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Estimation of Regional Economic Convergence Equations Using Artificial 

Neural Networks with Cross Section Data 
 

Christos T. Papadas and Sophia Efstratoglou * 
 

 
Abstract 

 

Theoretical developments and discussions on growth and regional convergence have 

been accompanied by another debate, associated with the type of data used and 

quantitative approaches adopted in empirical research. Estimation of convergence 

equations continues to play a key role in the study of economic convergence, despite 

criticisms. This paper introduces the use of artificial neural networks (ANN) in the 

study of convergence. It focuses on the concept of β-convergence and accepts that 

cross section data can provide useful information for its investigation. Non-linearities 

of the underlying relationships, the restrictiveness of assumptions on functional 

forms, and econometric problems in the estimation and application of certain 

theoretical models, advocate for the use of ANN algorithms. A back-propagation 

(BPN) artificial neural network is constructed and utilized to study convergence of 

regional, gross domestic products per capita in Greece, together with the application 

of a traditional econometric analysis. Cross-section statistical data on Greek 

prefectures are used while results and repeated testing show that the neural network 

performs very well in estimating convergence equations. It improves substantially the 

accuracy of estimates and predictability of the estimated relationships. In addition, 

the BPN algorithm could be used with time series or panel data, and it could estimate 

also convergence equations of additional economic or social variables.     

 

 

 

 

 

* The authors are Lecturer and Professor respectively, at the Department of 

Agricultural Economics and Rural Development, at the Agricultural University of 

Athens, Greece.   

1. Introduction 
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An expansion of the literature on economic growth and its modeling, respective 

implications for regional convergence, and the development of additional quantitative 

tools of analysis, have promoted the debate over convergence issues. Part of this 

debate relates to the choice of method of quantitative analysis .The relevant decision 

made, is most often dependent on the adoption of a theoretical model analyzing the 

process of growth and convergence. It is also dependent on the type of statistical 

information that should be used for quantitative analysis (cross-section, time series or 

panel data).  

 

As it is so often stated, two basic concepts of economic convergence exist in recent 

literature. It is argued that β-convergence exists when regions or countries with lower 

initial per capita incomes grow faster than regions or countries with initially higher 

per capita incomes. In addition, σ-convergence exists when the dispersion of the per 

capita income distribution, as measured by its standard deviation, declines. The first 

concept of convergence is a necessary but not sufficient condition for the second. 

Hence, while σ-convergence implies β-convergence, the opposite is not true.  

 

The two concepts of convergence, as used and quantified in the literature, are far from 

perfect. In the case of σ-convergence for example, there may be an increase or 

decrease in the dispersion around the mean of the distribution, but the situation may 

be different within various groups of observations. Therefore, the overall picture of a 

change in the dispersion, as measured by the standard deviation, may not be enough 

to demonstrate if there has been a general trend to reduce or increase the gap in 

regional per capita incomes. On the other hand, using the concept of β-convergence is 

not without problems either. The testing for β-convergence and its quantification 

("speed" or "rate" of convergence) relies on the estimation of convergence equations. 

These equations are derived from models of economic growth. The form of these 

equations and the meaning of certain of their parameters may differ, according to the 

assumptions of the models and the derivation process of the convergence equations. 

Hence, altering the assumptions of the underlying growth models and the derivation 

process can put into question the specification of convergence equations.  
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The proposition and adoption of different theoretical growth models with different 

implications or estimations for β-convergence, the inability of the latter to tell the 

whole story on convergence, and the inadequacies of σ-convergence as well, have led 

to criticisms and more recently, to few specific propositions of new methodologies to 

capture and measure convergence without using the two concepts. Generally 

speaking, these methodologies are based on the analysis of changes in the overall 

distribution of regional data. Nevertheless, new methodologies avoiding the use of the 

two concepts are not without problems either. Not only it is questionable if they are 

truly more informative, but they rely also on strict assumptions that the data set must 

satisfy. 

 

It is not strange therefore that most of the quantitative analyses on regional 

convergence utilize the two concepts and analytical discussions and methodological 

developments are focusing on these two concepts. The necessity of estimating 

convergence equations and their significance, are maintained, and this is reflected on 

a growing part of the literature on regional convergence. Given the problems and the 

debate associated with convergence equations, we believe that artificial neural 

networks (ANN) offer an alternative approach to their estimation. They can contribute 

substantially to facing data and computational problems and improve the accuracy 

and predictability of the estimated relationships. 

 

The major objective of this study is to investigate regional economic convergence in 

Greece implementing and evaluating also the performance of artificial neural 

networks. For this reason, a feed-forward ANN of the back-propagation form (BPN) 

is constructed and proposed for the estimation of convergence equations. The BPN 

algorithm is used with cross sectional data on per capita gross domestic products and 

other variables for the Greek prefectures and for three census years. A traditional 

econometric approach is also used to examine β - convergence together with the 

simpler testing for σ-convergence. The role of conditioning variables such as the level 

of private investment, education, etc, is also investigated. The significance and role of 

these variables is examined when they are considered either at the initial state or as 

flows and changes during the whole period examined. 
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2. A Review and Discussion on the Literature 

The original neoclassical growth models of closed economies proposed by Solow 

(1956), Swan (1956), Koopmans (1965), Cass (1965) and even the older work of 

Ramsey (1928), placed assumptions on the production function and technology some 

of which varied while others did not. Such assumptions relate to concavity and the 

degree of homogeneity, the existence or not of increasing returns, the treatment of 

endogeneity or not of savings, the issue of free access to an exogenous technology, 

and the way that human capital is incorporated in the analysis. There is some 

flexibility in the results with regards to output growth sustainability. In general 

however, these early closed economy models did imply convergence and the rate of 

per capita income growth over a period is inversely related to the initial per capita 

income.   

 

Based on similar assumptions and endogenously determined savings, this 

convergence result (β-convergence), is upheld in the more recent, seminal work of 

Barro and Sala-i-Martin (1992, 1995). The original neoclassical models were more 

flexible than what is usually acknowledged by critics. Violations of the diminishing 

returns assumption as well as economic divergence, were not excluded altogether. In 

the case of Solow (1956) for example, long run income levels depend on rates of 

investment and population increases and there are possibilities of not achieving 

always the results on growth and convergence. Diffusion and access even to an 

exogenously available technology depend on several critical factors often overlooked 

or treated as exogenous when in fact they are not Abramovitz (1979, 1986). 

Deviations from the original results on growth and convergence due to such factors 

are possible.  

 

In addition, different than the Barro and Sala-i-Martin assumptions in the newer 

neoclassical modeling can lead to different results on convergence.  In Romer (1986) 

it is shown how the assumption of increasing input returns can invalidate the original 

conclusions of diminishing rates of growth and β−convergence. Increasing returns are 

often related to endogenous technological change. Even in the case of such a change 

however, the diminishing rates of growth and β−convergence can still hold as long as 

the endogenous technology remains a pure public good. The same holds also if the 
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new technology becomes available to all regions in the long-run (de la Fuente 1997). 

Endogenous technological change is frequently related to human capital improvement 

but this depends on how human capital is modeled and incorporated in the production 

function (Lucas, 1988, Grossman and Helpman, 1991, Romer, 1999, Mankiew, 

Romer and Weil, 1992). Different functional forms can be adopted to capture among 

other things the possibility of increasing returns (e.g. Rebelo, 1991, Duffy and 

Papageorgiou, 1997, Jones and Manuelli, 1990, Durlauf, 1993, 1996, etc.).  

 

As a consequence, the result of economic convergence in the traditional neoclassical 

models and in those with endogenous technological change is a conditional situation. 

Convergence systematically derived as a result of these models is simply a trend 

towards stabilization of relative incomes, while the long run equilibria can be very 

different due to different conditions. Since this concept of convergence is not 

incompatible with geographical inequalities, it cannot be examined empirically using 

the traditionally available indices of dispersion and unequal distribution, even though 

the latter maintain their interest in the course of economic growth. These realizations 

reflect the reason for adopting both of the two distinct concepts of convergence. 

 

The form of convergence equations most widely used in the cross section study of β-

was derived by Barro and Sala-i-Martin (1990, 1992). The dependent variable is the 

average rate of growth of per capita income during the considered period, while the 

per capita income at the initial state is an independent variable. More specifically, a 

production function with output per unit of effective labor as the dependent variable 

and capital per unit of effective labor as the independent variable, which satisfies the 

usual convexity and continuity properties is assumed, while effective labor is a 

function of the exogenous technological development and an increasing function of 

the labor (population) size. The economy is closed and the capital per unit of effective 

labor changes over time according to a specified differential equation, which includes 

the production function and the capital per unit of effective labor itself, while the 

depreciation rate, the growth rate of labor (population) and the level of consumption 

per unit of effective labor enter as parameters. 
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The model assumes a representative household with preferences and a certain utility 

function with respect to consumption per person, such that the marginal utility has a 

constant elasticity with respect to this consumption. In the dynamic maximization of 

utility problem, the model assumes also another simple relationship between the 

parameters of the production and utility functions, in order to have the transversality 

condition satisfied. Then, the first order conditions are derived and so is the 

relationship to be satisfied by the steady state of capital per unit of employed labor. At 

the steady state, the per unit of effective labor variables of output, capital and 

consumption, remain constant and the per capita quantities of output, capital and 

consumption, increase at a rate equal to the rate of the exogenous, labor augmenting 

technological progress. If the initial value of capital per unit of effective labor is less 

than its steady state, it approaches to the latter monotonically with respect to time. It 

has been shown also (Barro and Sala-i-Martin, 1991) that the rate of increase of 

capital per unit of labor (per capita or per worker), is being reduced monotonically 

with respect to time towards its steady state rate. 

 

If it is assumed that the production function is of the Cobb-Douglas form (with the 

exponent values between zero and one), the same result as above can be extended to 

the rate of increase in the output per unit of labor. The consequence of that is that if 

two economies have the same utility, and production technology, the economy with 

the lower initial capital per unit of effective labor will tend to grow at higher rates 

than the other economy.   

 

Derivation of convergence equations – Cross Section Analysis 

In the Barro and Sala-i-Martin model, under a Cobb-Douglas production function, the 

dynamic process described and discussed above is derived and expressed from the 

first order conditions of the utility maximization problem and the differential equation 

describing the motion of capital per unit of effective labor, over time. If the derived 

expression of the process is subjected to a logarithmic transformation and 

linearization, and modified from continuous to discrete time, after some operations it 

becomes:          
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where )~log()1( *
iii yexa β−−+= and uit is the disturbance term. Here, t denotes time, 

yit is the per capita income of region i at time t, )~( *
iy is the steady state of the per 

capita income per unit of effective labor in region i, while χi is the steady state rate of 

increase of capital per unit of labor. In addition, β is a function of the preference and 

production parameters, of the steady state rate mentioned above, and of growth and 

capital depreciation rates. This parameter is an expression of the speed of adjustment 

towards the steady state of per capita income (rate of convergence). Obviously, a 

common value of β for all regions i is assumed here. This may not be the case always 

but it’s much closer to reality when dealing with same country regions, which are 

likely to present similarities in terms of the parameters involved. Moreover, 

technology differences due to available methods of production or natural resources, 

which are reflected in the value of the constant multiplier in a Cobb-Douglas 

production function, do no affect the value of β anyway (King and Rebello, 1989). 

 

If the relationship that describes the dynamic process in Barro and Sala-i-Martin has 

both sides divided by the number T of years in the period examined to get averages 

values then, using (1) under the assumption that the steady states and steady state 

rates )~( *
iy  and χi respectively, are the same in all regions i ( ** ~~ yyi = and xxi = ), then 

it is shown that: 
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where the last term in (2) is the distributed time lag of the errors uit between time t0 

and t0+T where ])~][log(/)1[( 0
* xtyTexB T +−+= −β . The dependent variable is now 

the annual average rate of growth over the whole period. Shifts in the constant term 

are due to the technology trend with a change in the initial time t0. An implication of 

the discussion so far is that when β>0 we can argue that we have β-convergence. 

When β<0 there is no β-convergence and regions with greater initial per capita 

income tend to grow faster than the initially poorer ones. In this case there can be no 

σ-convergence either since β-convergence is a necessary condition for that. The 

estimation of the convergence equation in (2) or one of its variants is the most widely 
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used approach for the testing and measurement of β-convergence using cross-section 

data.  

 

The econometric model is used either as implied here, or augmented (“constrained”) 

with additional conditioning variables, explanatory of the average rate of growth. The 

significance of such conditioning variables indicates in the case of β-convergence that 

convergence is “conditional”, in which case steady states to which different regions 

converge are different. If β>0 and β−convergence is not conditional (“absolute”), per 

capita incomes tend towards the same steady state in spite of any possible short-run 

exogenous disturbances in their trajectory. Conditioning variables usually relate to the 

level of investment, population, employment in the primary and non-primary 

economic sectors, institutional factors, available infrastructure, etc. With the 

exception of some flow variables, most of the conditioning variables are taken at their 

initial state values but this is not necessary, since their changes over the whole period 

have been used in the literature as well. 

 

Several comments are in order here, with regards to the use of cross-section data and 

the form of convergence equation adopted. The appeal of cross-section data analysis 

is based not only on theoretical grounds such as the modeling discussed, but also on 

common economic logic. If poorer regions tend to grow faster than richer ones, then 

for a set of regions with different levels of per capita income at the beginning of the 

period, a negative relationship between the average rate of growth over the period and 

the initial per capita income should be expected and found. The criticisms we discuss 

with regards to cross-sectional analysis, certainly do not refute this argument. 

 

The empirics of growth and convergence do present substantial similarities for a 

variety of theoretical models with different assumptions and implications. The 

assumptions of Barro and Sala-i-Martin for example support the expectation of β-

convergence which is not necessarily the case with the results of Mankiw, Romer and 

Weil. However, these approaches result in similar convergence equations. Of course, 

the constant term and the slope are different expressions of the same and different 

parameters included in the models, and even the β coefficient could be interpreted 

differently. Nevertheless, the same form of convergence equation derived is also 
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estimated empirically, regardless of the concepts and theoretical arguments 

underlying its parameters. The empirical estimation allows the testing of theoretical 

results such as the existence of β-convergence. 

 

It is both, the argument on economic logic and the theoretical modeling mentioned 

that has justified using convergence equations of the form given in (2) especially in 

cross-section analysis. An argument against this type of analysis is that it does not 

consider and provide information on the dynamics of the convergence process. 

Results rely on observations at the beginning and the end of a period. Convergence is 

a dynamic process and cross-section analysis on the same regions, over different 

periods for different per capita income ranges, may lead to different results. 

Depending on the complexity of the dynamics, differences may refer to the 

conclusion on β-convergence altogether, or the speed of convergence as well.   

 

Time-Series and Panel Data Analysis 

Different approaches based on time series analysis have been proposed (Bernard and 

Durlauf 1995, 1996), Durlauf (1989), Quah (1992), etc. Convergence in these 

approaches is investigated as a characteristic of the relationship between long-run 

forecasts of per capita outputs of different regions, given certain initial conditions. It 

leads therefore to a different type of convergence equations than the mentioned cross-

section analysis where convergence is investigated as a characteristic of the 

relationship between initial income and average growth rate over a certain period.  

 

In Bernard and Durlauf [1996], time series forecast convergence between two 

economies is defined as the equality of long-term forecasts of per capita incomes at a 

given date, and for given information available at this date. It can be shown easily that 

time series forecast convergence implies β-convergence when growth rates are 

measured between t and t+T for some fixed finite horizon T. The main conceptual 

difference between the two approaches is that an expected reduction in contemporary 

differences as implied by β-convergence differs from their eventual disappearance as 

implied by the time-series forecast convergence (Durlauf and Quah, 1998). 

 



 10

In empirical time-series analysis, it can be tested whether the differences between per 

capita incomes in selected pairs of regional economies, are described by a zero-mean 

stationary stochastic process and forecast convergence can be tested using unit root 

and cointegration analysis. Non-zero (i.e. deterministic) time trends in the cross-pair 

differences of per capita incomes or the presence of a unit root lead to rejection of a 

convergence hypothesis. The method is followed as a result of the recognition that 

convergence between pairs of economies, does not imply convergence for all 

economies, unless of course convergence holds for all pairs. 

 

Two main approaches applying the discussed conceptual framework of time-series 

analysis discussed, are given by Bernard and Durlauf (1995, 1996) and by Quah 

(1992). In the first, analysis is confined to smaller groups of certain economies, which 

allows the use of long time-series data.  Unit root tests and cointegration analysis can 

again be applied to derive conclusions on convergence for the specific group under 

study (the authors used data on the OECD countries). However, between pairs of 

individual economies in the group, the situation may still be different than the derived 

conclusion for the whole group. In the second approach proposed, what is studied is 

the existence of common stochastic trends in a large group of economies. In 

particular, the differences in per capita outputs between each economy in the group 

and a given chosen economy are utilized (in Quah’s study in particular, the per capita 

output differences between a large group of countries and the US are taken).  

 

It is clear that seeking to extract empirical information on the dynamics of growth and 

converge does not suffice on its own to render invalid the results of cross-section 

analysis especially if the purpose of the latter is confined to answers on the existence 

of convergence and its measurement over a period. The previously mentioned 

criticism related to convergence dynamics and possibly changing results over 

different periods, would be more difficult to sustain when cross-section analysis 

covers relatively large periods (especially several of them). In addition, it would be a 

mistake to consider that other approaches such as time-series analyses are freed from 

such problems. The period covered by the time series data and the specification of the 

model adopted do affect the conclusions of the analysis on convergence. In fact, for a 

generalized conclusion there must always be the heroic assumption, that an estimated 
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chosen form of a difference equation describes a process well outside the period 

covered by available data, but if the process is complex enough the conclusions may 

be misleading again. The issue of convergence or not for a group of regions, versus 

the behavior of sub-groups or individual regions, has not been resolved satisfactorily 

either and it is impossible that a complete and satisfactory answer can be given within 

the framework of any convergence equation estimation.   

 

The various versions of time-series analysis suffer in general from serious 

specification and other econometric problems that create strong doubts for the 

accuracy of their results and the reliability of their conclusions. It has been argued 

that a major disadvantage of time series analysis is that it assumes that the data used 

are described by a time invariant data generating process, which is not satisfied by per 

capita output and income series if the respective economies are moving towards their 

steady state (Durlauf and Quah, 1998). From the start, this creates a conflict with 

cross-section analysis since the requirement for convergence that output or income 

differences are stationary and zero-mean, is inconsistent with the requirement that the 

difference between a richer and a poorer economy has a non-zero mean, implied in 

cross-section empirical estimations (Bernard and Durlauf, 1996).   

 

However, time-series approaches can differ substantially between themselves and 

lead to different results using the same data set. Nahar and Inder (2002) propose a 

time series approach to identify particular countries within a group that may not 

follow the overall tendency towards convergence. The authors dispute also some of 

the most prominent time-series approaches arguing that standard unit root or 

cointegration tests such as those adopted in the procedure of Johansen (1988, 1991), 

Bernard and Durlauf (1995) are inappropriate. Discussing the empirical convergence 

requirement for zero-mean stationarity, they show how this can create problems since 

there are certain non-stationary processes that meet their definition for convergence 

and a stationarity test may easily accept the unit root hypothesis concluding that there 

is no convergence. This may explain why the authors found evidence of convergence 

in OECD countries using their time series approach, while Bernard and Durlauf 

(1995) and Quah (1992) had found the opposite, in contrast to cross-section analysis. 

On similar grounds the authors criticize the paned data approach of Evans and Karras 
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(1996), based on their own alternative version and definition of convergence, which 

again is not equivalent to the empirical requirement of stationarity. Evans and Karras 

had criticized traditional OLS and NLS econometrics to estimate convergence 

equations, arguing that it was resulting in correlation between the error term and right 

hand side variables but the criticism is not confined to cross-analysis, even though 

their own proposed procedure did not substantially alter empirical results in their 

study. The authors found in favor of conditional convergence among the US states 

and a large group of countries. 

 

There are certain limitations in time series analysis with regards to the use of 

conditioning variables in order to capture the significance of different characteristics 

though convergence itself can be examined as absolute or conditional. There is also 

the persistent problem of ignoring other, unobservable or not easily measured 

economy specific characteristics. It is some of the efforts to face this problem that 

advocated for the use of paned data methods to study cross country data on per capita 

incomes, with prominent approaches in terms of applications those of Lee, Pesaran, 

and Smith (1997) and Islam (1995). Additional contributions can be found in Caselli, 

Esquivel, and Lefort (1996), Benhabib and Siegel (1997), Nerlove (1996). Within the 

traditional econometric analysis of panel data, cross country unobserved 

heterogeneities (“individual effects”) are treated as nuisance parameters to be 

removed (exceptions and different approaches are found in Levin and Lin (1992), 

Quah (1994), Canova and Marcet (1993) and Evans (1998). 

 

The panel data analysis adopts the use and estimation of convergence equations as in 

the cross-section analysis and of the form presented above. A general discussion on 

the derivation of panel data convergence equations based on the Mankiw, Romer and 

Weil model can be found in Durlauf and Quah (1998). The two main differences now 

are, first that the changes in per capita incomes of regions or countries in each 

observation are considered between successive periods t and t+1 (successive period 

adjustments), and the second that the constant term is decomposed into time specific 

and economy specific effects. 
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It has been argued that the decomposition of the constant term adds to the 

appropriateness of the panel data analysis to study growth dynamics. Islam (1995) in 

particular argues that time and country effects are more probable to occur when the 

convergence equation is used to study convergence of per capita outputs than 

effective labor productivity. In addition, the error structure can be seen as a 

consequence of omitting variables from the equation and the two effects into which 

the constant term is decomposed can have several alternative interpretations. It is 

argued that the above increase the flexibility of the model and should reduce the 

possibilities for misspecification. (Durlauf and Quah,1998).  

 

However, as Durlauf and Quah discuss also, there is a possibility that the 

decomposition of the constant term leads to misleading results or their 

misinterpretation with regards to convergence between poorer and richer regions. The 

circumstances that this can occur are not exceptional. He also points out to the usual 

econometric problem of correlation between country or region specific effects country 

and other right hand variables in the Mankiew, Romer and Weil version of the 

convergence equation on which the panel data analysis is usually based (the same 

could hold for conditioning variables in the Barro and Sala-i-Martin case).  

 

Solutions to this problem, which affects the consistency of estimations are far from 

perfect and can lead again to misinterpretations of results (Durlauf and Quah in 

particular, argue that the problem is more serious “profoundly limiting” our ability to 

explain patterns of cross-country growth and convergence). There are still also 

differing views on the time period that the application of a growth model (i.e. the 

panel data analysis now) should cover. This is according to Durlauf and Quah the 

dual of the problem created after the conditioning out the country specific effects, 

which relates to the fact that only high frequency income movements are left to be 

explained, a problem related to the possibility of deriving misleading results). He 

argues in favor of long-run analysis but Islam (1995) points out that the convergence 

equation in of Mankiew, Romer, and Weil (the same could be said for the version of 

Barro and Sala-i-Martin and others as well) on which the panel data empirical models 

are based, are derived as we saw in the Barro and Sala-i-Martin case, using a log 

linear approximation around the steady state. Therefore, panel data analysis presents 
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more validity over shorter periods in time. The argument is rational but not 

convincing for all (e.g. Quah, 1998), especially if one cares more for the empirics and 

less for the theoretical foundation and consistency of the model used. 

 

There have been several attempts to study convergence using "clustering and 

classification" (Durlauf and Johnson, 1995). Cross-section estimates of convergence 

equations are derived for the subsamples of a given data set. The subsamples are the 

product of splitting the data set on regions or countries into different initial per capita 

income classes. Using the data subsample of every income class, a different cross-

section convergence equation is estimated for every class (Durlauf and Johnson used 

as criteria for their classification of observations not only per capita incomes but also 

literacy rates). The identification of threshold levels that define the different classes 

was done endogenously using regression-tree procedures. Results display significant 

differences between the different classes. Naturally, there are other ways and criteria 

too to conduct the classification and then estimate the convergence equations (Franses 

and Hobijn, 1995). 

 

Since the concept of β-convergence is perceived as not saying the whole story and 

other measures such as σ-convergence are not sufficient either, few of the more recent 

efforts have focused on developing ways to analyze changes in the data (e.g. per 

capita income) distribution, without resorting to convergence equation estimation 

(either using cross-section, time-series or panel data), or without using single 

parameters of the distribution. These methods have not found as many applications 

yet as the empirical approaches we referred to. An approach which has been followed 

in some studies can be found in Quah (1993c). Quah uses Markov processes and 

ergodic theory to study convergence. His procedure requires the construction of a 

matrix resembling to, and treated as a transition probability matrix. Each row and 

column represent classes of per capita income and each cell is assigned the total 

number of observation units (i.e. countries or regions) that have transferred from one 

income class to another. The total sum of transitions for all time units we have data 

for is considered, within the examined period. Conclusions on convergence are 

derived using the characteristic roots of that matrix. An obvious problem of this 

approach is the arbitrary nature of income discretization in defining the income 
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classes. Different discretization may well lead to different results. A serious 

additional problem is the assumption that the data follow a stationary first-order 

Markov process.  

         

Bickenbach and Bode (2003) proposed Pearson, χ2, and likelihood ratio tests to 

examine the validity of the above hypothesis. They applied their test to a data set of 

per capita incomes for the US states during the period 1929-2000 and they found that 

data do not follow a stationary first-order Markov process. It is clear that the results 

of this method can be put to question. There have been other attempts and ways, less 

widely known and adopted to study convergence by looking at changes of the whole 

distribution while facing the problem of the arbitrary discretization. Such a case is the 

adoption and use of stochastic kernels (Bianchi 1997, Jones (1997), Quah, (1997, 

1996). Some of these approaches have similarities in their logic with the justification 

of using artificial neural networks as well. However, as it is always the case, 

regardless the progress we make in developing techniques to study changes in 

distributions, there are no results, parameters, etc. which can always tell the whole 

story as well as tediously examining each observation with regards to the others and 

the relevant changes.  

 

These techniques, which focus on distributional behavior and changes, are not based 

or derived from any solid theoretical background. They do little to explain the 

confirmation or rejection of a theoretical conclusion. For this reason, we think it's an 

irony ans unfair that Durlauf and Quah (1998) criticize Barro (1997) for pointing out 

that empirical analysis based on theoretical models with different assumptions than 

the Barro and Sala-i-Martin model, has proved again the validity of their own 

theoretical results. The criticism was based on the notion that the understanding of a 

phenomenon should derive from a better than its alternatives theoretical model, while 

compatibility of empirical results and observations with a model's conclusions does 

not suffice. 

 

Despite the usefulness for the empirics of convergence that methods studying the 

distributional dynamics may have, despite also the limitations in information provided 

by the existence or not of β-convergence, the estimation of convergence equations can 
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play a crucial role for our understanding of the processes and factors involved. The 

existence of a relationship between the initial income per capita and rates of growth 

for example, needs to be investigated and it maintains always its theoretical interest 

regardless of achieving or not convergence at the end. Empirical approaches to 

convergence that avoid the estimation of convergence equations conceal that 

relationship, they suffer from serious flaws, and they can offer no help in studying the 

possible role of conditioning variables affecting convergence and its speed.    

 

We have chosen to conduct a cross-section analysis of regional convergence in 

Greece- estimating convergence equations- based on the proceeded discussion and on 

data availability. Even though data on initial per capita GDP for the prefectures are 

available on a yearly basis (up to 1994 when per capita value added is published 

instead) for the Greek prefectures, this is not the case with other conditioning 

variables we wanted to consider. Data on education, employment in different sectors, 

etc. are given only for census years at this level of regional detail. Either we consider 

these variables at the beginning of a sub-period or taking their changes within a time 

interval, only in cross-section analysis can be used. The same is true for flow 

variables, such as private investment, which are given for one or few only sub-

periods. Hence, even panel data analysis could not be applied using all conditioning 

variables, or if applied, it could not offer much given the very limited number of sub-

periods for which the data are available within the period examined.    

                                           

3. Econometric Estimates 

Most studies on convergence conducted using cross-section data, estimate the 

equation form in (2) as such or augmented with conditioning variables, using non-

linear least squares methods (NLS) even though ordinary least squares (OLS) is 

feasible. The purpose of applying NLS is to take T under consideration in a way that 

allows valid comparisons of the estimated parameter results and values of β between 

periods of different length. However, the same possibility exists if one estimates using 

OLS the following version of the model, which we finally estimated:     
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where, as we conclude from (2) and (3), we can find β from Teb T
T /)1()1( β−−=− . 

As is most often the case in the literature for obvious reasons, (3) was initially 

estimated as such, with no additional variables. The independent variable here was the 

logarithm of the per capita gross domestic product (GDP) of each prefecture at the 

beginning of the period. The dependent variable was the logarithm of the ratio of the 

annual per capita GDPs (in the first and last year of the period), divided by the 

number of years in the period. We estimated (3) for two overlapping periods. The first 

was the decade 1981-1991 for which investment data were available, and the second 

was the whole twenty-one year period 1970-1991. Sources of data were the relevant 

publications of the Centre of Economic Research and Planning (KEPE) and the 

National Statistical Service of Greece (NSSG).    

 

First of all, it should be made clear that in all periods examined, there has not been σ-

convergence in the Greek economy at the level of prefecture. On the contrary, the 

dispersion of prefectural per capita GDPs has increased over the years. The standard 

deviation for example, of the distribution of per capita GDPs for the fifty two 

prefectures in the years 1970, 1981, and 1991, was 0.006, 0.045, and 0,187 

respectively. The trend towards greater dispersion of per capita GDPs therefore is 

clear. Nevertheless, a different story appears when one examines β-convergence using 

(3).  

 

Table 1 below presents the results of the two estimations of (3), each for each period. 

It includes the estimated values of the coefficient of the independent variable with 

their t-values in the brackets, the corresponding derived values of β, and the values of 

R2. 

Table 1: Econometric Estimates of the Convergence Equation  

Period β Estimated coefficient 

of log (yi,to) 

R2 

1981-1991 0.027 -0.024 

(-4.24) 

0.25 

1970-1991 0.028 -0.021 

(-5.52) 

0.38 
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The estimated positive values of β, derived from the negative in all cases coefficients 

of log(yi,to),  (-[1-bT]<0) with high statistical significance, demonstrate the existence 

of β-convergence. The relatively low values of R2 are not unusual in such cross-

sectional, convergence equation estimates. Such values in general can reflect the 

significance of omitted factors, differences of which, between regional units at the 

initial time, may determine different steady states for the regional per capita GDPs 

(the high level of statistical significance we found in the estimates of the constant 

term -not shown here- in all regressions, seems to advocates for the fact that the 

constant term picks up to a large extent the impact of other factors on the variation of 

the dependent variable).   

 

The existence of other than the initial per capita GDP variables, which are significant 

and improve the explanatory power of the model, indicates that convergence is not 

absolute. Table 2 presents best results and econometric estimates of augmented 

versions of the model used, where additional variables have been considered and 

added to the model. Not all chosen variables or their combinations add substantially 

or the same to the performance of the model. Variables added linearly to the original 

model and appearing also in the table below, include the percentage share of the total 

work force employed in the primary sector (EPS), the percentage share of the total 

population which has completed formal secondary education (SEG) and the 

unemployment rate (UNEM). All these variables were taken first, at the beginning of 

each period representing the initial states. Another variable is the level of total private 

investment for the whole period, but at the regional level examined here, this 

information was available only for the period 1981-1991. Values of investment are 

expressed in millions of Greek drachmas (1 euro = 340.71 Dr). 
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Table 2: Econometric estimates of the augmented models. 

Period  Estimated variable coefficients and t values R2 

      β Log(yi,to) EPS SEG UNEM INV  

1981-1991 0.039 -0.032 -------- -------- ---------  0.14 0.38 

  (-5.13)     (2.82)  

 0.039 -0.032 

(-5.12) 

-------- -0.010 

(-1.05) 

---------  0.12  

 (2.06) 

0.39 

 0.040 -0.034 

(5.27)  

-0.013 

(-1.33) 

--------- -0.13 

(-1.21) 

 0.11 

 (1.89) 

0.41 

1970-1991 0.021 -0.017 -------- -0.045 -------- NA 0.40 

  (-4.02)  (-1.46)    

 

There are several other variables chosen and considered, but they were of very low 

statistical significance and added nothing to the model’s explanatory power. An 

“index of land morphology” for example, based on the proportion of the area in every 

prefecture characterized as mountainous according to the National Statistical Service 

of Greece criteria (800m and above), was always found to be insignificant, showing 

the fact that land morphology characteristics do not necessarily impose a constraint on 

the rate of growth. The size of population was also of very low significance. Other 

combinations of the same variables as in the table above, had even lower explanatory 

power or did not add any, to the original model. 

 

With regards to the additional variables used, it can be easily understood why they are 

so often considered in studies of growth. However, it is hard to capture well enough 

the influential factors they represent (eg. rate of secondary education graduates or 

other indices, to measure quality of human capital), and to grasp and describe 

particularities of each region. They ignore also other non-tangible factors affecting 

growth rates. This difficulty accounts partly for the relatively low R’s in such cross 

sectional studies. This may be one of the reasons also, that most of the empirical 

studies focusing on the detection, classification and measurement of β-convergence 

using the theoretical framework of Barro and Sala-i-Martin, are still based primarily 

on estimates of the original non-augmented model. This, despite the bias possibly 

introduced due to omitted factors, especially if real per capita GDPs are not accurate. 
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Additional factors are often examined separately or later, in order to detect the 

“sources of convergence” (see for example A. de la Fuente, 2002 and Sala-i-Martin, 

1996). 

 

A problem encountered in some cases of the augmented versions of the model was 

multicollinearity, and this is one of the reasons as well, that some other combinations 

of variables and the relevant estimates are not included in Table 2. Multicollinearity 

was not strong however in those versions of the augmented model presented here, as a 

series of auxiliary regressions between independent variables showed. A detected 

major source of multicollinearity for the whole period 1971-1991 happened to be the 

relationship between the variables SEG and EPS and it was realized that it was better 

to rid of EPS.  

 

The first result to be noted here is that the significance and signs of the estimated 

coefficients of the logarithmic per capita GDPs in all periods, together with the sign 

and value of β’s, lead again to the solid conclusion that there has been β-convergence 

of the economies of Greek prefectures. 

 

In general, the significance of EPS, SEG, and UNEM, is small. Before we turn to 

discussing the signs of the estimated coefficients of these variables, we should 

mention that in general, they added little to the explanatory power of the original non-

augmented model. The same is true with regards to the best performing versions of 

the augmented model themselves, presented in Table 2. For example, the explanatory 

contribution of SEG or EPS (or even both), to estimated models for the period 1981-

91 is both, small and very similar to each other. 

 

A different story appears when one examines the significance and explanatory power 

of the investment variable (INV). The significance of INV with regards to the original 

non-augmented and tried augmented models without INV, was far from negligible. In 

all combinations of variables tried, INV maintained a high level of statistical 

significance and it was the variable to which every increase in R2 and adjusted R2 is 

attributed almost entirely. The introduction of SEG and EPS in the model for 1981-

1991 raised only slightly the value of R2 and the values of adjusted R2 (in general, R2s 
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and the values of adjusted R2s are very close in all our estimates). Evidence shows 

therefore, that almost the entire increase in the explanatory power of the model for 

1981-91, can be attributed to private investment. It is highly probable that if data on 

private investment were available for the whole period 1970-91, the results would 

have led to similar conclusions on the significance of private investment.  

 

The negative signs of two of the conditioning variables we used and in general, 

different signs from study to study are very common in the literature. This can be seen 

also in Levin and Renelt (1992) where a long list of conditioning variables used in 

different studies and the estimated signs are provided. Negative signs have in our 

view their explanation. Poorer regions for example, tend to have a higher share of 

their population with less formal education. Hence, since poorer regions with lower 

per capita GDP tend to grow at higher rates and the coefficient of the initial per capita 

GDP is negative, the coefficient of SEG tends to be negative too. On the other hand, a 

large amount and share of population with completed formal education at the initial 

state means better human capital available. As a result the coefficient of SEG tends to 

be positive. Similarly, factors affecting the signs of other variables in opposite ways 

can be thought of, although not necessarily the same factors as the ones mentioned. 

The way that opposing factors determine the sign of these variables, depends largely 

on the choice of the initial state.  

 

In recent studies on the sources of convergence (e.g. A. de la Fuente, 2002) utilizing 

the Barro and Sala-i-Martin approach and the augmented version of their model, 

instead of the exogenous variables taken at the initial state, what is used is the change 

in the values of these variables over a considered period. This is justified on the 

grounds that these changes over the period affect the average rate of growth for this 

period and they can be treated as exogenous, in the same way that other exogenous 

factors such as private investments are treated. This raises of course the issue of 

causality for the new exogenous variables since their changes may be the result of the 

growth process. In this case however, the problem affects the alternative of taking the 

conditioning variable values at the initial state. In particular the issue of the 

arbitrariness of the initial state choice is raised again. 
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We have estimated too the augmented models, using as additional -to the initial per 

capital GDP- exogenous variables, the changes of the previously considered 

additional exogenous variables at their initial state. As before, several combinations 

of chosen variables were tried and we present our best estimates in Table 3. The 

results clarify the role of the variables involved in the process of growth and 

convergence, including matters raised by the estimated signs and discussed above, 

since variables do have the expected signs now. As DEPS and DSEG we define the 

changes in the share of workforce employed in the primary sector (EPS) and the 

population share with completed formal secondary education (SEG) respectively, 

between the initial and last year of each period. DPOP is the percentage change of the 

population size, a variable that was found to be somewhat more significant in these 

augmented versions of the model and included in the estimates of Table 3. The 

variable INV is defined as above. 

We also performed Granger causality tests for DPES, DSEG, and DPOP, in order to 

deal with the causality issue even though the direction of causality is usually taken for 

granted in the similar studies we are aware of. Results of estimates and the relevant F-

tests showed that the direction of causality is from these variables to the average rate 

of growth (in a couple of instances, in alternative models examined for the two 

periods, the causality was bidirectional) and therefore we proceeded accordingly. 

Table 3: Econometric estimates of the augmented models  

Period  Estimated variable coefficients and t-values R2 

     β Log(yi,to) DEPS DSEG DPOP DINV  

1981-1991 0.045 -0.036 -------- 0.207 --------- 0.14 0.41 

  (-5.40)  (1.47)  (2.68)  

 0.037 -0.031 -------- -------- --------- 0.13 0.38 

  (-5.33)    (2.66)  

1970-1991 0.030 -0.022 -0.026 --------- 0.016 NA 0.46 

  (-4.96) (-2.01)  (1.94)   

 0.033 -0.024 -0.206 0.064 0.17 NA 0.48 

  (-5.10) (-1.51) (1.24) (2.07)   
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The results provide stronger evidence for conditional β-convergence. In contrast to 

the augmented models of Table 2, there is a clearer increase in the explanatory power 

over the non-augmented model of Table 1, as measured by R2s and adjusted R2s. 

 

The negative sign of DEPS confirms the expected, that larger reductions in the share 

of the workforce employed in agriculture are associated with higher average rates of 

growth (in the observations reductions - which occurred in all prefectures in all 

periods - have negative signs). This variable was significant at 5% level of 

significance in one case only, but there was some significance, which added to the 

explanatory power of the model, in the other cases presented here as well. Some 

statistical significance of low levels for DSEG improved somewhat the performance 

of the model. A larger share of population with completed secondary education is 

contributory to greater average rates of growth as the estimated sign of DSEG shows. 

Population increases are also associated with greater average rates of growth. 

 

Even though the inclusion of the variables appearing in Table 3 increases the values 

of R2s and adjusted R2s of the original non-augmented models of Table1, it is the 

inclusion of private investment for the period 1981-1991 that leads to the greater 

increase of explanatory power. Given the fact that INV is consistently of relatively 

high statistical significance and increases substantially the performance of all models 

in which it is included, we can expect that if data on this variable was available the 

result would have been a better performance of the models in the other periods as 

well. 

 

The significance of private investment is an issue that has been raised again in 

empirical studies. Levine and Renelt (1991, 1992) in particular, having found similar 

results, not only they argued that it is the initial per capita income and the amount of 

investment that exercise the greatest influence on the average rate of growth, but they 

proposed also a robustness test for the variables used. The only variables that passed 

this test were the initial per capita income and investment (even though the robustness 

of the investment was relatively smaller). Even though their test has been 

characterized as strict (A. de la Fuente, 1997) their quantitative analysis was detailed 

and well founded. It has been argued also that to some extent, the level of investment 
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as a variable does capture the impact of the non-tangible factors that affect growth 

such as networks, institutions, etc.   

 

4. An Artificial Neural Network Investigation of Convergence 

One of the criticisms cited with regards to use of convergence equations is the fact 

that their form is based on a log-linear approximation of the necessary conditions of 

an optimization problem. The log-linearization and, more important, the assumption 

of a certain form of the production (and utility) function, play a crucial role in 

deriving the form of the equation we used so far and hence the empirical results. 

Under different conditions, the form of convergence equations may differ as well and 

it may be also highly non-linear. To free the form of convergence equations from such 

restrictions we propose the use of artificial neural networks in their estimation.  

 

A Back-propagation Neural Network algorithm (BPN), of the feed-forward form of 

Artificial Neural Networks (ANN), was used. The BPN connects the independent and 

dependent variables in such a way, that the implied functional form can approximate 

accurately any true relationship between the dependent and independent variables, 

including those that involve strong non-linearities.  Unconstrained models and other 

augmented ("constrained") ones with additional variables, were estimated. Problems 

in the process of econometric estimation some of which we referred to, also advocate 

for the use of ANNs. Even though ANNs have found many applications in social 

sciences including economics and finance, to our knowledge there has been no 

extension of their applications to the empirics of convergence.  

 

A Synoptic Formal Description of BPN  

Neural networks represent parallel computing processes, which in various ways 

simulate biological intelligence. The simulation of course is far from a complete 

modeling of the brain’s functioning complexity but it takes under consideration part 

of the existing knowledge on this functioning.  

 

Every input (independent variable here) is represented by a neuron (input neuron) and 

all input neurons are thought of being placed in a layer, the input layer. Input neurons 
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are not connected between themselves but they are all connected to all neurons of 

another ("above") layer, which is called the middle (“hidden”) layer.  

 

Again, the neurons of the middle layer are not connected between themselves but 

each one of them is connected to the neurons of another ("above") middle layer, and 

so on. There is no predetermined number of middle layers or neurons in the middle 

layers. The final layer however is called the output layer and is constituted by the 

output neurons each one representing an output (dependent variable). There can be 

more than one dependent variable therefore. Each connection of a neuron i to neuron j 

of the next layer is given a weight wij. Neurons are also called nodes. In addition to 

the input, middle and output layer nodes, the structure of BPN usually contains in the 

input and middle layers a node, which is not connected to the nodes of the previous 

layer but it is connected to all nodes of the next layer. Such a node, often called a 

“bias”, produces (“fires”) constantly a value of one and transmits it to all nodes of the 

next layer, transformed by the weights of the corresponding connections. The BPN 

we employ in this study has one bias node in the input layer and another one in the 

middle layer. 

 

The BPN is fed with the available statistical data (actual inputs and outputs) and is 

trained until it finds and adopts those values for the weights of connections, with 

which, if it is fed again with the same set of inputs it can predict accurately on its own 

the actual output. It is said then, that the network has learned and captured through 

these weights the true relationship between inputs and outputs.    

  

We present here in a general formal way, the operation of the BPN. We assume the 

existence of one middle ("hidden") layer and hence this BPN includes in total three 

layers. There have been several different descriptions of the BPN in the literature, 

some of them written especially for economists (Kastens, Featherstone, and Biere, 

1995). The description adopted here is based on Freeman and Skapura (1992) where a 

more detailed explanation of the BPN’s operation along the following lines is 

presented.  
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Assume that we have P vector-pairs (x1, y1), (x2, y2),...,(xP, yP) representing an 

unknown functional relationship y = g(x) where x∈RN and y∈RM. The purpose is to 

train the 3-layer now BPN of N input nodes (independent variables) and M output 

nodes (dependent variables), using the P vectors, to "learn" by adjusting its weights 

the true relationship g(.). In the BPN’s presentation here, y and x symbolize input and 

output variables and not the same variables as above, in the discussion of theoretical 

models and econometric analysis.   

 

The steps that summarize the BPN’s operation are the following: 

1) An input vector xr = (xr1, xr2,...,xrN)t is applied to the input layer of N nodes, (where 

t simply denotes the number of times this vector is applied to the input layer since 

during training it is applied several times). Every input node sends the received signal 

to all nodes of the middle layer adjusted by each particular connection and therefore 

all middle ("hidden") layers receive adjusted signals-inputs by all input nodes. The 

net input to the jth node of the hidden layer (h) is given therefore by:  

h
jri
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h
rj xwnet θ+= ∑

=1
 where h

jiw  is the weight of the connection between the ith input 

node to the jth node of the hidden layer and h
jθ  is a "bias term" which demonstrates 

the existence of an additional neuron in the input layer which constantly produces the 

value 1 and its connection weights are subject to updating like all other weights. Such 

a node has been found to improve the performance of the BPN.   

2) This net input "activates" the jth node of the hidden layer and produces an output 

according to the output function )( h
rj

h
jrj netfi = . This process happens in all hidden 

layer nodes. Output functions can take one from several forms, but we usually adopt 

the sigmoidal one, taking into consideration its monotonicity, its being output-limiting 

and its differentiability.  

3) Each hidden layer node sends to all output nodes its signal, which is adjusted in the 

process by the connection weights. In particular, each node of the output layer 

receives as a signal the total input: ∑
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rknet  is the net input 

to the kth node of the output layer, coming from all nodes of the hidden layer j = 

1,2,..., L, o
kjw is the weight of the connection between the jth node of the middle layer 
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and the kth output node. A node producing constantly the value 1 is also included in 

the middle layer too. 

4) All output nodes process their received input and produce their output. The kth 

output node for example produces the output )( o
rk

o
krk netfo =  where )( o

rk
o

k netf is 

the output function of the kth output node.  

5) The error between the output (estimated value of dependent variable) of the output 

node and the real one is given by )( rkrkrk oy −=δ where yrk is the real output (value 

of dependent variable) of the output node (dependent variable) k, which corresponds 

to the input pattern r. It is this error that the BPN “sees” and tries to minimize by 

updating the connection weights. In fact for all given input and output patterns, the 

BPN trains and updates weights minimizing half the sum of squared errors 

(Generalized Delta Rule -GDR): ∑
=
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the derivative of the transformation function with respect to o
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for the hidden layer nodes. 

6) The weights of connections between the middle and output layer nodes are updated 

according to: rj
o
rk

o
kj

o
kj itwtw ηδ+=+ )()1(  where η is a predetermined “learning rate” 

parameter and t denotes the time we implement the input and output pattern r until the 

BPN trains properly. As mentioned, the BPN does not finish training with one input 

and output pattern, before it moves to the next one. It goes each time through all data 

again and again (“runs”), adjusting the weights. The described procedure takes place 

for all input and output patterns used in the training process.   

7) The weights of connections between the input and middle layer nodes are updated  

as: i
h
rj

h
ji

h
ji xtwtw ηδ+=+ )()1( . The order of the updates on an individual layer is not 

important. The training stops when the BPN “learns” the relationship between inputs 

and outputs and, given the final values of the updated weights, application of all input 

patterns will produce from the output nodes the true output patterns. The error 

measurement minimized always during training for the above purpose is always the 

one given by (4).  
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The transformation functions for all middle layer nodes are very often of the 

sigmoidal form as in most BPN applications for the well-known properties of this 

function. Hence,  1)1()( −−+=
h
rjneth

rj
h
j enetf . This is the functional form we adopted 

also in our study. Since sigmoidal transformations of weighted sum of inputs take 

place in the middle layer nodes, we adopted as usual, a linear transformation function 

for the output nodes. This means that an output node simply produces (fires) the sum 

of all signals sent to this node by all middle layer nodes including the bias, weighted 

by the respective connection weights.    

 

The learning rate parameter is positive and usually less than or equal to 1. It is related 

to the minimization of (4) through a steepest decent algorithm. A larger value of the 

parameter will result in a speedier training process but we run the danger of obtaining 

a local rather than a global minimum of (4) when the BPN converges, and further  

training does not improve the weights and the accuracy of the BPN predictions of the 

given output patterns from the input ones. A relatively small parameter will result in a 

larger number of runs (iterations) t and training time, but it increases the chances of 

reaching BPN convergence and final weight values at a lower or global minimum of 

(4). After a point however, reduction of the parameter may be unable to provide better 

results and even unable to achieve convergence of the training process at all. In 

Freeman and Skapura (1992) the derivation of the formulas for the updating of the 

weights can be found as well.  

 

The way the trained BPN operates in order to make forecasts, is the similar to every 

run of the training process, except of course that no updating of weights and no 

repetition of runs takes place (this also renders the concepts of learning rate and error 

tolerance, irrelevant). If new input data are fed into a BPN after its training, the output 

values produced for each fed observation of input values are derived based on the 

structure and determined weights of the network.  

 

Input values fed to their respective input neurons are sent to the next layer neuron’s 

modified by the finalized weights of each connection. The bias node of the first layer 

behaves similarly sending the value 1 modified by the weights. Every next layer’s 

neuron processes the received sum of all modified inputs, using the neurons’ output 
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(transformation) function and produces its own output (signal). Subsequently each 

neuron of this layer sends its own signal to all neurons of the next layer modified by 

the respective connection weights. The bias node of this layer behaves as the bias 

node of the previous layer. The next layer nodes receive the sum of modified signals 

of the previous layer’s nodes including the bias node, and the process goes on until 

we reach the nodes of the output layer and derive from each one of them a value for 

their respective outputs (dependent variables here).  

 

The process above, through which a trained BPN makes a forecast using fed input 

values, can be described easily by a formula (C.M. Bishop 1996). This formula 

describes in fact, the relationship between inputs (independent variables) and outputs 

(dependent variables). The structure of the BPN defines the specific functional form 

of this mathematical relationship, which has the capability as mentioned, to accurately 

approximate any true relationship including those with strong non-linearities.  

 

Let us assume in particular, one middle layer (hence, three layer BPN as in our case), 

d independent variables, k dependent variables, M middle layer nodes (without 

considering the middle layer bias node) and the same sigmoidal transformation 

function f (.) for all nodes in the middle layer (and the simple linear transformation 

we mentioned above for the output nodes). Then, with a slight modification in 

notation for the shake of clarification, we have reduced the general relationship 

implied by the BPN and presented in the literature, to: 
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where yk is the output produced by the kth output node (dependent variable), )2(
kjw is 

the connection weight between the jth node of the second layer and the kth  node of the 

next layer (in our case where the only dependent variable is the average rate of 

growth, k=1), and )1(
jiw is the connection weight between the ith node of the input layer 

and the jth node of the second layer. The zero values of j refer to the two bias nodes, 

one in the input and one in the middle layer. The relationship in (5) can be written 

(with a sigmoidal f(.) )as: 
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Determining the optimum values of connection weights is equivalent to estimating the 

coefficients of the relationships between inputs and outputs represented by (5). From 

(5) and (5a) we derive the marginal impact of a change in the input variable xi on yk 

as:  
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where, iγ  is defined as above. 

 

Empirical Analysis Using the BPN 

We have applied a BPN as the one described above with the structure we mentioned 

(one middle layer, one bias node in the input layer and one in the middle layer) in the 

estimation of convergence equations and the testing of predictability of these 

equations. The number of input nodes is determined of course by the number of 

independent variables in every equation. There is no clear cut rule as to the optimum 

number of middle layer nodes. There are rules of thumb, which we utilized, together 

with our own searching to see when the network performs best, and chose a number 

of middle layer nodes. There are other more formal methodologies to optimize the 

structure of the network, such as using a genetic algorithm during training. Given the 

number of variables involved in our study and our own searching there were no 

reasons to resort to such procedures or expect a significant, if any, improvement in the 

network’s performance. The number of middle layer nodes in our BPN was 11 

including the bias node of this layer (M=10). 

 

We have trained the BPN using the same data and variables as in the case of 

regression analysis. The training took place for the overall period 1970-1991 and for 

the period 1981-1991 for which data on private investment were available at the level 

of prefecture. Results showed that in all periods, the BPN substantially outperformed 

regression analysis, even when in this comparison stricter criteria are applied on the 
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BPN performance. In the network we trained we adopted a learning rate equal to 1, as 

is the usual default setting in ANN software. However, we experimented conducting 

the training with other values smaller than one. We tried also several values, changing 

during training, based on the performance of the network during this training. It was 

clear that other than one values of the learning rate did not help to improve the 

performance of the network for the given data set.  

 

We adopted also a 0.10 tolerance rate. That means that during the training process and 

the relevant adjustments of weights described above, the network was considering an 

output prediction as accurate if it was less than equal to 10% of the range of real 

output values of the training date set. Forcing the network to learn and predict very 

accurately the outputs of the training data sets, if possible, leads to "loss of 

generality". This means reduced ability to predict and estimate with sufficient 

accuracy output values corresponding to input values not belonging. In other words, 

learning to produce from inputs of the specific training data set the relevant outputs, 

leads to less accurate approximation of the true relationship between inputs and 

outputs. The tolerance rate adopted is a very usual one in BPN applications but before 

its adoption we tried alternative values as well with no benefit to the network's 

performance.  

 

In the training process of BPN we utilized 90% of the data. Once training stopped and 

the weights of the BPN were determined, we utilized the rest 10% of inputs and 

outputs for testing the BPN’s predictability. This means that these 10% of input 

observations were fed to the BPN and, given the determined values of weights, 

corresponding output values were produced. Then, the predicted outputs, were 

compared to the real output observations. Errors therefore were analyzed to examine 

the predictability of the BPN with data which were not used for its training (unlike of 

course the lenient econometric evaluation of performance, based on R2 s, which refers 

to data used in the estimation of regression coefficients anyway). It was this way that 

the performance of the network was tested. The ability of the network to predict 

accurately the annual average rate of growth, which is our dependent variable, based 

on unused in training values of the independent variables, indicates that it has 

sufficiently captured the underlying relationship. 
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We have trained the network of every unconstrained and augmented model, three 

times. Each time a different number of data representing 10% of the total facts was 

kept outside training and was used for testing. Thus, in three testing procedures of 

each model, 30% of the available facts was used in total. As a result, the trained 

network was asked to make a sufficient number of predictions based on input data it 

didn’t know from training. The testing facts were being selected randomly after 

reshuffling the data.      

 

We present below, statistical information on the testing performance of the BPNs 

applied on each model, in order to evaluate their ability to predict accurately. Table 4 

in particular, examines the performance of the BPNs in the cases of the unconstrained 

model (for the two periods) where the only independent variable is the per capita 

income at the initial state. There are 5 observations, which were used for testing after 

each training session, yielding in total 15 testing results for the three training sessions 

of each unconstrained model.  

 

Table 4 provides information on the average absolute percentage of prediction error, 

of the BPNs, over all 15 testing data for each period. It provides also the maximum 

and minimum absolute percentage prediction errors. The last three rows of Table 4 

provide the same information, but as a percentage of the entire data range. It can be 

argued that when outputs within and between both, training and testing data sets are 

close to each other, it is only natural that a BPN after training will have such weight 

values that will result to predictions close to the real outputs during testing. This 

implies small percentage errors. Even though it can be very questionable to what 

extent this is happening in a specific data set, we have considered errors as 

percentages of the data range in order to have a stricter evaluation of the network’s 

performance. Partly because of expressing the dependent variable in logarithms, their 

differences from observation to observation are relatively small. Of course, it is not 

always the case that errors as percentages of the data range are greater than 

percentage errors.  

Table 4.  Information on prediction errors and the performance of BPN 

                                                                             1970-1991             1981-1991                                           
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Average absolute percentage error                              0.025                          0.022              

Maximum absolute percentage error                           0.061                          0.098  

Minimum absolute percentage error                           0.004                           0.002 

(Average absolute error)/(range of  

dependent variable values)                                          0.121                          0.758                          

(Maximum absolute error)/(range of                          

dependent variable values)                                          0.286                          0.316  

(Minimum absolute error)/(range of  

dependent variable values)                                          0.019                          0.008    

_______________________________________________________________ 

 

The above table testifies to the very satisfactory level of the BPN's performance. The 

average percentage error in absolute values is only 2.5% for the 1970-1991 period and 

2.2% for the 1981-1991 period. The fact that all predictions were quite accurate is 

also demonstrated by the fact that the range of the above, prediction percentage 

errors, is between 0.4% and 6.1% only. Even if the stricter criterion of errors as 

percentages of the whole range of dependent variable values is used, the performance 

remains strong. The average error is just 12.1% of the range for 1970-1991 and 7.58% 

of the range for 1981-1991 (even though there is no clear-cut rule, a rule of thumb 

usually adopted by relevant software to characterize a  prediction accurate is to be 

less than 40% of the range). The table also shows the maximum and minimum values 

of errors as percentages of the range. Naturally, their distance is greater than the 

previous distance between the maximum and minimum percentage errors.     

 

This performance becomes even more impressive if one considers the fact that refers 

to predictions the corresponding values of which (values of independent and 

dependent variables) were not used for training and estimation of weights. Had we 

constructed a table with information on prediction errors corresponding to data used 

for the BPN's training and estimation of weights, (as econometricians do when R2s are 

calculated with data used for the estimation of coefficients), the performance would 

appear more impressive as expected. 

 

In fact, we are not aware of any published empirical study that attained with the 

traditional cross-section or time-series analyses similar performance, especially in the 
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estimation of unconstrained models. A very high value of R2 in econometric 

estimation would have been derived if prediction errors were of the same magnitude 

as those in the BPN's testing, let alone the magnitude of smaller prediction errors in 

the estimation of weights. Sometimes values of R2 for ANNs are presented too, based 

on the two definitions of this measure of fitness of data in regression analysis. This 

may seem appealing, especially for comparison purposes, between ANNs or between 

certain ANNs (BPN, etc) and other methodologies (regression analysis, etc). However 

this is implausible since the definition of R2 breaks down as we move away from 

traditional regression. The two definitions of R2 or adjusted-R2 lead to different values 

and even their range is not confined between 0 and 1 any more. 

 

The performance of the network implies that its structure and determined weights 

have captured at a satisfactory level the true relationship between the average rate of 

growth and the initial per capita GDP. It is also interesting to note that through the 

relationship implied by the network, the average rate of growth could be determined 

to a very large extent by the per capita GDP at the initial state, as implied by the 

derived convergence equation of the original neoclassical model.       

 

Table 5 shows the performance of the network when augmented models for the period 

1970-1991 were estimated. As in the case of econometric analysis, conditional 

variables were the level of education, and employment share of the primary sector, as 

defined above. The variables in brackets were used in addition of course to the 

logarithmic value of the initial per capita GDP. They appear above the columns of the 

testing results corresponding to each model they were included, together or alone. 

 

 

 

 

Table 5.  Information on prediction errors and the performance of BPN 

using augmented models for 1970-1991    

                                                                          (EDU)        (EDU, EPS)      (EPS)    

Average absolute percentage error                      0.029              0.047           0.029  

Maximum absolute percentage error                   0.088              0.121           0.043 
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Minimum absolute percentage error                    0.006              0.017           0.012  

(Average absolute error)/(range of  

dependent variable values)                                  0.147              0.233           0.139      

(Maximum absolute error)/(range of                          

dependent variable values)                                  0.408              0.564           0.20    

(Minimum absolute error)/ 

(range of dependent variable values)                   0.031              0.086           0.058 

_______________________________________________________________ 

 

The network performed again very well with the conditioning variables. The average 

percentage error in absolute value was only 2.9%, when either the education or the 

employment share of the primary sector was used. This is still very small of course, 

but it doesn't indicate any better performance than the unconstrained model for the 

same period. In addition when both variables are used the average percentage error in 

absolute values of the three testing trials becomes 4.7%.  Again a very small error, but 

the lack of any improvement over the unconstrained model is even more apparent. 

 

The higher absolute percentage error when both conditional variables are used shows 

that combining them, does more to "confuse" rather than help the network, as it tries 

to adjust and determine its weights. Many of the statistical properties of ANNs, (such 

as the extend to which the use of independent variables statistically related more or 

less between themselves, creates problems in determining the optimum weights) have 

not been fully investigated. However, given the complex and changing relationships 

that conditioning variables at initial states can have with the average rate of growth, 

which often leads to conflicting conclusions, and the way that the algorithm of the 

BPN operates, the above phenomenon can occur. 

 

The average error as a percentage of the whole range of the dependent variable is 

slightly increased for the period, when one of the two conditioning variables is used 

(14.7% and 13.9% compared to 12.1% in the first column of Table 4). It is even 

higher at 23.3%, as the percentage error we discussed, when both conditioning 

variables are used. When education or both conditioning variables are used, it is the 

maximum values of the errors as percentages of the dependent variable range that 

increase significantly, something which does not happen when only employment 
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share in the primary sector is the conditional variable. This is due to very few 

observations only, behaving as outlayers when education is included in the model. In 

general, we could argue that the BPN performed very well again, especially when 

only one of the two conditional variables was used. The addition of the two 

conditional variables for 1970-1991 however, did not improve the performance of the 

BPN in repeated testing of the augmented models.  

 

Table 6, similarly constructed, shows the testing results of augmented models for the 

period 1981-1991 when the impact of private investment can be tested. Using 

education and the employment share of the primary sector together or not, led again to 

very good testing results but it did not offer any improvement in performance over the 

unconstrained model, as is the case for the whole period. In any case, we limit here 

our presentation of testing results to those that refer to augmented models including 

the investment variable.        

 

Table 6.  Information on prediction errors and the performance of BPN 

using constrained models for 1981-1991 

                                                                                  (INV)                (INV, EDU)                                                        

Average absolute percentage error                              0.045                    0.045                                

Maximum absolute percentage error                           0.105                    0.102 

Minimum absolute percentage error                            0.002                    0.006 

(Average absolute error)/ 

(range of dependent variable values)                           0.150                    0.150    

(Maximum absolute error)/ 

(range of dependent variable values)                           0.343                     0.333                 

(Minimum absolute error)/ 

(range of dependent variable values)                           0.006                     0.022                       

______________________________________________________________  

 

The first column refers to the augmented model for the period 1981-1991 where the 

only conditional variable is the level of investment, while in the case of the second 

column in addition to the initial level of per capita GDP two conditional variables 

were included. These were the  level of investment and education (using EPS did not 

improve the results). The very satisfactory performance of the BPN becomes apparent 
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again. The inclusion of the investment variable led to an average absolute percentage 

error in prediction, of only 4.5%. The average error as a percentage of the dependent 

variable error was 15%. Remarkably similar results were obtained as the second 

column shows when education was a conditional variable too.  

 

The inclusion of the investment variable in the analysis for the period 1981-1991 

improved the results over the performance of the other augmented models (which we 

do not show here) for the same period, when only EDU or EPS or both were the 

conditional variables. However, it did not offer any improvement over the 

unconstrained model of the period 1981-1991. 

 

As we did with the regression analysis we have tested the performance of the BPN 

when the augmented models are conditioned by percentage changes in certain 

variables rather than their values at the initial state. Table 7, examines two such 

constrained models, one for 1970-1991 and one for 1981-1991, but as we did in the 

case of econometric analysis we have adopted as independent variable not the level of 

education at the initial states but their change over the whole periods. In particular, 

the first constrained model (1970-1991), contains as independent variable, in addition 

to the logarithm of the initial per capita income, the percentage change in the level of 

education. The second constrained model (1981-1991) includes, in addition to the 

logarithm of the initial per capita GDP, the level of investment for the period as 

before and the percentage change in the level of education.    

 

 

 

 

 

 

Table 7. Information on prediction errors and the performance of BPN 

using percentage changes in educational level as a conditional variable. 

                                                                         1970-1991                1981-1991  

                                                                        (DEDU)            (DEDU, INV) 

Average absolute percentage error                        0.020                       0.038                                           

Maximum absolute percentage error                     0.081                       0.103  



 38

Minimum absolute percentage error                      0.003                       0.002  

(Average absolute error)/ 

(range of dependent variable values)                     0.093                        0.128        

(Maximum absolute error)/ 

(range of dependent variable values)                     0.358                        0.337  

(Minimum absolute error)/ 

(range of dependent variable values)                     0.014                         0.006      
_______________________________________________________________ 

                                          

The results in the first column of Table 7, if compared to the first column of Table 4, 

show that the inclusion of the percentage change of education led to somewhat better 

testing results than those of the unconstrained model. The average absolute 

percentage error declined from 2.5% to 2% only, while the error as a percentage of 

the output value range declined from 12.1% to 9.3% (even though the value range of 

the two performance measures itself, has increased). The testing results were 

improved also, compared to those of the augmented model that includes education at 

the initial state. This can been seen comparing the first column of Table 7 to that of 

Table 5, and similar comments as above in the comparison with the unconstrained 

model, apply again.  

 

When the percentage change of education is used in the constrained model of 1981-

1991 together with the level of investment, there is clearly an improved performance 

in comparison to the augmented models for the same period where investment alone 

or together with education at the initial state are used. This conclusion is derived 

when the second column of Table 7 is compared to Table 6, and both measures of 

testing performance that we use, are examined. However, when the comparison is 

with the second column of Table 4, it becomes clear that the persistently very good 

testing performance of the BPN is not an improvement over the unconstrained model 

of 1981-1991.  

 

Estimated Relationships        

After testing the performance of the BPN adopted, we trained it again using all data 

with the same learning rate and error tolerance. We estimated the connection weights 



 39

and therefore the parameters of (7) and (8).  In order to avoid a lengthy presentation 

of estimates and, most important, given the very satisfactory and superior 

performance of the unconstrained model for 1970-1991, we present here this model as 

it stands after the estimation of connection weights. There are two input nodes (the 

logarithm of the initial per capita GDP and the input layer bias node), one output layer 

node (the average rate of growth as in the linear convergence equation), and the 

eleven middle layer nodes including the bias. This structure implies the existence of a 

(10x2) matrix of connection weights between the input and middle layer and a (11x1) 

vector of connection weights between the middle and output layer. There are 

therefore 31 weights estimated, entering as coefficients the estimated model. 

Resorting now back to the notation of the econometric model where y denotes per 

capita GDP, and based on the form of (5) and (5a), in our case this unconstrained 

estimated model becomes: 
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From (7) we can obtain also the impact of a marginal change in the per capita GDP at 

the initial state, on the average rate of growth as: 
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where )1(
1,µw  (µ = 1,2,..., 10) is the connection weight between the initial per capita 

GDP (node 1 at the input layer) and node µ of the input layer, and γµ is defined as 

above (where i was used to denote nodes rather than µ). In our case: 
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The relationship given in (7) leads to rates of growth, which are not constant as in the 

case of log-linear convergence equations, but as (8) shows depend on the particular 

value of the initial per capita GDP. Hence, although the form of (7) refers here to 

cross-section analysis, it does provide information on the underlying processes, since 

a regional initial level of per capita GDP can be another region's initial per capita 

GDP at another time.          

 

Inserting the estimated elements of the weight matrices into their corresponding 

places in (7) we have the estimated relationship (the two matrices are available upon 

request to the authors).  Estimated weights confirm the negative relationship between 

the initial per capita GDP and the average rate of growth. For every initial per capita 

GDP used in the BPN training and weight estimation process, the estimated 

relationship of BPN yields average rates of growth which are consistently higher 

(lower) the lower (higher) is the initial per capita GDP. For few only sequential 

values of initial per capita GDPs, the predicted average rate of growth remains the 

same and then the clear negative relationship resumes again as the initial per capita 

GDPs change further. The negative relationship is confirmed also, if in addition to the 

used in training initial per capita GDPs, we use other values between them to estimate 

average rates of growth. 

 

There is only one exception to the above results and concerns the very largest 

observed value of initial per capita GDP. When this value is inserted in the estimated 

BPN (7), it produces an estimated average rate of growth a bit larger than the 

prediction based on the immediate smaller rate of growth, violating the negativity of 

the relationship holding for the smaller values of initial per capita GDPs. This 

exception refers to the prefecture of Attica including the capital city Athens. A widely 

used explanation in the literature for a positive relationship between relatively higher 

initial per capita incomes and rates of growth is the existence of infrastructure and 

associated positive externalities in these initially richer areas. 

 

If we rank the observed pairs of inputs and outputs we fed into the BPN for training 

according to the size of the initial per capita GDPs, it can be seen easily that lower 
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initial per capita GDP does not always imply greater average rates of growth, even 

though this is the case in general. This makes it even more interesting that the BPN, 

capable of capturing strong non-linearities and being so accurate, extrapolates after 

training a function of  average rate of growth with respect to initial per capita GDP 

which is monotonically decreasing according to the above, and with one exception, 

greater initial per capita GDP implies always lower than equal average rate of growth 

for the range of input data used. Together with the BPN's very satisfactory 

performance in fitting the data and especially during testing, the estimated weights 

and the predicted outputs for different input values, indicate the existence of non-

linearities in the studied relationship.  

 

As is the case with all relationship estimation algorithms, it is expected that the BPNs 

performance is more accurate and reliable within the range of input values utilized. 

However, we fed into the network several values of per capita GDPs up to 20% above 

and 20% below the largest and lowest values used in training. The predicted values of 

average rates of growth do follow the results discussed above. As we reduce the 

values of initial per capita GDPs the predicted average rates of growth increase. 

However, as was the case with the highest observed and used value of per capita 

GDP, further increases lead to increasing predicted average rates of growth even 

though the increases are not relatively large. It seems therefore, that starting with the 

largest observed and used value of initial per capita GDP, the estimate of (7) 

establishes a new pattern where the negative relationship between initial per capita 

GDPs and the average rate of growth is reversed, for relatively high initial per capita 

GDPs.         

 

5. Conclusions 

 

Our study has shown the usefulness and possibilities of Artificial Neural Networks in 

studying the existence and characteristics of regional economic convergence, using 

data on Greek prefectures. The Back-propagation ANN used captured extremely well 

the relationship between per capita GDPs at the chosen initial state and the average 

rate of growth during the examined period. The existing and used data fit very well 

the estimated by the BPN relationship. The BPN performed also extremely well in 
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repeated testing, in which unknown to the trained BPN data on initial per capita GDPs 

were used to predict the respective average rates of growth.  In addition, the ANN 

clearly outperformed the econometric analysis conducted using the same variables 

over the same period. A result of the functional relationship implied by the BPN and 

its ability to accurately approximate any true relationship between the variables 

involved, regardless of strong non-linearities, is that the impact of the initial per 

capita GDP on the rate of growth (i.e. the derivative of the latter with respect to the 

former) is not constant as in traditionally used convergence equations but depends on 

the varying level of initial per capita GDP. This can provide also some information 

for the process of growth and convergence.  

 

A major conclusion of our econometric analysis, is that in general poorer prefectures 

tend to grow faster than richer ones. This, despite the fact that  there is not σ-

convergence and the dispersion of per capita GDPs measured by the standard 

deviation of their distributions has increased for the periods examined, implying that 

the speed of converge does not suffice to close the gap between the per capita GDPs 

of poorer and richer prefectures. The values of the estimated coefficients β in our 

econometric analysis confirm not only the existence of β-convergence but also its 

slow speed. Many of estimated values of β, especially those between the values 0.02 

and 0.03 are similar to those found in other empirical studies for other regions and 

countries. There has been some discussion in particular for the value of 0.02 which 

appears in several studies of regional convergence with regards to different provinces 

and countries.  

 

The estimated relationship using the BPN is of a different form and the calculation of 

a parameter value, which indicates the speed of convergence, is a more complicated 

matter. It is also subject to the theoretical model used, from which one derives the 

convergence relationship that the BPN approximates. Even though the logic of the 

Barro and Sala-i-Martin approach was more relevant to our study, the BPN could be 

used as easily with other versions of the neoclassical approach such as the Mankiew, 

Romer and Weil approach, if data on additional variables needed were available. The 

estimated relationship confirms too, the generally negative relationship between the 

initial per capita GDP and the average rate of growth. It confirms also that this 
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relationship is weak in the sense that changes in the initial per capita GDP do not 

bring about dramatic changes in the average rate of growth and in some cases the 

changes are close to zero. It is interesting however, that with the BPNs ability to 

capture possible non-linearities and its strong performance, the neural network sees 

clearly and certifies a negative relationship in each prediction it makes using the 

actual data on initial per capita GDPs. And this, despite the fact, that in these data 

there are certain violations of the negativity of the relationship.  

  

However, unlike the results provided by traditional econometric analysis, the above 

results hold up to a point. For the very richest prefecture at the initial state, the trained 

BPN yields an average rate of growth higher than the rate corresponding to the five 

observations with the immediate lower initial per capita GDPs. It appears that starting 

with a value around the one of the highest initial per capita GDP, the BPN yields a 

positive relationship between the initial per capita GDP and the average rate of 

growth. Taking under consideration the observed exceptions to the negativity of the 

relationship, it is nevertheless, the particular observation with the highest initial per 

capita GDP that “convinced” the BPN to provide a positive relationship at relatively 

high values of the independent variable. 

 

As it is natural, the trained BPN provides better data fitting and predictability within 

the range of the independent variables used in training. However, predictions of the 

trained BPN using values of initial per capita GDP below and above the training 

range of this variable, lead to results that confirm the above patterns. The trained BPN 

therefore facilitates the conclusion that poorer prefectures tend to grow faster than 

richer ones, with this negative relationship between initial per capita GDP and 

average rates of growth turning into a positive once initial per capita GDP is taken at 

a relatively very high level. 

 

In the econometric analysis a positive and significant relation between private 

investment and the average rate of growth was established, even though data 

availability at the level of prefecture allowed us to examine the role of investments for 

a period only. The significance of such findings in terms of policy implications are 

profound. Private investment seems to be not only a major force towards greater rates 
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of growth but the most effective tool if the desire is to raise the speed of convergence 

and reduce the observed increasing regional disparities in terms of per capita GDPs. 

Results show also that higher rates of growth are associated with reductions in the 

share of the workforce employed in the primary sector. Higher rates of growth are 

associated also with increases in the share of population with completed secondary 

education and the size of population, but its role was certainly less significant than 

that of private investment and initial per capita income. Other factors were found to 

add very little or nothing to the explanation of average annual rates of growth. There 

are of course factors, which are difficult to incorporate in the analysis either because 

they are non-tangible or due to lack of data at the regional level examined 

(infrastructure at the initial time public investment, etc), even though some of the non 

included factors may be strongly correlated with variables considered. 

 

In the case of the more flexible and accurate BPN, it appears that in general, even the 

inclusion of investment does not offer any assistance in improving the BPN’s 

performance. Unconstrained models do a very good enough job on their own. This is 

not so surprising considering econometric studies which estimate augmented models, 

and where investment is the only conditional variable passing robustness tests, and 

not so clearly. This is not to say that investment (or other factors as well) is not a 

major player in the growth and possible convergence process. It is simply possible 

that their role can be sufficiently captured by the relationship of the initial per capita 

income and the average rate of growth, as this is estimated using a BPN. It should be 

remembered also that the derivation of unconstrained convergence equations such as 

the ones estimated here, does take under consideration within the neoclassical 

theoretical framework, the formation of capital which is the product of investment. 

This is the case for other variables too, which in econometric analysis are used often 

as conditioning variables. 

 

Given the problems arising in econometric analysis (biases, etc), the relatively poor 

performance of econometrically estimated models and the low R2s, the results on the 

significance of conditioning variables should be treated with skepticism. This should 

be the case even if there were not the results of a more efficient and reliable tool of 

analysis as the trained BPN appears to be. Conditioning variables can be indeed 
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significant in cases where they represent or pick up the impact of those factors that 

influence rates of growth and differ substantially from region to region. Examples are 

different monetary and fiscal policies, different trade regimes, etc. In general, 

inability to capture the influence of policy and other external factors, seriously 

undermines the derivation of conclusions using empirical analysis on whether there is 

a tendency towards convergence or not, which is inherent to the economic system. 

One hopes that when examining regional economies subject to similar kind of 

interventions, policies, legal and institutional frameworks, the problem is substantially 

reduced.            

 

Finally, the ability of the BPN to capture existing non-linearities in the relationship 

between initial per capita incomes and average rates of growth, allows the analysis of 

cross-sectional data to provide useful information on the dynamic process of growth 

and convergence. This was evident in the case of our data set, where together with the 

changing strength of the relationship we saw also its reversal.                          
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