξ

ij
1 − ωiξ

ij
2 +

ρ

2
Ljτ

]

=
∑

j

(
1
2
− λj)δij , (3)

where

ν1i ≡ bL̄τ2

2(2b− c)2

[
6b2 + 2

(
L

Li
− 4

)
bc−

(
L

Li
− 2

)
c2

]
, ν2 ≡ 2ab(3b− c)

(2b− c)2
Lτ ,

µ1 ≡
b2(b− c)
(2b− c)2

Lτ2, µ2 ≡
2ab2

(2b− c)2
Lτ , ξij

1 ≡ ξ1

Lj

Li
, ξij

2 ≡ ξ2

Lj

Li
,

ξ1 ≡
b(b− c)
2b− c

Lτ2, ξ2 ≡
2ab

2b− c
Lτ,

δij ≡
{

ω2
i ν1i − ωiν2 + ρ

2Liτ , if i = j,

ω2
jµ1 − ωjµ2 + ω2

i ξ
ij
i − ωij

2 + ρ
2Ljτ , if i 6= j.

Finally, we employ the following dynamic system to describe migration behavior between

regions.

dλi

dt
= ViH(λ)− ViF (λ) =

∑

j

(
1
2
− λj)δij .

3 Regional specialization by the progress of transportation tech-
nology

Now, we investigate how the various industries relocate when the transportation technology

develops which reduces the transport costs of products and the commuting cost. It will be

shown below that the location of industry i depends on the ratio of transport cost to the size of

the industry (= ωi/Li), which will be called adjusted transport cost. For convenience, we give

two technical assumptions here.
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• Adjusted transport costs are different between any two industries. Namely, ωi/Li 6= ωj/Lj

for any different i and j.

• The workers cannot be divided into two groups of the same population such that every

industry agglomerates. Namely, for any i1, . . . , il, . . . , iK ∈ {1, . . . , l, . . . , K},
l∑

j=1

Lij 6=
K∑

j=l+1

Lij . (4)

Furthermore, without loss of generality, we name the industries such that

ω1

L1
>

ω2

L2
> · · · > ωK

LK
. (5)

Since there are multiple types of industries, someone may worry about that there may exist

many kinds ofindustrial distributions. However, the following proposition tells us that only a

few stable location patterns are possible if the transport costs and the commuting cost are low

enough.

Proposition 1 At most one industry disperses if τ is small enough.

Proof. We show that any distribution pattern in which k(≥ 2) types of industries disperse

is unstable for sufficiently small τ . Contrarily, assume a stable equilibrium in which k types

of industries disperse and number them by 1, · · · , k. For these industries, define ∆ ≡ (δij)k×k.

Then all the real parts of the eigen values of (−∆) are negative, and hence, |∆| > 0.

Let

Υ ≡ (υij)k×k, where υij =
{

ω2
i ν1i − ωiµ2 − ωiξ2 if i = j,

ω2
jµ1 + ω2

i ξ
ij
1 − ωjµ2 − ωiξ

ij
2 if i 6= j,

Θi ≡ ρτ

2
Li




1
...
1




k×1

,

and (Θi,Υ−i) be the matrix Υ where the ith column is replaced by Θi. Since ν2 = µ2 + ξ2, it

follows that

|∆| = |Υ|+
k∑

i=1

∣∣(Θi,Υ−i)
∣∣ .

The first term is 2k-order polynomial of τ and the second one is (2k−1)-order polynomial of

τ . We can show that terms with orders below (2k−2) in both polynomials are all zero (see Part

(1) of Appendix A). Therefore, the terms of order (2k − 2) in the polynomials are significant if

τ is small enough. We can also show that the (2k − 2)- order term in |Υ| is negative while the

(2k− 2)-order term in
∑k

i=1

∣∣(Θi,Υ−i)
∣∣ is zero (see Part (2) of Appendix A). Therefore, when τ
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is small enough, it holds that |∆| < 0. The contradiction implies that plural types of industries

could not disperse simultaneously.

This proposition tells us that if τ is small enough, the following two patterns of location are

the only possibly stable equilibria:

(a) Each industry agglomerates in a region;

(b) Only one industry disperses while other industries agglomerate.

In our model, two regions are supposed to be symmetric. To clarify the location patterns,

we focus on the equilibria in which the population in region H is larger than or equal to the

population in region F . For i, l = 1, · · · ,K, let

ρ†(i, l) ≡ 4abL

2b− c

[
ωi

Li
+

b

2b− c

∑l
j=1 ωj −

∑K
j=l+1 ωj∑l

j=1 Lj −
∑K

j=l+1 Lj

]
. (6)

Those notations have the following property:

Lemma 1 (i) Function ρ†(i, l) is strictly decreasing with respect to i. Namely, ρ†(i, l) > ρ†(i +

1, l) holds for i = 1, · · · ,K − 1.

(ii) If
∑l−1

j=1 Lj >
∑K

j=l Lj, then ρ†(l, l) < ρ†(l, l − 1).

(iii) If
∑l

j=1 Lj >
∑K

j=l+1 Lj, then ρ†(i, l) is positive for any i.

Proof. (i) follows directly from (5).

(ii) Since
∑l−1

j=1 Lj >
∑K

j=l Lj , we have

l−1∑

j=1

ωj −
K∑

j=l

ωj >
ωl

Ll

( l−1∑

j=1

Lj −
K∑

j=l

Lj

)
> 0,

where the first inequality is from (5). The first inequality can be rewritten as

ωl

( l−1∑

j=1

Lj −
K∑

j=l

Lj

)
< Ll

( l−1∑

j=1

ωj −
K∑

j=l

ωj

)
,

and hence
∑l−1

j=1 ωj −
∑K

j=l ωj∑l−1
j=1 Lj −

∑K
j=l Lj

<

∑l−1
j=1 ωj −

∑K
j=l ωj + 2ωl∑l−1

j=1 Lj −
∑K

j=l Lj + 2Ll

=

∑l
j=1 ωj −

∑K
j=l+1 ωj∑l

j=1 Lj −
∑K

j=l+1 Lj

,

which derives ρ†(l, l) < ρ†(l, l − 1).

(iii) Since
∑l

j=1 Lj >
∑K

j=l+1 Lj , then

0 < ωl

( l∑

j=1

Lj −
K∑

j=l+1

Lj

)
< Ll

( l∑

j=1

ωj −
K∑

j=l+1

ωj

)
,
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so that the last term of (6) is positive. Therefore, ρ†(i, l) > 0 holds for any i.

The following lemma provides the stability conditions of patterns (a) and (b), where we

define ρ†(K + 1,K) ≡ 0 for convenience:

Lemma 2 (i) In any stable equilibrium of pattern (a), there is an industry l such that industries

1, · · · , l agglomerate in the larger region, industries l + 1, · · · ,K agglomerate in the smaller

region, and ρ†(l, l) ≥ ρ ≥ ρ†(l + 1, l).

(ii) If there is an industry l with
∑l

j=1 Lj >
∑K

j=l+1 Lj and ρ†(l, l) > ρ > ρ†(l + 1, l), then

the equilibrium, in which industries 1, · · · , l agglomerate in region H and industries l+1, · · · ,K

agglomerate in region F , is stable.

Proof. See Appendix B.

Lemma 3 Let λ∗ be an equilibrium of pattern (b), where industry l disperses while other in-

dustries agglomerate. Then this equilibrium is stable if and only if

(i) either λ∗ = (1, · · · , 1, λ∗l , 0, · · · , 0) or λ∗ = (0, · · · , 0, λ∗l , 1, · · · , 1),

(ii)
l∑

j=1

Lj >
K∑

j=l+1

Lj .

(iii) ρ ∈ (ρ†(l, l), ρ†(l, l − 1)) if
l−1∑

j=1

Lj >
K∑

j=l

Lj,

(iv) ρ > ρ†(l, l) if
l−1∑

j=1

Lj <
K∑

j=l

Lj .

Proof. See Appendix C.

These lemmas have the following implication. First, for a sufficiently small τ , industries

with larger adjusted transport costs (ωi/Li) locate separately from those with smaller adjusted

transport costs. In other words, regional specialization based on adjusted transport costs oc-

curs. Second, industries with larger adjusted transport costs locate in the region with larger

population. Third, the dispersing industry l is determined by the relative size of the commuting

cost to transport costs, ρ.

Let l] be the industry such that

l]∑

j=1

Lj >

K∑

j=l]+1

Lj ,
l]−1∑

j=1

Lj <

K∑

j=l]

Lj .

Then we obtain the next proposition from proposition 1, Lemmas 1, 2 and 3.
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Proposition 2 (Regional specialization) If τ is small enough, the location pattern λ∗ is uniquely

determined. If ρ is also small enough, all industries agglomerate in a region; otherwise industries

with smaller adjusted transport costs locate in the smaller region. Specifically,

• if ρ < ρ†(K, K), then λ∗ = (1, · · · , 1),

• if ρ†(K, K) < ρ < ρ(K,K − 1), then λ∗ = (1, · · · , 1, λ∗K) [0 < λ∗K < 1],

• if ρ(K,K − 1) < ρ < ρ(K − 1,K − 1), then λ∗ = (1, · · · , 1, 0),

• if ρ(K − 1,K − 1) < ρ < ρ(K − 1,K − 2), then λ∗ = (1, · · · , 1, λ∗K−1, 0) [0 < λ∗K−1 < 1],
...

• if ρ†(l], l]) < ρ, then λ∗ = (1, · · · , 1, λ∗l] , 0, · · · , 0) [0 < λ∗l] < 1].

It is intuitively clear that ρ is significant for the location patterns since the urban cost based

on the commuting cost is the only dispersion force in our model. In contrast, it is not so

intuitive why the adjusted transport cost, ωi/Li, is so important in determining the industrial

location. To understand it, we first note that the progress of the transportation technology

might enable industries with lower transport costs to leave the bigger region. This is because,

for such industries, the gain from reducing the urban cost by moving to the smaller region might

be larger than the loss from increasing transport costs by leaving the big market. However, why

the transport cost should be adjusted? Remember that when a firm relocates from the bigger

region to the smaller one, the consumer price of its product in the big market increases and

its demand decreases. The demand function (2) shows that the decreases by rising prices are

different between industries, i.e., demand is less elastic against prices for industries with more

firms (varieties). In other words, even if the consumer price of a variety rises because of the

relocation of its producer, the demand does not decrease so much if the industry contains many

firms (varieties). Thus finally, the adjusted transport cost is more proper than the transport

cost itself for determining the location pattern.

Until now, we have focused our attention on the case of small τ . The cases of intermediate

and large τ are also important but there are too many possible equilibria. Therefore, we only

provide a conclusion about the stability of the full agglomeration pattern, λ∗ = (1, · · · , 1).

When λ∗ = (1, · · · , 1), from (3), the utility differential ViH − ViF is rewritten as

ViH − ViF = −
[
Aiτ

2 + (Bi − ρ

4
)τ

]
L, (7)

where

Ai ≡ b

4(2b− c)2

[(
4L

Li
ω2

i + 2
K∑

j=1

ω2
j

)
b(b− c) +

L

Li
c2

]
> 0,

12



Bi ≡ ab

(2b− c)2

[
(2b− c)

L

Li
ωi + b

K∑

j=1

ωj

]
> 0.

We have mini Bi = BK = ρ†(K, K)/4 from (5). Therefore, we conclude that (i) if BK < ρ/4

(or equivalently, ρ > ρ†(K,K)), then the full agglomeration is never stable, (ii) if BK > ρ/4 (or

equivalently, ρ < ρ†(K,K)), then the full agglomeration is stable if τ is not too large.4

From the above conclusions, we can not find an evolution pattern ‘from full agglomeration

to regional specialization.’ Such a pattern, however, might occur if we consider congestion as

we will do in next section.

4 Congestion case

Tabuchi (1998) and Helpman (1998) found that when transport costs of manufacturing goods

decrease, the industrial location shifts from agglomeration to dispersion since the urban costs

(e.g. housing and commuting costs) become relatively large. By Proposition 2, however, the

location pattern does not necessarily shift to dispersion. The difference between these results

is due to the different assumptions of urban cost. Our model assumes that the progress of the

transportation technology decreases the commuting cost and the urban cost decrease propor-

tionally with transport costs, while Tabuchi (1998) and Helpman (1998) do not assume that the

technology development reduces the urban cost.

More specifically, our model assumes the Alonso type city whose residential area changes

with population size. However, in the framework of Helpman (1998), the residential area is

limited, so that the land per worker is smaller in the region with more population, and the

loss from agglomeration is not reduced by the technology progress. Second, our model in the

preceding sections does not consider population externality such as congestion and environmental

pollution. Those factors are not decreased by the progress of the transportation technology.

To make our analysis more complete, this section introduces population externality into the

previous model and investigatesthe location pattern again. For simplicity, we further specify

that K = 3, Li = L (i = 1, 2, 3), and ω1 > ω2 > ω3. Concerning the population externality, it is

assumed that workers’ expenditure inevitably increases with increasing population. Specifically,

while the urban cost was given by (ρτ/4)×(population in the region) previously, it is given

by [(ρτ + ε)/4]×(population in the region) in this section, where ε > 0. Therefore, even if τ is

small, the urban cost does not disappear and hence, the dispersion force works significantly. This

implies that the population in two regions are almost equalized if τ is small enough. Thus, it

becomes impossible for more than two industries to agglomerate in a single region (e.g., location
4Let Bi∗/Ai∗ ≡ min Bi/Ai and τ trade ≡ min 2a/{ωi(2b− c)}. For trade to occur in all industries regardless of

the location patterns, it should hold that τ < τ trade, which is assumed to be true here. If ρ < 4(Bi∗ −Ai∗τ trade),
then the full agglomeration is always stable. If 4(Bi∗ −Ai∗τ trade) < ρ < ρ†(K, K), then the full agglomeration is
stable when 0 < τ < (Bi∗ − ρ/4)/Ai∗ .
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patterns λ∗ = (1, 1, 1), (1, 1, λ∗3), and (1, 1, 0) are impossible). In other words, the following three

location patterns are the only possible distributions, where 0 < λ∗1 < 1, 0 < λ∗2 < 1, 0 < λ∗2 < 1

if τ is small enough.5:

(A) full dispersion: all industries disperse (λ∗ = (λ∗1, λ
∗
2, λ

∗
3));

(B) complete regional specialization: one industry disperses while the others agglomerate in

different regions, (λ∗ = (λ∗1, 0, 1), (1, λ∗2, 0), (0, 1, λ∗3));

(C) partial regional specialization: two industries disperse and the remaining one agglomerates

in a region (λ∗ = (1, λ∗2, λ
∗
3), (λ∗1, 1, λ∗3), (λ∗1, λ

∗
2, 0)).

The following lemmas give us the stability conditions of patterns (A) and (B), where

ε0 ≡ 16a2b2

c(2b− c)2
ω2

1(ω2 − ω3)2 + ω2
2(ω3 − ω1)2 + ω2

3(ω1 − ω2)2

ω2
1ω

2
2 + ω2

2ω
2
3 + ω2

3ω
2
1

,

ε1 ≡ 16a2b2

c(2b− c)2
(ω1 − ω2)(ω1 − ω3)

ω2
1

,

ε2 ≡ 16a2b2

c(2b− c)2
(ω1 − ω3)(ω2 − ω3)

ω2
3

,

ω2 ≡ ω2
3

ω2
1 + ω2

3

ω1 +
ω2

1

ω2
1 + ω2

3

ω3.

It holds that ε̄0 > min{ε̄1, ε̄2}.6

Lemma 4 If τ is small enough, λ∗ = (1/2, 1/2, 1/2) is a unique and stable equilibrium if and

only if ε > ε0. This is the only possible equilibrium in location pattern (A).

Proof. See Appendix D.

Lemma 5 If τ is small enough, λ∗ = (1, λ∗2, 0) is a unique and stable equilibrium if and only if

ε < min{ε1, ε2}. This is the only possible equilibrium in location pattern (B).

Proof. See Appendix E.

These lemmas tell us that if τ is small enough, the location pattern is uniquely determined

if ε > ε0 or ε < min{ε1, ε2}. When ε ∈ (min{ε1, ε2}, ε0), a location pattern of (C) occurs, which

is also uniquely determined. Specifically, we have the following proposition:

Proposition 3 (Regional specialization with congestion) For sufficiently small τ , the location

pattern λ∗ depends on the degree of externality ε. All industries disperse evenly for large ε,

industry 2 disperses while industries 1 and 3 agglomerate in different regions for small ε, two

industries disperse and the 3rd one agglomerate for intermediate ε. Specifically,
5By the symmetry of regions, symmetry patterns like (λ∗1, 0, 1) and (λ∗1, 1, 0) are considered to be the same.
6See Appendix F.
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• if ε > ε0, then λ∗ = (1/2, 1/2, 1/2).

(i) When ω2 > ω2, we have ε1 < ε0 < ε2 and,

• if ε1 < ε < ε0, then λ∗ = (λ∗1, λ
∗
2, 0),

• if ε < ε1, then λ∗ = (1, λ∗2, 0).

(ii) When ω2 < ω2, we have ε2 < ε0 < ε1 and,

• if ε2 < ε < ε0, then λ∗ = (1, λ∗2, λ
∗
3),

• if ε < ε2, then λ∗ = (1, λ∗2, 0).

Proof. See Appendix F.

If ε is large enough, all industries disperse evenly, but as ε decreases, partial regional special-

ization first emerges and then complete regional specialization occurs. Specifically, (i) when ω2

is relatively large and close to ω1, industry 3 first agglomerates in a region and then industry 1

agglomerates in the other region. On the other hand, (ii) when ω2 is relatively small and close

to ω3, industry 1 first agglomerates in a region and then industry 3 agglomerates in the other

region. In the both cases, when ε is small enough, industry 1 and industry 3 agglomerate in

different regions.

The reason why patterns of regional specialization emerge as ε decreases is understandable.

If ε is small, some industries enjoy more gains from market access than suffering the losses

from congestion when they locate in the larger region. Such industries are the ones with higher

transport costs and they form the larger region. For example, we know that limτ→0 λ∗2 >

limτ→0 λ∗3 and λ∗2 + λ∗3 converges to 1/2 from above in equilibrium (1, λ∗2, λ
∗
3) [see the end of

Appendix F.], and that λ∗2 converges to 1/2 from above in equilibrium (1, λ∗2, 0) [see Appendix

E.].

The main result of Zeng (2003) and Proposition 1 show that at most one industry disperses

if τ is small enough. In contrast, Proposition 3 shows that the result is true only if ε is small

enough.

Finally, we will consider the case that τ is middle or large, but we will show only a few things

about the stability of the full agglomeration pattern, as the previous section.

When λ∗ = (1, 1, 1), the utility differential of industry i, ViH − ViF , is rewritten as

ViH − ViF = −
[
Aiτ

2 + (Bi − ρ

4
)τ − ε

4

]
L,

where Ai and Bi are the same parameters in (7). Therefore, we conclude that (i) if ρ > ρ†(K, K),

then the full agglomeration is never stable, (ii) if ρ < ρ†(K,K) and ε is small enough, then there

exists an interval of τ where the full agglomeration is stable. In other words, with Proposition

3, there exist patterns of ‘from full agglomeration to regional specialization.’
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5 Concluding remarks

The regional specialization via differences in transport costs has been observed in Japanese

manufacturing industries. Concretely, industries with low transport costs for their goods (e.g.

electrical machinery, precision instruments) have relocated to periphery regions while industries

with high transport costs for their goods (e.g. iron and steel, petroleum and coal products)

remained close to the core. This paper provides a theoretical foundation for this fact, by inves-

tigating where various industries tend to locate when the transportation technology develops.

To this aim, we have analyzed the location of industries which are differentiated by transport

costs and size (number of firms) by use of an analytically solvable model of new economic ge-

ography. The urban costs and congestion are explicitly included in the model. The obtained

results are consistent with the observed empirical phenomenon. Furthermore, our results support

the regional policy of some Japanese local governments, which aims to invite ‘close-to-airport’

industries by improving the facilities in their local airports.

Typical industries with low transport costs are software and information processing. These

industries also contain many firms (varieties) so their adjusted transport costs are also low. Our

theoretical results predict that they should locate in periphery region. However, until now, we

have not observed such a location pattern in Japan. According to the Survey on Service Indus-

tries (2000), the revenue share of both Software industry and Information processing & providing

industry in the Core are nearly 80%. We guess that this is because these industries strongly

require inter-firm communications and market information. Communication and information

externality are strong in large cities, which are not included in our model.
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Appendix A. Calculation of |∆|
(1) Terms of orders below (2k − 2)

First, we will consider |Υ|. The elements of Υ are composed of the τ2-terms (ν1i, µ1, ξij
1 )

and τ -terms (µ2, ξij
2 ). If |Υ| is decomposed to sum of determinants in which each column is

composed of only τ2-terms or only τ -terms, then the terms of the order which is below (2k−2) in

|Υ| could be represented as sum of determinants with at least three columns which are composed
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of only τ -terms. One of the determinants, for example, is
∣∣∣∣∣∣∣∣∣

−ω1µ2 − ω1
L1
L1

ξ2 −ω2µ2 − ω1
L2
L1

ξ2 −ω3µ2 − ω1
L3
L1

ξ2 υ14 · · · υ1k

−ω1µ2 − ω2
L1
L2

ξ2 −ω2µ2 − ω2
L2
L2

ξ2 −ω3µ2 − ω2
L3
L2

ξ2 υ24 · · · υ2k

...
...

...
...

. . .
...

−ω1µ2 − ωk
L1
Lk

ξ2 −ω2µ2 − ωk
L2
Lk

ξ2 −ω3µ2 − ωk
L3
Lk

ξ2 υk4 · · · υkk

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

−ω1µ2 − ω1
L1
L1

ξ2 −ω2µ2 − ω1
L2
L1

ξ2 −ω3µ2 − ω1
L3
L1

ξ2 · · ·
L1(ω1

L1
− ω2

L2
)ξ2 L2(ω1

L1
− ω2

L2
)ξ2 L3(ω1

L1
− ω2

L2
)ξ2 · · ·

...
...

...
...

L1(ω1
L1
− ωk

Lk
)ξ2 L2(ω1

L1
− ωk

Lk
)ξ2 L3(ω1

L1
− ω2

L2
)ξ2 · · ·

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

−ω1µ2 − ω1
L1
L1

ξ2 (L2
L1

ω1 − ω2)µ2 (L3
L1

ω1 − ω3)µ2 · · ·
L1(ω1

L1
− ω2

L2
)ξ2 0 0 · · ·

...
...

...
...

L1(ω1
L1
− ωk

Lk
)ξ2 0 0 · · ·

∣∣∣∣∣∣∣∣∣
,

so we can show that it is zero. Of course, this result holds even if the columns with τ -terms are

in different places.

Next, we will consider
∑k

i=1

∣∣(Θi,Υ−i)
∣∣. If

∣∣(Θi,Υ−i)
∣∣ is decomposed to sum of determinants

like above, then the term of the order which is below (2k−2) in
∣∣(Θi,Υ−i)

∣∣ could be representedas

sum of determinants with at least two columns which are composed of only τ -terms except for

ith column. One of the determinant, for example, is

∣∣∣∣∣∣∣∣∣

ρτL1/2 −ω2µ2 − ω1
L2
L1

ξ2 −ω3µ2 − ω1
L3
L1

ξ2 υ14 · · · υ1k

ρτL1/2 −ω2µ2 − ω2
L2
L2

ξ2 −ω3µ2 − ω2
L3
L2

ξ2 υ24 · · · υ2k

...
...

...
...

. . .
...

ρτL1/2 −ω2µ2 − ωk
L2
Lk

ξ2 −ω3µ2 − ωk
L3
Lk

ξ2 υk4 · · · υkk

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣

ρτL1/2 −ω2µ2 − ω1
L2
L1

ξ2 −ω3µ2 − ω1
L3
L1

ξ2 · · ·
0 L2(ω1

L1
− ω2

L2
)ξ2 L3(ω1

L1
− ω2

L2
)ξ2 · · ·

...
...

...
...

0 L2(ω1
L1
− ωk

Lk
)ξ2 L3(ω1

L1
− ωk

Lk
)ξ2 · · ·

∣∣∣∣∣∣∣∣∣

=
ρτL1

2

∣∣∣∣∣∣∣

L2(ω1
L1
− ω2

L2
)ξ2 L3(ω1

L1
− ω2

L2
)ξ2 · · ·

...
...

...
L2(ω1

L1
− ωk

Lk
)ξ2 L3(ω1

L1
− ωk

Lk
)ξ2 · · ·

∣∣∣∣∣∣∣

=
ρτL1

2

∣∣∣∣∣∣∣

L2(ω1
L1
− ω2

L2
)ξ2 0 · · ·

...
...

...
L2(ω1

L1
− ωk

Lk
)ξ2 0 · · ·

∣∣∣∣∣∣∣
,

so we can show that it is also zero. Of course, this result holds even if the columns with τ -terms

and Θi are in different places.

Therefore, we have shown that the terms of orders below (2k − 2) in |∆| are all zero. ¥
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(2) The (2k − 2)-order term
First, we will consider the τ (2k−2)-term in |Υ|. This term could be represented as sum of

determinants which has only two columns with τ -terms by the above decomposition, and one of
the determinant, for example, is calculated as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ω1µ2 − ω1
L1
L1

ξ2 −ω2µ2 − ω1
L2
L1

ξ2 ω2
3µ1 + ω2

1
L3
L1

ξ1 ω2
4µ1 + ω2

1
L4
L1

ξ1 · · · ω2
kµ1 + ω2

1
Lk

L1
ξ1

−ω1µ2 − ω2
L1
L2

ξ2 −ω2µ2 − ω2
L2
L2

ξ2 ω2
3µ1 + ω2

2
L3
L2

ξ1 ω2
4µ1 + ω2

2
L4
L2

ξ1 · · · ω2
kµ1 + ω2

2
Lk

L2
ξ1

−ω1µ2 − ω3
L1
L3

ξ2 −ω2µ2 − ω3
L2
L3

ξ2 ω2
3ν13 ω2

4µ1 + ω2
3

L4
L3

ξ1 · · · ω2
kµ1 + ω2

3
Lk

L3
ξ1

−ω1µ2 − ω4
L1
L4

ξ2 −ω2µ2 − ω4
L2
L4

ξ2 ω2
3µ1 + ω2

4
L3
L4

ξ1 ω2
4ν14 · · · ω2

kµ1 + ω2
4

Lk

L4
ξ1

...
...

...
...

. . .
...

−ω1µ2 − ωk
L1
Lk

ξ2 −ω2µ2 − ωk
L2
Lk

ξ2 ω2
3µ1 + ω2

k
L3
Lk

ξ1 ω2
4µ1 + ω2

k
L4
Lk

ξ1 · · · ω2
kν1k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(L1 · · ·Lk)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ω1
L1

µ2 − ω1
L1

ξ2 (ω1
L1
− ω2

L2
)µ2

ω2
3

L3
µ1 + ω2

1
L1

ξ1
ω2

4
L4

µ1 + ω2
1

L1
ξ1 · · · ω2

k

Lk
µ1 + ω2

1
L1

ξ1

(ω1
L1
− ω2

L2
)ξ2 0 (ω2

2
L2
− ω2

1
L1

)ξ1 (ω2
2

L2
− ω2

1
L1

)ξ1 · · · (ω2
2

L2
− ω2

1
L1

)ξ1

(ω1
L1
− ω3

L3
)ξ2 0 ω2

3(ν13−µ1)
L3

− ω2
1

L1
ξ1 (ω2

3
L3
− ω2

1
L1

)ξ1 · · · (ω2
3

L3
− ω2

1
L1

)ξ1

(ω1
L1
− ω4

L4
)ξ2 0 (ω2

4
L4
− ω2

1
L1

)ξ1
ω2

4(ν14−µ1)
L4

− ω2
1

L1
ξ1 · · · (ω2

4
L4
− ω2

1
L1

)ξ1

...
...

...
...

. . .
...

(ω1
L1
− ωk

Lk
)ξ2 0 (ω2

k

Lk
− ω2

1
L1

)ξ1 (ω2
k

Lk
− ω2

1
L1

)ξ1 · · · ω2
k(ν1k−µ1)

Lk
− ω2

1
L1

ξ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=(
ω1

L1
− ω2

L2
)µ2(L1 · · ·Lk)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 · · · 0
(ω1

L1
− ω2

L2
)ξ2 0 (ω2

2
L2
− ω2

1
L1

)ξ1 (ω2
2

L2
− ω2

1
L1

)ξ1 · · · (ω2
2

L2
− ω2

1
L1

)ξ1

(ω1
L1
− ω3

L3
)ξ2 0 ω2

3(ν13−µ1)
L3

− ω2
1

L1
ξ1 (ω2

3
L3
− ω2

1
L1

)ξ1 · · · (ω2
3

L3
− ω2

1
L1

)ξ1

(ω1
L1
− ω4

L4
)ξ2 0 (ω2

4
L4
− ω2

1
L1

)ξ1
ω2

4(ν14−µ1)
L4

− ω2
1

L1
ξ1 · · · (ω2

4
L4
− ω2

1
L1

)ξ1

...
...

...
...

. . .
...

(ω1
L1
− ωk

Lk
)ξ2 0 (ω2

k

Lk
− ω2

1
L1

)ξ1 (ω2
k

Lk
− ω2

1
L1

)ξ1 · · · ω2
k(ν1k−µ1)

Lk
− ω2

1
L1

ξ1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=− (
ω1

L1
− ω2

L2
)µ2ξ2(L1 · · ·Lk)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1
L1
− ω2

L2
(ω2

2
L2
− ω2

1
L1

)ξ1 0 · · · 0
ω1
L1
− ω3

L3

ω2
3

L3
(ν13 − µ1)− ω2

1
L1

ξ1 −ω2
3

L3
(ν13 − µ1 − ξ1) · · · −ω2

3
L3

(ν13 − µ1 − ξ1)
ω1
L1
− ω4

L4
(ω2

4
L4
− ω2

1
L1

)ξ1
ω2

4
L4

(ν14 − µ1 − ξ1) · · · 0
...

...
...

. . .
...

ω1
L1
− ωk

Lk
(ω2

k

Lk
− ω2

1
L1

)ξ1 0 · · · ω2
k

Lk
(ν1k − µ1 − ξ1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

=− (
ω1

L1
− ω2

L2
)µ2ξ2(L1 · · ·Lk)

∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1
L1
− ω2

L2
(ω2

2
L2
− ω2

1
L1

)ξ1 0 · · · 0
A B 0 · · · 0

ω1
L1
− ω4

L4
(ω2

4
L4
− ω2

1
L1

)ξ1
ω2

4
L4

ψ14 · · · 0
...

...
...

. . .
...

ω1
L1
− ωk

Lk
(ω2

k

Lk
− ω2

1
L1

)ξ1 0 · · · ω2
k

Lk
ψ1k

∣∣∣∣∣∣∣∣∣∣∣∣∣

where

ψ1i ≡ ν1i − µ1 − ξ1 =
bcL

2
τ2

2(2b− c)Li
,
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A ≡ (
ω1

L1
− ω3

L3
) +

k∑

i=4

(
ω3Li

ωiL3
)2(

ω1

L1
− ωi

Li
),

B ≡ ω2
3

L3
ψ13+

{
(
ω2

3

L3
− ω2

1

L1
) +

k∑

i=4

(
ω3Li

ωiL3
)2(

ω2
i

Li
− ω2

1

L1
)
}

ξ1.

Furthermore, we obtain

(L1 · · ·Lk)

∣∣∣∣∣
ω1
L1
− ω2

L2
(ω2

2
L2
− ω2

1
L1

)ξ1

A B

∣∣∣∣∣
∏

l 6=1,2,3

ω2
l ψ1l

Ll

=(
ω1

L1
− ω2

L2
)

k∏

j=1

Lj

[
ω2

3

L3
ψ13+

{
(
ω2

3

L3
− ω2

1

L1
) +

k∑

i=4

(
ω3Lk

ωiL3
)2(

ω2
i

Lk
− ω2

1

L1
)
}

ξ1

] ∏

l 6=1,2,3

ω2
l ψ1l

Ll

− (
ω2

2

L2
− ω2

1

L1
)

k∏

j=1

Lj

[
(
ω1

L1
− ω3

L3
) +

k∑

i=4

(
ω3Li

ωiL3
)2(

ω1

L1
− ωi

Li
)

]
ξ1

∏

l 6=1,2,3

ω2
l ψ1l

Ll

=(ω1L2 − ω2L1)

[
ω2

3ψ13 +

{
(ω2

3 −
L3

L1
ω2

1) + L3

k∑

i=4

(
ω3Li

ωiL3
)2(

ω2
i

Li
− ω2

1

L1
)

}
ξ1

] ∏

l 6=1,2,3

ω2
l ψ1l

− (ω2
2L1 − ω2

1L2)

[
(
L3

L1
ω1 − ω3) + L3

k∑

i=4

(
ω3Li

ωiL3
)2(

ω1

L1
− ωi

Li
)

]
ξ1

∏

l 6=1,2,3

ω2
l ψ1l

=(ω1L2 − ω2L1)
∏

l 6=1,2

ω2
l ψ1l

+ ξ1

∏

l 6=1,2,3

ω2
l ψ1l

[
(ω1L2 − ω2L1)(ω2

3 −
L3

L1
ω2

1)− (ω2
2L1 − ω2

1L2)(
L3

L1
ω1 − ω3)

]

+ ξ1

∏

l 6=1,2,3

ω2
l ψ1l

[
(ω1L2 − ω2L1)

k∑

i=4

L3

Li
(
ω3Li

ωiL3
)2(ω2

i −
Li

L1
ω2

1)

− (ω2
2L1 − ω2

1L2)
k∑

i=4

L3

Li
(
ω3Li

ωiL3
)2(

Li

L1
ω1 − ωk)

]

=(ω1L2 − ω2L1)
∏

l 6=1,2

ω2
l ψ1l

+ [ω1ω2(ω1 − ω2)L3 + ω2ω3(ω2 − ω3)L1 + ω3ω1(ω3 − ω1)L2] ξ1

∏

l 6=1,2,3

ω2
l ψ1l

+ ξ1ω
2
i

L3

Li
ψ13

∏

l 6=1,2,3,k

ω2
l ψ1l

k∑

i=4

[
(ω1L2 − ω2L1)

L3

Li
(
ω3Li

ωiL3
)2(ω2

i −
Li

L1
ω2

1)

− (ω2
2L1 − ω2

1L2)
L3

Li
(
ω3Li

ωiL3
)2(

Li

L1
ω1 − ω4)

]
,

and the last term of the equation could be written as

ξ1ω
2
3ψ13

∏

l 6=1,2,3,i

ω2
l ψ1l

k∑

i=4

[
(ω1L2 − ω2L1)(ω2

i −
Li

L1
ω2

1)− (ω2
2L1 − ω2

1L2)ω2
3(

Li

L1
ω1 − ωi)

]
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=
k∑

i=4

[ω1ω2(ω1 − ω2)Li + ω2ωi(ω2 − ωi)L1 + ωiω1(ωi − ω1)L2] ξ1

∏

l 6=1,2,i

ω2
l ψ1l.

Therefore, the determinant which has columns with τ -terms in the first and second columns

could be represented as

−(
ω1

L1
− ω2

L2
)µ2ξ2

{
(ω1L2 − ω2L1)

∏

l 6=1,2

ω2
l ψ1l + ξ1

∏

l 6=1,2,i

ω2
l ψ1l

k∑

i=3

[
ω1ω2(ω1 − ω2)Li + ω2ωi(ω2 − ωk)L1 + ωiω1(ωi − ω1)L2

]}
.

By the same way, the determinant which has columns with τ -terms in the mth and nth columns

could be represented as

−(
ωm

Lm
− ωn

Ln
)µ2ξ2

{
(ωmLn − ωnLm)

∏

l 6=m,n

ω2
l ψ1l + ξ1

∏

l 6=m,n,i

ω2
l ψ1l

k∑

i6=m,n

[
ωmωn(ωm − ωn)Li + ωnωi(ωn − ωi)Lm + ωiωm(ωi − ωm)Ln

]}
.

The τ (2k−2)-term in |Υ| is sum of the above determinants for all (m,n) ∈ κ, where κ is the

set of combinations from {1, · · · ,K}. We should note that

∑

(m,n)∈κ

{
(
ωm

Lm
− ωn

Ln
)

k∑

i6=m,n

[
ωmωn(ωm − ωn)Li

+ ωnωi(ωn − ωi)Lm + ωiωm(ωi − ωm)Ln

] ∏

l 6=m,n,i

ω2
l ψ1l

}

is zero, then the τ (2k−2)-term in |Υ| could be written as

−
∑

(m,n)∈κ

(
ωm

Lm
− ωn

Ln
)µ2ξ2(ωmLn − ωnLm)

∏

l 6=m,n

ω2
l ψ1l

= −µ2ξ2

∑

(m,n)∈κ

(ωmLn − ωnLm)2
∏

l 6=m,n

ω2
l ψ1l

LmLn

= − a2bk+1ck−2L
2k−2

2k−4(2b− c)k+1
∏

Li

[ ∑

(m,n)∈κ

(ωmLn − ωnLm)2
∏

l 6=m,n

ω2
l

]
τ2k−2

< 0,

where the last inequality holds from assumption (5).

Next, we will consider the τ (2k−2)-term in
∑k

i=1

∣∣(Θi,Υ−i)
∣∣. This term could be represented

as sum of determinants which has only one column with τ -terms except for ith column by the

above decomposition, and one of the determinant, for example, is calculated as
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρτL1/2 −ω2µ2 − ω1
L2
L1

ξ2 ω2
3µ1 + ω2

1
L3
L1

ξ1 ω2
4µ1 + ω2

1
L4
L1

ξ1 · · · ω2
kµ1 + ω2

1
Lk
L1

ξ1

ρτL1/2 −ω2µ2 − ω2
L2
L2

ξ2 ω2
3µ1 + ω2

2
L3
L2

ξ1 ω2
4µ1 + ω2

2
L4
L2

ξ1 · · · ω2
kµ1 + ω2

2
Lk
L2

ξ1

ρτL1/2 −ω2µ2 − ω3
L2
L3

ξ2 ω2
3ν13 ω2

4µ1 + ω2
3

L4
L3

ξ1 · · · ω2
kµ1 + ω2

3
Lk
L3

ξ1

ρτL1/2 −ω2µ2 − ω4
L2
L4

ξ2 ω2
3µ1 + ω2

4
L3
L4

ξ1 ω2
4ν14 · · · ω2

kµ1 + ω2
4

Lk
L4

ξ1
...

...
...

...
. . .

...
ρτL1/2 −ω2µ2 − ωk

L2
Lk

ξ2 ω2
3µ1 + ω2

k
L3
Lk

ξ1 ω2
4µ1 + ω2

k
L4
Lk

ξ1 · · · ω2
kν1k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (
ρτ

2
)ξ2

{
(ω1L2 − ω2L1)

∏

l 6=1,2

ω2
l ψ1l + ξ1

∏

l 6=1,2,i

ω2
l ψ1l

k∑

i=3

[
ω1ω2(ω1 − ω2)Li + ω2ωi(ω2 − ωk)L1 + ωiω1(ωi − ω1)L2

]}

by the same way as used for the case of |Υ|.
Thus, such a determinant is generally expressed as

(
ρτ

2
)ξ2

{
(ωmLn − ωnLm)

∏

l 6=m,n

ω2
l ψ1l + ξ1

∏

l 6=m,n,i

ω2
l ψ1l

k∑

i6=m,n

[
ωmωn(ωm − ωn)Li + ωnωi(ωn − ωi)Lm + ωiωm(ωi − ωm)Ln

]}
.

The τ (2k−2)-term in
∑k

i=1

∣∣(Θi,Υ−i)
∣∣ is sum of the above determinants for all (m,n) ∈ κ,

where κ is the set of permutations from {1, · · · ,K}. We should note that only the sign reverses

if m and n are replaced each other, then we know the τ (2k−2)-term is zero.

Therefore, the τ (2k−2)-term in |∆| is negative. ¥

Appendix B. Proof of Lemma 2

(i) Let λ∗ be an equilibrium of pattern (a), in which l industries i1, . . . , il agglomerate in region

H and K − l industries il+1, . . . , iK agglomerate in region F . Then for each industry i, it holds

that

ViH(λ∗)− ViF (λ∗) = −1
2

∑l

j=1
δiij +

1
2

∑K

j=l+1
δiij

=− 1
2

{
ρ

2

( l∑

j=1

Lij −
K∑

j=l+1

Lij

)
− 2abL

(2b− c)2

[
b

( l∑

j=1

ωij −
K∑

j=l+1

ωij

)

+ (2b− c)
( l∑

j=1

Lij −
K∑

j=l+1

Lij

)
ωi

Li

]}
τ + O(τ2).

For sufficiently small τ , the sign of the above expression is determined by the coefficient of τ .

Because of (4), the population of two regions are different, and hence
∑l

j=1 Lij >
∑K

j=l+1 Lij ,
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because of our assumption that H is not smaller than F . Since industries i1, . . . , il are in H,

the stability conditions requires VijH(λ∗)− VijF (λ∗) > 0 for j = 1, . . . , l, which implies

ρ ≤ 4abL

2b− c

[
ωik

Lik

+
b

2b− c

∑l
j=1 ωij −

∑K
j=l+1 ωij∑l

j=1 Lij −
∑K

j=l+1 Lij

]
for k = 1, · · · , l, (A.8)

On the other hand, since industries il+1, . . . , iK are in F , we have VijH(λ∗) − VijF (λ∗) ≤ 0 for

j = l + 1, . . . , K, which implies

ρ ≥ 4abL

2b− c

[
ωik

Lik

+
b

2b− c

∑l
j=1 ωij −

∑K
j=l+1 ωij∑l

j=1 Lij −
∑K

j=l+1 Lij

]
for k = l + 1, · · · ,K. (A.9)

The following inequality holds directly from (A.8) and (A.9):

min
{

ωi1

Li1

, · · · ,
ωil

L
l

}
≥ max

{
ωil+1

Lil+1

, · · · ,
ωiK

LiK

}
. (A.10)

From (5), (A.10) tells us that il = l, and the industries locate in H turn out to be 1, . . . , l, the

industries locate in F turn out to be l + 1, . . . , K. Therefore, (A.8) and (A.9) are summarized

as ρ†(l, l) ≥ ρ ≥ ρ†(l + 1, l).

(ii) Let λ∗ be the equilibirum in which industries 1, . . . , l agglomerate in regionH and indus-

tries l − 1, . . . , K agglomerate in region F . Then

ViH(λ∗)− ViF (λ∗) = −1
2

∑l

j=1
δij +

1
2

∑K

j=l+1
δij

=− 1
2

{
ρ

2

( l∑

j=1

Lj −
K∑

j=l+1

Lj

)
− 2abL

(2b− c)2

[
b

( l∑

j=1

ωj −
K∑

j=l+1

ωj

)

+ (2b− c)
( l∑

j=1

Lj −
K∑

j=l+1

Lj

)
ωi

Li

]}
τ + O(τ2),

whose sign is determined by the coefficient of τ for sufficiently small τ . From ρ†(l, l) > ρ >

ρ†(l + 1, l), we have

ρ <
4abL

2b− c

[
ωik

Lik

+
b

2b− c

∑l
j=1 ωj −

∑K
j=l+1 ωj∑l

j=1 Lj −
∑K

j=l+1 Lj

]
for k = 1, · · · , l,

ρ >
4abL

2b− c

[
ωik

Lik

+
b

2b− c

∑l
j=1 ωj −

∑K
j=l+1 ωj∑l

j=1 Lj −
∑K

j=l+1 Lj

]
for k = l + 1, · · · ,K.

Furthermore, since
∑l

j=1 Lj >
∑K

j=l+1 Lj , we soon obtain VjH(λ∗)−VjF (λ∗) > 0 for j = 1, . . . , l

and VjH(λ∗)− VjF (λ∗) < 0 for j = l + 1, . . . , K, therefore, λ∗ is stable. ¥

Appendix C. Proof of Lemma 3
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We first showthat necessity. Suppose that industries i1, . . . , il1 locate in region H and industries

j1, . . . , jl2 locate in region F . The remaining industry l disperses with population λ∗l Ll in region

H. Then l1 + l2 + 1 = K and VlH(λ∗)− VlF (λ∗) = 0, from which we have

λ∗l = − 1
2δll

[
µ1Ω1 − µ2Ω2 +

Λ
Ll

(
ω2

l ξ1 − ωlξ2 +
1
2
ρτLl

)]
+

1
2
,

where

Ω1 ≡
l1∑

k=1

ω2
ik
−

l2∑

k=1

ω2
jk

, Ω2 ≡
l1∑

k=1

ωik −
l2∑

k=1

ωjk
, and Λ ≡

l1∑

k=1

Lik −
l2∑

k=1

Ljk
.

Since we are interested in the situation of sufficiently small τ , we denote

λ̄l ≡ lim
τ→0

λ∗l =
4ab2LlLΩ2 − (2b− c)2(Λ− Ll)Llρ + 4ab[(2b− c)Λ− (3b− c)Ll]Lωl

2Ll[(2b− c)2Llρ− 4ab(3b− c)Lωl]
,

which should be in (0, 1). The stability conditions for λ∗ are

VikH(λ∗)− VikF (λ∗) > 0 for k = 1, · · · , l1,

VjkH(λ∗)− VjkF (λ∗) < 0 for k = 1, · · · , l2,

∂[VlH(λ∗)− VlF (λ∗)]
∂λl

< 0,

which are rewritten as

VikH(λ∗)− VikF (λ∗)

=
16a2b3L

2
(

ωik

Lik

− ωl

Ll

)(
Ω2 − Λ

ωl

Ll

)
τ + O(τ2)

4(2b− c)
[
(2b− c)2ρ− 4ab(3b− c)L

ωl

Ll

]
+ O(τ)

> 0 for k = 1, · · · , l1, (A.11)

VjkH(λ∗)− VjkF (λ∗)

=
16a2b3L

2
(

ωjk

Ljk

− ωl

Ll

)(
Ω2 − Λ

ωl

Ll

)
τ + O(τ2)

4(2b− c)
[
(2b− c)2ρ− 4ab(3b− c)Lωl

Ll

]
+ O(τ)

< 0 for k = 1, · · · , l2, (A.12)

∂[VlH(λ∗)− VlF (λ∗)]
∂λl

= −1
2

[
ρLl − 4ab(3b− c)Lωl

(2b− c)2

]
τ + O(τ2) < 0, (A.13)

respectively. For sufficiently small τ , the signs of the above expressions are determined by their

coefficients of τ . Therefore, (A.13) simply implies that

ρ >
4ab(3b− c)L

(2b− c)2
ωl

Ll
. (A.14)

Then the denominators of (A.11) and (A.12) are positive. We consider two cases to further

clarify (A.11) and (A.12).
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• If

Ω2 − Λ
ωl

Ll
> 0, (A.15)

then (A.11) and (A.12) yield

ωik

Lik

>
ωl

Ll
>

ωjk

Ljk

, for any ik = i1, . . . , il1 and jk = j1, . . . , jl2 . (A.16)

Therefore the industries in region H turn out to be 1, . . . , l − 1 and the industries in

region F turn out to be l + 1, . . . , K. Therefore, the equilibrium takes the form of λ∗ =

(1, . . . , 1, λ∗l , 0, . . . , 0). On the other hand, (A.16) implies that

l1∑

k=1

ωik −
l2∑

k=1

ωjk
>

( l1∑

k=1

Lik −
l2∑

k=1

Ljk

)
ωl

Ll
,

which shows that (A.15) is true.

• If

Ω2 − Λ
ωl

Ll
< 0, (A.17)

then (A.11) and (A.12) yield

ωik

Lik

<
ωl

Ll
<

ωjk

Ljk

, for any ik = i1, . . . , il1 and jk = j1, . . . , jl2 . (A.18)

Therefore the industries in region H turn out to be l + 1, . . . , K and the industries in

region F turn out to be 1, . . . , l − 1. Therefore, the equilibrium takes the form of λ∗ =

(0, . . . , 0, λ∗l , 1, . . . , 1). On the other hand, (A.18) implies that

l1∑

k=1

ωik −
l2∑

k=1

ωjk
<

( l1∑

k=1

Lik −
l2∑

k=1

Ljk

)
ωl

Ll
,

which shows that (A.17) is true.

Summarizing the above two cases, we obtain (i) of the Lemma. To derive the others, we focus

on the case that λ∗ = (1, . . . , 1, λ∗l , 0, . . . , 0). The other case can be shown similarly. Contrarily

to (ii), we suppose that
∑l

j=1 Lj <
∑K

j=l+1 Lj . Then λ̄l < 1 is equivalent to ρ < ρ†(l, l).

However, we have

ρ†(l, l)− 4ab(3b− c)L
(2b− c)2

ωl

Ll

=
4abL

2b− c

[
ωl

Ll
+

b

2b− c

∑l
j=1 ωj −

∑K
j=l+1 ωj∑l

j=1 Lj −
∑K

j=l+1 Lj

]
− 4ab(3b− c)L

(2b− c)2
ωl

Ll
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=
4ab2L

(2b− c)2

[∑l
j=1 ωj −

∑K
j=l+1 ωj∑l

j=1 Lj −
∑K

j=l+1 Lj

− ωl

Ll

]

=
4abL

(2b− c)2

∑l

j=1
LlLj

(
ωj

Lj
− ωl

Ll

)
+

∑K

j=l+1
LlLj

(
ωl

Ll
− ωj

Lj

)

Ll

( ∑l

j=1
Lj −

∑K

j=l+1
Lj

)

< 0, (A.19)

therefore λ̄l < 1 contradicts (A.14), and hence we obtained (ii). In the following, we further

consider two cases to obtain the remaining conclusions.

• If
∑l−1

j=1 Lj >
∑K

j=l Lj , then λ̄l < 1 is equivalent to ρ > ρ†(l, l) and λ̄l > 0 is equivalent to

ρ < ρ†(l, l − 1). Furthermore, since the reverse inequality of (A.19) turns out to be true

because of (ii), (A.14) is guaranteed by ρ > ρ†(l, l). Thus, we obtained conclusion (iii).

• If
∑l−1

j=1 Lj <
∑K

j=l Lj and
∑l

j=1 Lj >
∑K

j=l+1 Lj , then λ̄l < 1 is equivalent to ρ > ρ†(l, l)

again while λ̄l > 0 turns out to be equivalent to ρ > ρ†(l, l − 1). Since

∑l−1
j=1 ωj −

∑K
j=l ωj∑l−1

j=1 Lj −
∑K

j=l Lj

−
∑l

j=1 ωj −
∑K

j=l+1 ωj∑l
j=1 Lj −

∑K
j=l+1 Lj

=
(
∑l

j=1 Lj −
∑K

j=l+1 Lj)(
∑l−1

j=1 ωj − ωl −
∑K

j=l+1 ωj)

(
∑l−1

j=1 Lj −
∑K

j=l Lj)(
∑l

j=1 Lj −
∑K

j=l+1 Lj)

− (
∑l−1

j=1 Lj −
∑K

j=l Lj)(
∑l−1

j=1 ωj + ωl
∑K

j=l+1 ωj)

(
∑l−1

j=1 Lj −
∑K

j=l Lj)(
∑l

j=1 Lj −
∑K

j=l+1 Lj)

=
2

∑l−1
j=1 LlLj(ωj/Lj − ωl/Ll) + 2

∑K
j=l+1 LlLj(ωl/Ll − ωj/Lj)

(
∑l−1

j=1 Lj −
∑K

j=l Lj)(
∑l

j=1 Lj −
∑K

j=l+1 Lj)

<0,

we know that ρ†(l, l − 1) < ρ†(l, l). Furthermore, since the reverse inequality of (A.19)

holds, the conditions can be summarized by ρ > ρ†(l, l) only, and we obtained (iv).

Finally, the sufficiency holds evidently. ¥

Appendix D. Proof of Lemma 4

We first provide the following conclusion:

Claim For any ai and positive bi (i = 1, · · · , n), it holds that

max
{

a1

b1
, · · ·, an

bn

}
≥ a1 + · · ·+ an

b1 + · · ·+ bn
. (A.20)
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Proof : If n = 1, then (A.20) holds with equality. For n = 2, without loss of generality, let

a1/b1 ≤ a2/b2. Then a1b2 ≤ a2b1 so that a1b2 + a2b2 ≤ a2b1 + a2b2, which can be rewritten as

a1 + a2

b1 + b2
≤ a2

b2
= max

{
a1

b1
,
a2

b2

}
. (A.21)

Suppose that (A.20) holds for k, then

max
{

a1

b1
, · · · ,

ak

bk
,
ak+1

bk+1

}
= max

{
max{a1

b1
, · · · ,

ak

bk
}, ak+1

bk+1

}

≥ max
{

a1 + · · ·+ ak

b1 + · · ·+ bk
,
ak+1

bk+1

}
≥ (a1 + · · ·+ ak) + ak+1

(b1 + · · ·+ bk) + bk+1
,

where the first inequality is from the induction assumption while the second inequality is from

(A.21). ¥

The only interior equilibrium is evidently λ∗ = (1/2, 1/2, 1/2). Let ∆ ≡ (δij)3×3 and the

characteristic equation to be t3 +At2 +Bt+C = 0, then the stability conditions of λ∗ are given

by

A < 0 ⇔ Tr(∆) > 0

⇔ 3
2
ε− 6ab(3b− c)(ω1 + ω2 + ω3)

(2b− c)2
τ

+
3b(6b2 − 2bc− c2)(ω2

1 + ω2
2 + ω2

3)
2(2b− c)2

τ2 > 0, (A.22)

C < 0 ⇔ |∆| > 0

⇔ 81b2c

8(2b− c)4
τ4{c(2b− c)2(ω2

1ω
2
2 + ω2

2ω
2
3 + ω2

3ω
2
1)ε

− 16a2b2[ω2
1(ω2 − ω3)2 + ω2

2(ω3 − ω1)2 + ω2
3(ω1 − ω2)2]}

+ O(τ5) > 0, (A.23)

AB < C ⇔ Tr(∆)(δ11δ22 + δ22δ33 + δ33δ11 − δ12δ21 − δ23δ32 − δ31δ13) > |∆|
⇔ 27bε

4(2b− c)3
τ2{c(2b− c)2(ω2

1 + ω2
2 + ω2

3)ε

− 16a2b2{ω2
1 + ω2

2 + ω2
3 − (ω1ω2 + ω2ω3 + ω3ω1)]}+ O(τ3) > 0. (A.24)

(Samuelson 1945, P. 432).

For sufficiently small τ , the above inequalities are determined by the first terms. Therefore,

(A.22) is evidently true and (A.23) is true if and only if ε > ε̄0. Next, we show that (A.24) is

also true if (A.23) holds. In fact, since

ω2
1(ω2 − ω3)2 + ω2

2(ω3 − ω1)2 + ω2
3(ω1 − ω2)2

ω2
1ω

2
2 + ω2

2ω
2
3 + ω2

3ω
2
1

− (ω1 − ω2)2

ω2
1 + ω2

2

=
{ω2

1(ω2 − ω3)− ω2
2(ω3 − ω1)}2

(ω2
1 + ω2

2)(ω
2
1ω

2
2 + ω2

2ω
2
3 + ω2

3ω
2
1)
≥ 0,
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we have

ω2
1(ω2 − ω3)2 + ω2

2(ω3 − ω1)2 + ω2
3(ω1 − ω2)2

ω2
1ω

2
2 + ω2

2ω
2
3 + ω2

3ω
2
1

≥ (ω1 − ω2)2

ω2
1 + ω2

2

.

Similarly, the following two inequalities also hold:

ω2
1(ω2 − ω3)2 + ω2

2(ω3 − ω1)2 + ω2
3(ω1 − ω2)2

ω2
1ω

2
2 + ω2

2ω
2
3 + ω2

3ω
2
1

≥ (ω2 − ω3)2

ω2
2 + ω2

3

,

ω2
1(ω2 − ω3)2 + ω2

2(ω3 − ω1)2 + ω2
3(ω1 − ω2)2

ω2
1ω

2
2 + ω2

2ω
2
3 + ω2

3ω
2
1

≥ (ω3 − ω1)2

ω2
3 + ω2

1

.

Therefore,

ω2
1(ω2 − ω3)2 + ω2

2(ω3 − ω1)2 + ω2
3(ω1 − ω2)2

ω2
1ω

2
2 + ω2

2ω
2
3 + ω2

3ω
2
1

≥ max
{

(ω1 − ω2)2

ω2
1 + ω2

2

,
(ω2 − ω3)2

ω2
2 + ω2

3

,
(ω3 − ω1)2

ω2
3 + ω2

1

}

≥ (ω1 − ω2)2 + (ω2 − ω3)2 + (ω3 − ω1)2

2(ω2
1 + ω2

2 + ω2
3)

=
ω2

1 + ω2
2 + ω2

3 − (ω1ω2 + ω2ω3 + ω3ω1)
ω2

1 + ω2
2 + ω2

3

,

where the last inequality is from (A.20). In conclusion, (A.24) holds if ε > ε̄0. ¥

Appendix E. Proof of Lemma 5

First, we will consider the stability of λ∗ = (1, λ∗2, 0) (0 < λ∗2 < 1). From V2H(λ∗)−V2F (λ∗) = 0,

we obtain

λ∗2 =
(2b− c)2ε + 12ab{b(ω1 − 3ω2 − ω3) + cω2}τ

2(2b− c)2ε− 24ab(3b− c)ω2τ + 6b(6b2 − 2bc− c2)ω2
2τ

2
+ O(τ2),

where we should note that λ∗2 converges to 1/2 from above as τ → 0. The stability conditions

for λ∗ are given as

V1H(λ∗)− V1F (λ∗) > 0

⇔ 9bL{16a2b2(ω1 − ω2)(ω1 − ω3)− c(2b− c)2ω2
1ε}τ2

4(2b− c)3ε− 48ab(6b2 − 5bc + c2)ω2τ + 12b(12b3 − 10b2c + c3)ω2
2τ

2

+ O(τ3) > 0,

V3H(λ∗)− V3F (λ∗) < 0

⇔ −9bL{16a2b2(ω1 − ω3)(ω2 − ω3)− c(2b− c)2ω2
3ε}τ2

4(2b− c)3ε− 48ab(6b2 − 5bc + c2)ω2τ + 12b(12b3 − 10b2c + c3)ω2
2τ

2

+ O(τ3) < 0,

∂[V2H(λ∗)− V2F (λ∗)]
∂λ2

< 0

⇔ −Lε

2
+

6abL(3b− c)ω2

(2b− c)2
τ + O(τ2) < 0.
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For sufficiently small τ , all the signs are determined by the first terms in the above expressions.

Together with our assumption that ω1 > ω2 > ω3, we know that λ∗ is stable if and only if

ε < min{ε1, ε2}.

From the symmetry, conditions min{ω2, ω3} < ω1 < max{ω2, ω3} and min{ω1, ω2} < ω3 <

max{ω1, ω2} are required for the stability of equilibria (λ∗1, 1, 0) (0 < λ∗1 < 1) and (1, 0, λ∗3)

(0 < λ∗3 < 1), respectively. Since these inequalities contradict to the assumption, these two

patterns could not be stable. ¥

Appendix F. Proof of Proposition 3

We provide the proof for the case of ω2 < ω2. The case of ω2 > ω̄2 can be shown similarly.

Above all, we provide some preliminary inequalities. The following inequalities hold immediately

from ω2 < ω2:

ε1 − ε0 =
{ω2

1(ω2 − ω3) + ω2
2(ω1 − ω3)}{(ω2

1 + ω2
3)(ω2 − ω2)}

ω2
1(ω

2
1ω

2
2 + ω2

2ω
2
3 + ω2

3ω
2
1)

> 0,

ε0 − ε2 =
{ω2

3(ω1 − ω2) + ω2
2(ω1 − ω3)}{(ω2

1 + ω2
3)(ω2 − ω2)}

ω2
3(ω

2
1ω

2
2 + ω2

2ω
2
3 + ω2

3ω
2
1)

> 0.

Therefore,

ε2 < ε0 < ε1. (A.25)

Substituting

a1

b1
=

(ω2 − ω1)(ω2 − ω3)
ω2

2

(< 0),
a2

b2
=

(ω1 − ω3)(ω2 − ω3)
ω2

3

(> 0)

into (A.20), we obtain

(ω1 − ω3)(ω2 − ω3)
ω2

3

≥ (ω2 − ω3)2

ω2
2 + ω2

3

. (A.26)

First, we consider the stability of λ∗ = (1, λ∗2, λ
∗
3) (0 < λ∗2 < 1, 0 < λ∗3 < 1). From

V2H(λ∗)− V2F (λ∗) = 0 and V3H(λ∗)− V3F (λ∗) = 0, we have

λ̄2 ≡ lim
τ→0

λ∗2 =
c(2b− c)2εω2

2 + 16a2b2(ω1 − ω2)(ω2 − ω3)
2[c(2b− c)2ε(ω2

2 + ω2
3)− 16a2b2(ω2 − ω3)2]

, (A.27)

λ̄3 ≡ lim
τ→0

λ∗3 =
c(2b− c)εω2

3 − 16a2b2(ω1 − ω3)(ω2 − ω3)
2[c(2b− c)2ε(ω2

2 + ω2
3)− 16a2b2(ω2 − ω3)2]

. (A.28)

The conditions of λ̄2, λ̄3 ∈ (0, 1) are equivalent to

c(2b− c)2

16a2b2
ε > max

{
(ω2 − ω3)2

ω2
2 + ω2

3

,
(ω1 − ω3)(ω2 − ω3)

ω2
3

,
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(ω2 − ω3)[2(ω2 − ω3) + (ω1 − ω2)]
ω2

2 + 2ω2
3

,
(ω2 − ω3)[2(ω2 − ω3)− (ω1 − ω3)]

2ω2
2 + ω2

3

}

=
(ω1 − ω3)(ω2 − ω3)

ω2
3

, (A.29)

where the last equality holds from (A.26) and

(ω1 − ω3)(ω2 − ω3)
ω2

3

− (ω2 − ω3){2(ω2 − ω3) + (ω1 − ω2)}
ω2

2 + 2ω2
3

=
(ω2 − ω3){(ω1 − ω2)ω2

3 + (ω1 − ω3)ω2
2}

ω2
3(ω

2
2 + 2ω2

3)
≥ 0,

(ω2 − ω3){2(ω2 − ω3) + (ω1 − ω2)}
ω2

2 + 2ω2
3

− (ω2 − ω3){2(ω2 − ω3)− (ω1 − ω3)}
2ω2

2 + ω2
3

=
3(ω2 − ω3){(ω1 − ω3)ω2

2 + (ω1 − ω2)ω2
3}

(ω2
2 + 2ω2

3)(2ω2
2 + ω2

3)
≥ 0.

On the other hand, the stability conditions of λ∗ are given by

V1H(λ∗)− V1F (λ∗) > 0

⇔ 9bcL

[
16a2b2{ω2

1(ω2 − ω3)2 + ω2
2(ω3 − ω1)2 + ω2

3(ω1 − ω2)2}
4(2b− c){c(2b− c)2ε(ω2

2 + ω2
3)− 16a2b2(ω2 − ω3)2}+ O(τ)

− c(2b− c)2ε(ω2
1ω

2
2 + ω2

2ω
2
3 + ω2

3ω
2
1)

4(2b− c){c(2b− c)2ε(ω2
2 + ω2

3)− 16a2b2(ω2 − ω3)2}+ O(τ)

]
τ2

+
O(τ3)

4(2b− c){c(2b− c)2ε(ω2
2 + ω2

3)− 16a2b2(ω2 − ω3)2}+ O(τ)
> 0,

T r(∆1) > 0 ⇔ ε + O(τ) > 0,

|∆1| > 0 ⇔ 9b{c(2b− c)2ε(ω2
2 + ω2

3)− 16a2b2(ω2 − ω3)2}
4(2b− c)3

τ2 + O(τ3) > 0,

where ∆i is defined to be ∆ ≡ (δij)3×3 without the ith row and the ith column. Thus, for

sufficiently small τ , λ∗ is stable if and only if

c(2b− c)2

16a2b2
ε <

ω2
1(ω2 − ω3)2 + ω2

2(ω3 − ω1)2 + ω2
3(ω1 − ω2)2

ω2
1ω

2
2 + ω2

2ω
2
3 + ω2

3ω
2
1

, (A.30)

and (A.29) hold, which imply that ε̄2 < ε < ε̄0. Summarily, (1, λ∗2, λ
∗
3) is a stable equilibrium if

and only if ε ∈ (ε̄2, ε̄0).

Similarly, for sufficiently small τ , the stability conditions for (λ∗1, λ
∗
2, 1) (λ∗1, λ∗2 ∈ (0, 1) and

(λ∗1, 1, λ∗3) (λ∗1, λ∗3 ∈ (0, 1)) can be written as

c(2b− c)2

16a2b2
ε >

(ω1 − ω2)(ω1 − ω3)
ω2

1

,

together with (A.30). These conditions imply that ε1 < ε < ε0, which is impossible because of

(A.25). In other words, (λ∗1, λ
∗
2, 1) and (λ∗1, 1, λ∗3) are unstable when ω2 < ω̄2.
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Therefore, in the case of ω2 < ω2, λ∗ = (1, λ∗2, λ
∗
3) is the only stable equilibrium if ε2 < ε < ε0,

while λ∗ = (1, λ∗2, 0) is the only stable equilibrium if ε < ε2 (by Lemma 5).

Finally, we provide some remarks about the equilibrium λ∗ = (1, λ∗2, λ
∗
3). From (A.27),

(A.28), and (A.29), we have

λ̄2 > λ̄3.

Furthermore, we obtain

λ∗2 + λ∗3 =
1
2

+
12ab2c{(ω1 − ω3)ω2

2 + (ω1 − ω2)ω2
3}τ + O(τ2)

2{c(2b− c)2ε(ω2
2 + ω2

3)− 16a2b2(ω2 − ω3)2}+ O(τ)
,

so, by (A.29), we conclude that λ∗2 + λ∗3 converges to 1/2 from above. ¥
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