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ABSTRACT 
In this paper, we describe part of an ongoing study of airport choice for passengers departing 

from the San Francisco Bay area. The aim of the present paper is to test for the prevalence of 

taste heterogeneity across travellers, using the Mixed Multinomial Logit (MMNL) model. Our 

results indicate the presence of significant levels of heterogeneity in tastes, especially with 

respect to the sensitivity to access time, characterised by significant (deterministic) variation 

between groups of travellers (business/leisure, residents/visitors) as well as random variation 

within groups of travellers. Our analysis reinforces earlier findings showing that business 

travellers are far less sensitive to fare increases than leisure travellers, and are willing to pay a 

higher price for decreases in access time (and generally also increases in frequency) than is the 

case for leisure travellers. Finally, the results show that the random variation between business 

travellers in terms of sensitivity to access time is more pronounced than that between leisure 

travellers, as is the case for visitors when compared to residents.  

1. INTRODUCTION 
During the last decade of the twentieth century, the demand for air travel grew at an average rate 

of 5% per annum (passenger-kilometres flown, c.f. IATA, 2002), and despite the impacts of the 

global economic downturn and the events of September 11th 2001, annual growth levels of 5.1% 

(passenger-kilometres flown) are forecast for the next 20 years (Boeing, 2003). While the growth 

in traffic has been accompanied by a comparable increase in the available seat-kilometres 

(IATA, 2002), there has been a lack of increases in airport runway and terminal capacity. As a 

consequence, pressure exists to expand capacity at many of world’s busiest airports (c.f. DFT, 

2003 and RAPC, 2000). These capacity-expansion decisions are complicated, not least because 

of the fact that many of the airports with capacity problems are part of a network of airports 

serving a multi-airport region. Thus, the case for capacity expansion depends not just on the total 

level of air traffic growth but also on its distribution across alternative airports. In such multi-



airport regions, the analysis of the possible impacts of capacity or policy changes on air 

travellers’ choices of airports has become an important component of long-term transport 

strategies. Indeed, the shifting of demand between airports not only has an effect on the 

commercial viability of the single airports, but can have significant effects on the support 

structure of the airports (auxiliary businesses), as well as on seemingly less related businesses 

(e.g. local hotels). One of the most important consequences of increases in demand is the need 

for improvements in surface access facilities; this can cause major problems in metropolitan 

areas that often already suffer from severe ground-transport congestion. The effects of decreases 

in demand are equally significant, as the survival of many local businesses and related jobs (e.g. 

taxi companies) depends to a large degree on the success of the airport that was often responsible 

for their creation in the first place. As an example, a drop in demand for local transport services 

(induced by a drop in air traffic) can lead to significant job losses or even the partial writing-off 

of purpose-built business structure (e.g. new bus terminal). Finally, the growth in traffic has also 

led to high levels of congestion in some flight corridors, and especially so in the airspace 

surrounding large multi-airport regions, meaning that the effects of capacity changes on airspace-

congestion similarly require careful consideration. 

To a large degree, these factors all depend on the projected levels of passenger demand at 

the different airports, such that a key issue in multi-airport regions is the modelling of travellers’ 

choice of airport. Although this area has attracted increased activity in recent years (e.g. 

Veldhuis et al., 1999, Pels et al., 2001, 2003, Basar & Bhat, 2002), the majority of the existing 

body of the work relies on basic modelling techniques, and the development of a systematic 

understanding of airport choice is still at a relatively early stage. In particular, compared to other 

dimensions of travel choice, relatively little is known about the variation in tastes across different 

market segments or within individual market segments, as well as about the extent of correlation 

between the various available alternatives along the three dimensions of airport choice, airline 

choice and access-mode choice. 

In this paper, we present part of an ongoing study aimed at determining the optimal 

modelling structure for the analysis of airport choice in the San Francisco Bay (SF-Bay) area. 

This work builds on, and expands on, existing work by Hess & Polak (2004a, 2004b). In the 

present paper, we investigate specifically the prevalence of taste heterogeneity across air-

travellers. To do this, we consider only the choice of airport, independently of related choice 



dimensions such as those of main mode, access mode and airline. Future work will extend the 

current approach to include these choice dimensions. Unlike many previous studies, our analysis 

uses highly disaggregate data, by looking at the daily frequencies on the different routes, and by 

using detailed origin-destination matrices for the ground-level access dimension. In common 

with most previous studies, our analysis looks only at departing passengers, mainly because of 

the lack of detailed survey data for arriving passengers. However, by including resident as well 

as visiting passengers in the analysis, the models indirectly also look at the choice of arrival 

airport, given that the data collected from visitors corresponds to the return leg stage, for which 

the departure airport is in fact the arrival airport from the outbound flight (excluding the 

possibility of an open-jaw ticket). Connecting passengers are similarly excluded from the 

analysis, a decision that is motivated by the fact that such passengers rarely have a choice 

between different connecting airports in the same area. Even when this is the case, this choice 

may be influenced by a wide range of factors unrelated to the characteristics of the airports in the 

region of the interchange (e.g. allegiance to a specific airline, scheduled meeting at a specific 

connection airport). Finally, in addition to connecting passengers, travellers on indirect flights 

(intermediary landing without change of aircraft) are similarly excluded from the analysis. 

The remainder of this paper is organised as follows. In section 2, we give a brief review 

of the existing literature in the field of airport choice modelling. This is followed by a 

presentation of the data in section 3, and a description of the modelling methodology in section 

4. Section 5 discusses the various models fitted during the analysis, and section 6 reports the 

results. Finally, section 7 presents a validation of the modelling results, while section 8 briefly 

discusses avenues for further research in the context of the present application. 

2. LITERATURE REVIEW 
One of the first major studies of airport choice was conducted by Skinner (1976), who uses a 

Multinomial Logit (MNL) model for airport choice in the Baltimore-Washington DC area, and 

identifies flight frequency and ground accessibility as the main determining factors, with 

travellers being more sensitive to the latter. In a more recent study using an MNL model in this 

area, Windle & Dresner (1995) repeat the earlier results, and also identify a significant impact of 

past experience; the more often a traveller has used a certain airport in the past, the more likely 

he/she is to choose the same airport again. 



The SF-bay area has been used in several case studies of airport choice, mainly thanks to 

the availability of very good data. An early example is that of Harvey (1987), who uses an MNL 

model, and finds access time and flight frequency to be significant for both leisure and business 

travellers, with lower values of time for leisure travellers. More recently, Pels et al. (2001) have 

conducted an analysis in this area using a Nested Logit (NL) model to look at the combined 

choice of airport and airline. The results indicate that both business and leisure travellers have a 

nested choice process in which airline choice is nested within the choice of airport. In a later 

study, Pels et al. (2003) again make use of the NL model structure, this time in the joint analysis 

of airport and access-mode choice, revealing high sensitivity to access time, especially for 

business travellers. In one of the most innovative studies of airport choice, Basar & Bhat (2002) 

propose the use of a two-level modelling structure in which the actual airport choice process is 

preceded by a choice-set generation stage, thus acknowledging the fact that some travellers only 

consider a subset of the available airports. The results show that this parameterised choice set 

consideration (PCMNL) model outperforms the MNL model, and suggest that flight frequency is 

the most important aspect in choice set composition, while access time is the dominating factor 

in the actual choice of airport. 

There have also been a number of studies of airport choice in the United Kingdom. 

Ashford & Bencheman (1987), who use an MNL model for airport choice at five airports in 

England, find that access time and flight frequency are significant factors, with flight fares only 

having an impact for domestic passengers and for international leisure travellers. In a study that 

is of particular relevance to the present analysis, Ndoh et al. (1990) find that the NL model 

outperforms the MNL model in a study of passenger route choice in central England. Thompson 

& Caves (1993) use an MNL model to forecast the market share for a new airport in North 

England; access time, flight frequency and aircraft-size (as a proxy for comfort) are found to be 

significant, with access time being most important for travellers living close to the airport and 

frequency being more important for travellers living further afield. Finally, in an MNL analysis 

of the distribution of passengers between airports in the Midlands, Brooke et al. (1994) find 

flight frequency to be most the important factor.  

In other studies from around the world, Ozoka & Ashford (1989) use an MNL model to 

forecast the effects of adding a third airport to a multi-airport region in Nigeria; the results show 

access-time to be very significant, making the choice of location and the provision of good 



ground-access facilities important determinants in the planning process. On the quality-of-

service side, Innes & Doucet (1990) use a binary logit model for airport-choice in Canada, and 

show that travellers prefer jet services to turboprop flights. Furuichi & Koppelman (1994) use an 

NL model for departure and destination airport choice in Japan, showing significant effects by 

access time, access journey cost and flight-frequency. Finally, Veldhuis et al. (1999) produce the 

comprehensive Integrated Airport Competition Model, showing that passenger behaviour is 

represented most appropriately by a sequential NL choice process that models the choice of main 

mode followed by the combined choice of airport and air-route, and finally the choice of access-

mode at the chosen airport.  

3. DATA 
The SF-Bay area is served by three major airports; San Francisco International (SFO), San Jose 

Municipal (SJC) and Oakland International (OAK). SFO is the largest of the three airports, with, 

in 1995, some 15 million emplaned passengers (~55.8%), compared to around 4.2 million 

passengers at SJC (~15.6%), and some 7.7 million passengers at OAK (~28.6%). Forecasts by 

MTC (2000) predict significant increases in traffic; these will inevitably lead to problems with 

capacity, and different expansion schemes are already under consideration (RAPC, 2000). Data 

from various sources were used in this analysis; these data sources are described in this section. 

3.1. Air-passenger survey data 
Data on individual travellers’ airport choice were obtained from the 1995 Airline Passenger 

Survey conducted by the Metropolitan Transport Commission (MTC) in August and October 

1995, containing information on over 21,000 departing air-travellers (MTC, 1995). Passenger 

interviews were conducted at the three main SF-Bay area airports, as well as at the minor 

Sonoma County airport (STS), which was not included in the present study. The sample of 

passengers interviewed at the three main airports is not entirely representative of the real-world 

traffic at the airports; indeed, SJC is over-sampled, while OAK is under-sampled. This sampling 

needs to be taken into account in the modelling in order to avoid any risk of biased results. In the 

present analysis, we account for the sampling effects by using the Weighted Exogenous 

Sampling Maximum Likelihood (WESML) approach, in which each observation is assigned a 

weight in the likelihood function that represents the relative real-world market share of the 

chosen alternative compared to its market-share in the sample used in the analysis. Appropriate 



weights were calculated separately for each of the sub-samples used in the various models. This 

procedure is described in more detail in section 5.3. 

The data selection process is based on that used by Hess & Polak (2004a, 2004b). It was 

decided to use only destinations that could be reached by direct flight from all three airports, on 

every day of the week (at the time of the survey), leading to 14 destinations, and a sample of 

9,924 respondents (after initial data cleaning). This contained some 3,246 travellers who 

indicated that they could not have flown out of a different airport. Possible reasons for this 

include unavailability (at the time of booking) for flights from other airports on the chosen flight 

date and time (especially likely for travellers with inflexible timing), misinformation of the 

traveller, or an a priori decision not to consider any of the other airports. Hess & Polak (2004a) 

show that the inclusion of these travellers leads to biased results, leading to the decision to 

exclude these observations from the analysis. In a way, this acts as an approximation to a model 

that incorporates choice-set generation. From the resulting sample of 6,678 travellers, a further 

1,581 passengers needed to be excluded, for two main reasons. Initially, five main journey 

purposes were identified in the dataset; business, holiday, visiting friends and relatives, 

extraordinary events, and others. As the extraordinary events group contained a wide range of 

trips (from funerals to weddings), it was decided that it would be wrong to simply include them 

in a wider leisure group, as has been done previously. Indeed, the short-term planning and/or 

precise timing associated with some of these events make the decision-process more similar to 

that of a business trip. As there are however arguably also important differences between this 

type of trip and a business trip, and as it was not possible to fit a sensible separate model for 

these 299 trips, it was decided to exclude them from the analysis. An identical decision was 

taken for the 360 trips that had some other purpose. A further 922 observations had to be 

excluded due to the absence of information on household income (required to allow for a 

segmentation by income) or because of various other missing-information problems. The final 

sample thus contained 5,097 observations, with flights to 14 destinations. The data used are 

summarised in table 1, which illustrates the oversampling of SJC, where a larger sample is used 

than at SFO, despite the fact that traffic levels at SFO were over three times higher than at SJC in 

1995. The specific choice of destinations had little or no effect on the distribution of flights 

across other dimensions, such as journey purposes and household income. Clearly, the sampling 



has an effect on the market shares of the different airlines; as this study does not explicitly model 

the choice of airline, this is however of little importance.   

Table 1: Destinations used in the analysis 
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SFO 54 97 45 74 65 203 35 38 129 140 1 48 261 220 1410 
SJC 161 71 97 89 158 370 113 246 128 105 147 66 237 157 2145 

Departure 
Airport  

OAK 203 6 26 12 67 370 130 168 47 96 35 42 133 207 1542 
Total  418 174 168 175 290 943 278 452 304 341 183 156 631 584 5097 

Special care is required in the presence of destinations that are themselves located in 

multi-airport regions. After careful consideration, destinations from two such multi-airport 

regions were included in the present analysis, namely destinations in the wider Los Angeles area, 

and one of the two main Chicago airports. The decision to include airports from the Los Angeles 

area was motivated primarily by the high representation of these destinations in the survey data. 

It is in this case important to consider whether passengers’ choice of departure airport in the SF-

Bay area may have been influenced by their choice of destination airport in the Los Angeles 

region, especially for passengers whose return journey started in the Los Angeles area. During 

the period of observation, daily flights were available between each of the three SF-Bay area 

airports and each of the five airports in the wider Los Angeles region. As there is relatively high 

frequency on all routes, passengers can be expected to make a specific choice of airport in the 

SF-Bay area, independently of the choice of airport in the Los Angeles area. This assumption is 

further supported by the fact that the differences in overall level-of-service characteristics 

between the three SF-Bay area airports are similar across the five destinations in the Los Angeles 

area, such that the choice-sets faced are similar across the five airports in the Los Angeles area. 

In the case of Chicago, only O’Hare (ORD) airport was included in the analysis. The inclusion of 

ORD was motivated by the comparatively very low frequency of direct flights to Chicago’s 

alternative airport; Midway (MDW), almost guaranteeing that the choice of airport in the SF-bay 

area takes precedence. A comparison of the results produced in two small-scale separate analyses 



that included, respectively excluded these destinations, revealed no major differences, suggesting 

that the inclusion of these airports has no significant effects on the modelling analysis.  

3.2. Air-travel level-of-service data 
The air-travel level-of-service dataset contains information on flights between given pairs of 

airports. For the present analysis, air-travel level-of-service data were obtained from BACK 

Aviation Solutions1. The dataset contains daily information on the different operators serving the 

selected routes in August and October 1995, thus making the data more detailed than that of 

many previous studies that have relied on the use of weekly or even monthly data. Besides the 

frequencies for the different operators, the dataset also contains information on flight times and 

the aircraft used on the different flights. Finally, the dataset contains information on the average 

fares paid on a given route operated by a given airline. This clearly involves a great deal of 

aggregation, as no distinction is made between the fares for the different classes of travel. 

Furthermore, advance purchase discounts applying to a certain traveller on a given date cannot 

be taken into account when using this data. As in previous studies, it must thus be assumed that 

the fare structure is the same at the different airports, in terms of advance purchase discounts and 

availability of different types of tickets at a given time. This is clearly a major assumption, not 

least because the rate at which tickets sell out can vary across airports. Unfortunately, this 

assumption cannot be avoided, given the quality of the data. The availability of given fare-

classes can be modelled in the presence of adequate data on the distribution of fares across 

classes (c.f. Battersby 2003); this is beyond the scope of the current analysis, but the inclusion of 

such an approach into a wider framework for air-travel related choice modelling is an important 

avenue for further research.  

3.3. Ground-access level-of-service data 
As access journeys are known to play an important role in airport choice, information on the 

access options at the different airports is a prerequisite for any model-fitting exercise, even if the 

models do not explicitly look at the choice of access-mode. For the present analysis, ground-

access level-of-service information was obtained from the MTC in the form of origin-destination 

travel time and cost matrices for the 1099 travel area zones (TAZ) used for the SF-Bay area. 

Some information is clearly lost due to the aggregation into travel zones, this is however 

unavoidable due to the high number of possible ground-level origins, and the effects should be 
                                                           
1 Back Aviation Solutions, 6000 Lake Forrest Drive, Suite 580, Atlanta, GA  30328, www.backaviation.com 



minimal, given the small differences between the origins situated in a given TAZ. These matrices 

contain information on travel distance, travel time and tolls for car travel (under peak and off-

peak conditions, and for varying car-occupancy) and on access time, wait time, travel time, 

egress time and fares for public transport. Corresponding data for other modes, such as taxi, 

limousine and special airport bus services were calculated separately, based on current prices 

(September 2003) and the change in the Consumer Price Index for California from August and 

October 1995 to September 2003. 

3.4. Data assembly and choice-set construction 
As the mode-choice dimension is not analysed explicitly in the present analysis, the travel time 

and cost information for a given respondent corresponds to the mode actually chosen by this 

respondent. This is clearly a significant simplification of the actual situation (as it assumes that 

the same mode would have been chosen at a different airport), but does at least give some idea of 

the differences in access journeys to the different airports. The impacts of this assumption are 

also weakened by the low elasticity for access-mode changes in the SF-bay area (c.f. Hess & 

Polak, 2004b). As the present study also ignores the airline-choice dimension, aggregate air-

travel level-of-service data were used, assigning to each passenger the industry-level information 

on frequencies, fares, number of operators, flight time and minimum equipment size, for flights 

from each of the three airports to the desired destination on the actual date of travel. 

4. MODELLING METHODOLOGY 
Discrete choice models have been used extensively for over twenty years in the field of 

transportation research. Initially, virtually all applications were based on the Multinomial Logit 

(MNL) model and basic Nested Logit (NL) models; more recently, the use of more flexible 

model forms, such as advanced Generalised Extreme Value (GEV) models and the Mixed 

Multinomial Logit (MMNL) model has increased dramatically. For an extensive review of 

existing discrete choice models, see for example Train (2003). 

The MMNL model (c.f. McFadden & Train, 2000) offers significant advantages over the 

MNL model by allowing for random taste variation across decision-makers, thus acknowledging 

the differences across agents in their sensitivities to factors such as fare and frequency. The 

random-coefficients formulation of the MMNL model uses integration of the MNL choice 

probabilities over the assumed distribution of the random taste coefficients, such that the 

probability of individual n choosing alternative i is given by: 
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where Xni is a vector of explanatory variables for alternative i as faced by decision-maker n, and 

β is a vector of taste coefficients that measure the impact of these explanatory variables on the 

utility of an alternative. In the MMNL model, the vector β varies across decision-makers and 

reflects the idiosyncratic aspects of a given decision-maker’s preferences; these terms are 

distributed in the population with density ( )θβf , where θ is a vector of parameters to be 

estimated that represents, for example, the mean and variance of preferences in the population.  

The MMNL model not only allows for random taste variation, but also in principle 

avoids the unrealistic MNL substitution patterns resulting from the Independence from Irrelevant 

Alternatives (IIA) assumption, which dictates that the dependency between any two alternatives 

is the same across alternatives, and makes the MNL model an inappropriate choice in many 

scenarios. The MNL model has been used repeatedly in airport choice modelling, and several 

authors (e.g. Ashford & Bencheman, 1987 and Thompson & Caves, 1993) have justified the use 

of the MNL model by claiming that airports are independent entities, such that IIA would be a 

valid assumption. This is however far from clear, as in some cases, it seems that there is a 

possibility of varying cross-elasticities across pairs of airports in a multi-airport region, given the 

similarities, respectively dissimilarities between some of the airports (e.g. business airport versus 

no-frills airlines base). 

The biggest drawback of the MMNL model is the fact that the integrals representing the 

choice probabilities do not have a closed-form expression and need to be approximated through 

simulation. Standard Monte-Carlo approaches can be very computationally expensive, and 

various alternative approaches have been proposed to reduce the computational burden. For an 

introduction to these quasi-Monte Carlo approaches, see for example Bhat (1999), and Hess et al. 

(2003, 2004). In the present application, a relatively straightforward type of quasi-Monte Carlo 

approach, the Halton sequence (Halton, 1960), was used, leading to important savings in 

simulation cost over the use of pseudo-random draws. A second issue with the MMNL model is 

the choice of distribution to be used for the random taste coefficients, especially in the case 

where an a priori assumption exists about the sign of a given coefficient. For a discussion of this 

issue, see for example Hensher & Greene (2001) or Hess & Polak (2004c).  



5. MODELLING APPROACH 

5.1. Explanatory variables 
A large number of different model specifications were fitted to the data during the analysis. In 

section 6, we describe the results obtained with the final estimated models. The results produced 

by the more basic MNL and MMNL used in the early stages of the research are not described in 

detail in the present paper; more in depth descriptions and results for these models are available 

on request (see also Hess & Polak, 2004a). In each model, the influence of a number of attributes 

was explored. These attributes included fare, frequency, access journey time, access journey 

cost, flight time, the number of operators serving a route, the minimum size of equipment used, 

and the on-time performance at the different airports. Only fare, frequency and access journey 

time were found to have a consistently significant effect. The lack of effects by other variables 

could be due to the use of aggregate data (airport-specific), and different results might be 

expected with the use of airline-specific data; this is the topic of ongoing research.  

At this point, it seems worthwhile pointing out that the frequency coefficient is of special 

interest. Indeed, it should be noted that, due to data limitations, it is not presently feasible to 

model the interaction between the available departure times and individual travellers’ preferred 

departure times. Under the considerable assumption of a relatively even spread of flights across 

the day, the frequency coefficient can be seen as giving an estimate of the effect of changes in 

the difference between a desired departure time and the next best available departure time. In this 

context, higher frequency means more reliability and a lower risk of not arriving at the 

destination on time. It should also be noted that the frequency coefficients capture a visibility 

effect, in that, ceteris paribus, options with a higher frequency of service have a higher chance of 

being selected, due to higher representation in the choice set. 

Given that it was not possible to identify a significant effect for access-cost in any of the 

models, it was similarly impossible to give a proper estimate of the value of access-time savings. 

An indication of the monetary value of access-time changes can be given by looking at the ratio 

between the access-time coefficient and the air-fare coefficient. The estimate of this ratio should 

however be expected to be higher than the actual value of access-time, given the different 

meaning of the fare and access-cost coefficients, and the significant differences in scale between 

the associated attributes. As such, a lower marginal utility would be associated with a change in 

air-fare by one dollar than in a change in access-cost by the same value.  



5.2. Distributional assumptions 
Due to limitations in model specification, but also in the quality of the data available, researchers 

are never able to capture all information that affects the choice of a given decision-maker. As 

such, the utility of a given alternative is not fully observed, and an error term, or unobserved part 

of utility, remains. By adding alternative specific constants (ASC) to the utility of alternatives, 

researchers in effect add the mean of this randomly distributed error term into the observed 

utility function, such that the remaining error term has a mean of zero. These ASCs thus capture 

the mean effect of all unobserved variables attributes, including general attitude towards an 

alternative, while the remaining error term captures the variation in this effect. For identification 

reasons, one of the ASCs needs to be normalised (typically to zero), and whereas in fixed 

coefficients model, the choice of normalisation is of no importance, in the MMNL model, special 

care is required in the normalisation of the ASCs, the means of which can themselves be 

distributed randomly across the population (Hensher & Greene, 2001). To minimise the error 

caused by not accommodating the variation in the ASC set to zero, the ASC with the least 

amount of variation across decision-makers should be chosen for normalisation. As significant 

variation could only ever be found for the ASC associated with SFO, the normalisation setting 

the ASC of OAK to zero could safely continue to be used. 

Another important issue already referred to in section 4 is the choice of distribution for 

randomly distributed coefficients. A Normal distribution can safely be used for ASCs, thus 

allowing for positive as well as negative impacts of unmeasured variables across decision-

makers. However, in the case of coefficients with an a priori sign assumption, the use of the 

Normal distribution should be avoided, as it leads to a positive probability of wrongly signed 

coefficients (c.f. Hess and Polak, 2004c). It is thus preferable to use a distribution that produces 

strictly positive or negative coefficients. The classic choice of such a bounded distribution is the 

Lognormal distribution, which produces strictly positive coefficients, such that, in the case of an 

undesirable attribute (e.g. cost), the sign of the attribute needs to be reversed. The use of the 

Lognormal distribution can occasionally lead to problems with convergence and very high 

standard deviations (c.f. Train, 2003); however, in the present analysis, no such problems were 

observed, such that the Lognormal distribution could safely be used. Besides being more 

intuitively appealing (strictly signed coefficients), the use of the Lognormal distribution in this 

case also led to better model fit. As an example, a simple MMNL model with two fixed taste 



coefficients (fare and frequency) and one randomly distributed coefficient (access time) 

produced a log-likelihood of -3461.74 when using the Normal distribution, whereas the 

corresponding model based on the Lognormal distribution produced a log-likelihood of -

3447.79, with the same number of parameters.  

At this stage it seems worthwhile to mention that, in the remainder of this paper, the 

tables showing the results for models based on the use of the Lognormal distribution give the 

estimated parameters of the underlying Normal distribution c and s (of which the Lognormal 

distribution is a transformation), along with the corresponding values of the actual mean and 

standard deviation of the Lognormal distribution, µ and σ, where the t-test values are associated 

with c and s. Given that both mean and standard deviation are functions of c and s, it is important 

for both t-values to be significant (c.f. Hess & Polak, 2004c). Finally, for ease of interpretation, 

the sign of µ was reversed in the tables, reflecting the change of the sign of the associated 

attribute. 

5.3. Deterministic taste heterogeneity 
While the MMNL model gives researchers the power to explain variations in tastes with the use 

of statistical distributions, attempts should always be made to explain as much of this variation as 

possible using deterministic approaches that segment the population with the help of socio-

economic and demographic variables. This generally comes in the form of separate models for 

different population groups, or separate coefficients for different groups within the same model, 

but can also come in the form of a continuous relationship between attributes of the alternatives 

and attributes of the decision-makers (c.f. Train, 2003). 

Three dimensions of segmentation were used in the present analysis; purpose, residency 

status and income. Ideally, we would have wished to explore segmentation by ticket type – e.g., 

business vs economy class, but since information on ticket type was not available, it was only 

possible to explore segmentation by travel purpose, in this case business vs leisure travellers, 

where the leisure group contains holiday travellers, and travellers visiting friends or relatives. 

Major differences between these two groups can still be expected, notably because of the 

differences in terms of flexibility and who bears responsibility for the fare paid. It is similarly 

important to realise that there are potentially important differences between residents and visitors 

in their evaluation of the different travel options. Although the selection of flight destinations 

(corresponding to the origins of visitors) should guarantee that for both groups of travellers, there 



is an informed choice of airport from the different options available in the SF-Bay area, 

differences between residents and visitors can be expected, for example due to the fact that 

visitors generally have a less detailed knowledge of the area. Finally, it should be expected that 

income has a significant effect on travel behaviour, most notably in the sensitivity to fare. These 

differences can be accommodated quite easily by estimating separate taste coefficients in 

different income groups. For this, respondents were grouped into three roughly equally sized 

groups (less than $21,000, between $21,000 and $44,000 and above $44,000 per annum). An 

alternative approach would have been to explicitly model the continuous relationship between 

income and the sensitivity to factors such as fare and access time; this is however beyond the 

scope of the present analysis.  

The double segmentation by residency status and by purpose leads to four separate 

residency/purpose groups. An important question arises with regards to which approach should 

be used to account for the differences between these four groups. The first approach is to 

estimate a common model for the four groups, and to use separate coefficients for the four 

groups for at least some of the attributes. The second approach is to estimate a separate model for 

each group, thus acknowledging potential differences across groups in all of the coefficients, 

including the ASCs. A separate analysis (detailed results available on request) showed that, 

although the approach using separate coefficients within the same model does have a slight 

computational advantage over the approach using separate models, the use of separate models is 

preferable, as the gains in combined model fit by far exceed the critical values of the appropriate 

statistical tests. This shows that the differences across residency/purpose groups cannot be 

completely explained by the use of separate taste coefficients, but that there also exist 

substantive differences in the effects of unmeasured variables (captured by the ASCs). On the 

other hand, no further gains could be made by estimating separate models for the three different 

income groups, such that (where necessary) separate coefficients for the three income groups 

would be used inside the four different models estimated. 

As mentioned in section 3.1., the WESML approach was used to reflect the sampling 

effects caused by the selection of respondents on the basis of screening criteria (c.f. MTC, 1995). 

For this, aircraft occupancy data was used to calculate the total traffic on the different routes 

used in the analysis, across carriers. From this, relative weights were assigned to each origin-

destination pair. A similar process was used to calculate corresponding weights for the sample 



data used in the present analysis, where separate weights were calculated for residents and 

visitors in the two purpose groups, leading to four different sets of weights for the four different 

models fitted. For added precision, the season (August or October) was also taken into account in 

the calculation of the weights for the individual observations. The individual pairs of weights 

were then used to calculate multiplicative weights that could be used in the analysis, where the 

weight for a given origin-destination pair was given by dividing the actual population weight by 

the sample weight for this pair. This process was repeated for each observation used in the 

analysis, and it is easy to see that the resulting sum of weights over the total number of 

observations in a given group is equal to the number of observations used in this group. In the 

estimation process, each term in the log-likelihood function was then multiplied by the 

appropriate weight for the associated chosen alternative. 

5.4. Non-linear utility functions 
Another important point that needs to be considered in model specification is the way in which 

explanatory variables enter the utility function. Generally, a linear specification is used in 

discrete choice models, such that increases in the value of an attribute lead to linear changes in 

the utility of the associated alternative. However, this approach is not optimal in the case of 

attributes for which decreasing marginal returns in utility would be expected. In the case of 

airport choice modelling, the most prominent example of such an attribute is flight frequency. 

While a linear specification of flight frequency leads to constant marginal returns for increases in 

frequency, independent of the original frequency level, it is quite reasonable to expect that, 

beyond a given frequency level, any additional increases in frequency will not lead to important 

gains in utility. If this is indeed the case, then the use of a linear specification can be expected to 

lead to an underestimated effect at low initial frequencies and an overestimated marginal return 

of frequency increases at already high initial frequencies. A non-linear specification of frequency 

can be accommodated in the models by replacing the absolute frequency levels by a formula that 

gives a decreasing marginal return. With such an approach, an increase in frequency at a lower 

base frequency is valued more highly than an increase at higher base frequency, and the increase 

in utility resulting from an increase in frequency by K flights at a base frequency of f is less than 

K times the increase resulting from the first additional flight. Two non-linear specifications were 

compared in a separate analysis conducted for the present research. The first approach uses the 

natural logarithm, as used previously by Veldhuis et al (1999) and Pels et al. (2003), while the 



second approach uses a method proposed by Brooke et al. (1994), replacing the frequency ƒ by 

(ƒ-0.5)/ƒ, such that, beyond a frequency of around 8-9 flights, any increases in frequency lead 

only to minor increases in utility. A simple MMNL model using five coefficients (including two 

ASCs) was estimated using these two approaches. The base-model had a log-likelihood of            

-3447.79, while the use of a non-linear specification of frequency leads to a log-likelihood of       

-3389.38 with the specification proposed by Brooke et al. (1994) and -3371.92 with the natural 

logarithmic transform. The fact that either approach leads to a very significant gain in model fit 

(with no additional parameters) shows that the use of a linear specification is not appropriate, the 

better model fit when using the natural logarithm transform suggests that this specification is 

more appropriate in the context of the present dataset (where a frequency of 8 flights per day is a 

more common occurrence than in the case study of East Midlands airport conducted by Brooke 

et al., 1994). Given the important gains in model fit resulting from the use of non-linear 

specification, it was decided to use this approach for the remaining models developed in the 

analysis, with preference being given to the logarithmic transform. The effects of this 

specification are described in more detail in the next section, with the help of the estimates 

produced by the final models. Finally, attempts were also made to use a non-linear specification 

for the remaining coefficients of fare and access-time, where decreasing marginal returns can 

similarly be expected. However, the use of such a specification did not lead to any significant 

gains in model fit for either of these coefficients. 

6. MODELLING RESULTS 
In this section, we follow the recommendations made in sections 5.3. and 5.4., by fitting separate 

models for resident and visiting business travellers, along with separate models for resident and 

visiting leisure travellers, and by using the natural logarithm specification for the marginal utility 

of flight frequency. The final sample of 5,097 individuals was divided into 1,268 resident 

business travellers, 1,500 resident leisure travellers, 1,269 visiting business travellers, and 1,060 

visiting leisure travellers. For each of these four groups, a random sub-sample of roughly 10% 

was removed and retained for later validation of the models on data not used in the estimation. 

The results of the estimation process are summarised in table 2. In each one of the four 

models, there was sufficient variation in the sensitivity to access-time to use a random coefficient 

that follows a lognormal distribution. In addition, significant variation to enable the use of a 

normally distributed ASC for SFO was identified in each model except the model for business 



trips by visitors. It was not possible to identify significant random taste heterogeneity in order to 

use random coefficients for fare and frequency; the lack of additional variation can be partly 

explained by the use of aggregate data (airport specific), and ongoing work has revealed the 

existence of additional levels of heterogeneity when looking at the additional choice dimensions 

of airline and access-mode.  

In each case, the use of the MMNL specification led to statistically significant gains in 

model fit over the corresponding MNL structure, with the most significant gain being obtained 

for the model for visiting business travellers, despite the fact that this model has only one 

randomly distributed coefficient. Attempts were also made to use segmentation by income, 

however the differences in sensitivities between income classes were not generally significant. 

The only exceptions are the model for resident business travellers, where a significant effect of 

fare could only be identified for the low-income group, and the model for visiting leisure 

travellers, where a separate frequency coefficient was used for the high-income group, with a 

common coefficient for the low and medium-income groups. It was not possible to identify a 

significant effect of fare for the model for business trips by visitors; this comes in addition to the 

inability to estimate such an effect for the medium and high-income groups for resident business 

travellers. The failure to estimate a significant effect of fare could reflect the comparatively low 

sensitivity to fare for business travellers, but could also be partly due to the use of highly 

aggregate fare information. Other researchers have encountered similar problems with estimating 

a significant fare coefficient (e.g. Pels et al., 2003). Finally, it should be noted that for visiting 

leisure travellers, the ASC for SJC is positive, while the ASC for SFO is negative. This can be 

explained by noting that the ASCs are greatly affected by the use of the WESML approach, in an 

effort to retrieve the true market shares. Unlike in the overall sample, SFO and especially OAK 

are not as heavily under-sampled in this subsample, and as a consequence, SJC is less over-

sampled, leading to a lower need for sample weight correction. 

Trade-offs between the access-time coefficient and the fare coefficient cannot be 

calculated for visiting business travellers, given the lack of fare coefficient for this model; the 

same applies for the trade-off between the frequency and fare coefficients. Trade-offs between 

frequency and access-time coefficients on the other hand can be calculated for all four models. In 

the case of trade-offs involving randomly distributed coefficients, it is of interest not just to 

calculate the mean values of access-time, but to incorporate the full distribution of this 



coefficient in the calculation. This not only gives an account of the variation in these trade-offs 

across the population, but also avoids a major risk of biased estimates (c.f. Hensher & Greene, 

2001, Hess & Polak, 2004c).  

Table 2: Results from Mixed Logit models using segmentation by purpose and division into 
residents and visitors 
 Resident business Resident leisure Visitor business Visitor leisure 

Parameter Estimate t-test Estimate t-test Estimate t-test Estimate t-test 
Fare (common)   -0.0475 -3.8   -0.0477 -3.7 

Fare             
(income < $21,000) -0.0430 -2.55       

Frequency 
(common) 1.9469 5.6 1.8333 5.7 1.8881 7.7   

Frequency      
(income < $44,000)       1.9701 5.2 

Frequency     
(income > $44,000)       3.0328 5.2 

Access time c -1.8571 -15.5 -1.8916 -17.1 -1.9706 -20.6 -1.9669 -13.0 
Access time s 0.6742 4.3 0.5102 3.6 0.9373 5.4 0.6934 5.5 
Access time µ -0.1960 N/A -0.1718 N/A -0.2163 N/A -0.1779 N/A 
Access time σ 0.1487 N/A 0.0937 N/A 0.2566 N/A 0.1398 N/A 

ASC SFO mean 1.1563 4.2 0.9289 3.9 0.3632 2.5 0.5028 1.9 
ASC SFO std.dev 2.0260 3.6 1.3650 2.7   1.6019 2.2 

ASC SJC -0.1045 -0.5 -0.1515 -0.8 -0.7767 -3.7 0.7784 2.8 
Observations 1,140 1,347 1,142 952 

LL -604.03 -659.67 -573.67 -514.62 
LL (MNL) -615.53 -666.22 -592.05 -519.92 

For the trade-off between access-time and flight fare, the random variable is only used in 

the nominator of the quotient, such that the distributional characteristics of the trade-off, which 

likewise follows a lognormal distribution, can be obtained by dividing the mean and standard 

deviation of the access-time coefficient by the constant cost coefficient. For trade-offs where the 

random variable forms the denominator of the quotient, the distribution was calculated 

empirically. For this, a high number of draws (1,000,000) from the distribution of the access-

time coefficients were produced for the different models, using the respective parameters of the 

lognormal distribution. The distribution of a given trade-off can then be approximated as the 

distribution of the values resulting from dividing the concerned fixed taste coefficient by the 

different draws. In the present application, an example of such a trade-off is given by the 

willingness to accept access-time increases in return for increases in flight frequency. Due to the 



use of the logarithmic transform for frequency, this trade-off does not directly give the 

willingness to accept access-time increases for increases in frequency, but rather, the resulting 

ratio needs to be multiplied by the difference between the logarithm of the new frequency and 

the logarithm of the old frequency to obtain a real measure for the trade-off. Again, the resulting 

ratio roughly follows a Lognormal distribution. 

The use of the Lognormal distribution leads to a long tail for the access-time coefficient, 

which is carried over into the empirical calculation of trade-offs involving this coefficient. A 

possible approach to dealing with this issue is to remove the upper few percentile points of the 

produced sample of draws, and to base any calculations of trade-offs on this censored sample 

(c.f. Hensher & Greene, 2001). Aside from the difficulty of deciding how many percentile points 

to remove, this approach arguably introduces a form of bias into the calculation. In our analysis, 

we found that the use of 1,000,000 draws without censoring led to virtually the same results as 

an approach using the 98 lower percentiles of 100,000 draws. This suggests that, with this high a 

number of draws, the impact of the tail of the distribution on the calculation of the mean and 

standard deviation are negligible, and the use of a censoring approach can be avoided. 

A final trade-off looks at the implied willingness to pay for frequency increases, where 

this calculation involves no randomly distributed coefficients, and where the resulting trade-off 

is not available for visiting business travellers. Again, the resulting trade-off needs to be 

multiplied by the difference between the logarithm of the new frequency and the logarithm of the 

old frequency to obtain a measure of the willingness to pay. 

The resulting values are shown in table 3. For the trade-offs involving frequency, the 

need to multiply the resulting value by the difference in the logarithms of the new and old 

frequencies is indicated through multiplication by K. To give a meaning to the calculated trade-

offs for frequency changes, the table also gives corresponding values for an increase by one 

flight at a base frequency of five flights per day, where K is equal to 0.1823. The corresponding 

value of K at a base frequency of 10 flights is 0.0953, showing the decreasing marginal returns 

with this specification.  

The results indicate a higher willingness to pay for access-time decreases for resident 

business travellers than for resident leisure travellers (no measure available for visiting business 

travellers), especially when taking into account that the fare coefficient estimated for resident 

business travellers is for the low-income groups only. The results further indicate that, while the 



mean willingness to pay is very similar for resident and visiting leisure travellers, the within-

group variation is more important for visiting leisure travellers. The implied willingness to pay 

for access-time decreases can be expected to be even higher for visiting business travellers, given 

that it was not possible to identify a significant fare effect for this group of travellers. Although, 

as mentioned before, the calculated trade-offs should not be seen as an estimate of the value of 

access-time, given the use of the flight fare rather than the access cost coefficients, the estimated 

values are still very high. This is a direct result of the low air-fare coefficient, which is at least 

partly due to the relatively poor quality of the fare information used. However, the size of the 

ratio is clearly also a result of the high access-time coefficient, which could possibly indicate that 

travellers interpret increases in access time as increases in the risk of missing a flight. This 

explanation is supported by the high values of access-time reported in studies where an access-

cost coefficient could be identified. For example, Pels et al (2003) use the same data as the 

present study and report values of $2.90/min for business travellers in August and $1.97/min for 

business travellers in October. Lower values were reported in older studies; for example, Harvey 

(1986) gives a value of $0.69/min, while Furuichi and Koppelman (1994) give a value of 

$1.21/min. This could also signal increasing values of time over time. 

Table 3: Trade-offs [standard deviations in brackets where applicable] 
 Resident 

business 
Resident 
leisure 

Visitor 
business 

Visitor 
leisure 

Trade-off between access-time and flight fare 
coefficient ($/min) 

4.56            
[3.46] b 

3.62          
[1.97] N/A 3.73            

[2.93] 

Trade-off between frequency increases and access-
time increases (min/flight) a 

15.64K     
[11.84] 

13.85K     
[7.55] 

20.99K      
[24.62] 

17.91K        
[14.00] c 
27.57K        

[21.56] d 

Willingness to pay for frequency increases ($) a 45.27K b 38.60K N/A 
41.30K c 
63.58K  d 

Mean willingness to accept access-time increases for 
one additional flight at a base frequency of 5 flights 

(min) 
2.85 2.53 3.83 

3.27c 
5.03d 

Willingness to pay for one additional flight at a base 
frequency of 5 flights ($) 8.25 7.04 N/A 

7.53c 
11.59d 

     

a K=ln(f+1)-ln(f); b low-income travellers only; 
c
 low-income and medium-income travellers only , d high-income travellers only 

In terms of the willingness to accept access-time increases in return for frequency 

increases, the results indicate a higher mean willingness for visiting business travellers than for 



resident business travellers (20.99K vs 15.64K), despite the fact that the simple ratio between the 

coefficient mean values would suggest the opposite (8.73K vs 9.93K). This is caused by the 

much larger standard deviation in the coefficient for visitors than for residents, and illustrates the 

importance of incorporating the full distribution of the coefficients in the calculation of trade-

offs. This comparison shows that the simple ratio of means approach thus not only 

underestimates the trade-offs, but also wrongly predicts a higher willingness to accept access-

time increases for residents than for visitors, potentially leading to wrong policy implications. A 

similar problem occurs when using the MNL.  

The models similarly show a higher relative desire for frequency increases for visiting 

leisure travellers than for resident leisure travellers, with increasing willingness to accept access-

time increases for visiting travellers in higher income classes. The results also suggest that in 

both of these income groups for visiting leisure travellers, the desire for frequency increases is 

larger than the common trade-off for resident business travellers. The observations for the 

willingness to pay for frequency increases are very similar, with the exception that only the 

willingness to pay of high-income visiting leisure travellers’ is above the common willingness of 

resident business travellers. In terms of the actual real-world values of one additional daily flight 

with a base frequency of five flights, the implied trade-offs between frequency and access-time 

increases seem a bit low, which this could again signal the perception of access-time increases as 

increases in the risk of missing a flight. The monetary values of one additional flight seem 

realistic, though possibly also at the low end of the real values.  

7. MODEL VALIDATION AND PREDICTION PERFORMANCE 
The first part of the model validation process was concerned with applying the four calibrated 

models described in section 6 to the respective estimation samples, and calculating the average 

choice probabilities assigned by the models to the actual chosen alternatives, leading to the 

average probability of correct prediction over alternatives. This approach produces correct 

prediction probabilities of 64.29% for resident business travellers, 67.95% for resident leisure 

travellers, 66.46% for visiting business travellers and 65.85% for visiting leisure travellers. 

These values are lower than those reported recently by Basar and Bhat (2003), who obtained a 

correct prediction rate of 74.9%. However, when taking into account the use of a simplistic 

utility function (only three terms), the use of airport- rather than airline-specific level-of-service 

information, and the fact that choice-set formation was excluded from the analysis, the 



performance of the models is actually very good, and reflects the relative explanatory power of 

the three variables used in the models (fare, frequency and access-time). The lower correct 

prediction is also partly due to the relatively small samples used for the models in section 6, 

which is a result of the division into four models. Indeed, the use of corresponding models using 

only segmentation by purpose led to correct prediction rates of just over 70%, with a similar rate 

for models using segmentation by residency status only. Nevertheless, the models using a 

division into residents and visitors as well as business and leisure travellers should be preferred, 

given their higher explanatory power in terms of highlighting the differences between the 

individual groups of travellers. Furthermore, it should be noted that the aim of this paper was not 

necessarily to produce the best performing model in terms of producing forecasts, but to test for 

the presence of taste heterogeneity, and to exploit the power of the MMNL model in the 

representation of the random component of any such heterogeneity. 

Table 4: Prediction performance on validation sample 
 Resident 

business Resident leisure Visitor business Visitor leisure 
     

Observations 128 153 127 108 
     

Share SFO 56.41% 52.35% 56.20% 52.67% 
Share SJC 15.91% 16.02% 15.28% 15.18% 
Share OAK 27.68% 31.63% 28.52% 32.15% 
     

Correct prediction 67.61% 66.09% 67.03% 68.25% 
     

The most telling test of model performance is however the ability of the final calibrated 

models to correctly predict the market shares and choices in data that were not used in the actual 

model calibration process. For this purpose, the four models were applied to the four validation 

samples retained for this use. The results of this validation process are shown in table 4, giving 

the weighted predicted market shares, along with the average probability of correct prediction. 

The results show that for all but the model for resident leisure travellers, the correct prediction 

performance on the validation sample is actually higher than that obtained with the estimation 

sample, suggesting that the models have not been over-fitted on the estimation data, and are 

capable of offering good performance on unknown data. In terms of reproducing the weighted 

market shares for the three airports, the performance is again very good, although the two models 

for leisure travellers tend to slightly overestimate the market share for OAK and underestimate 



the market share for SFO (as a reminder, the overall real-world market-shares of the three 

airports were 55.8%, 15.6% and 28.6% for SFO, SJC and OAK respectively). 

8. FURTHER RESEARCH 
A number of directions for future research can be identified. An obvious extension is to the joint 

modelling of airport choice, ground-level access-mode choice and airline choice, which will 

require the use of a nesting structure to capture the (potentially complex) substitution patterns 

amongst alternatives. This is the topic of a parallel research project, with initial results reported 

by Hess & Polak (2004b). This elementary-choice-level analysis repeats findings from the 

aggregate-level analysis presented in this paper with regards to significant effects of flight 

frequency and in-vehicle access-time for all travellers, while showing that other factors such as 

fare and aircraft size, have a significant effect only in some of the population subgroups. The 

analysis repeats findings by Windle & Dresner (1995) that important gains can be made through 

accounting for past experience at the different airports. The study further indicates that 

correlation between alternatives exist along the three dimensions of choice, with correlation 

being at its highest along the access-mode choice dimension; ceteris paribus, travellers are more 

willing to accept a change of airport or airline than a change of access-mode. Finally, Hess & 

Polak (2004b) report correct prediction rates of up to 85%. These results, in conjunction with 

those produced in the present paper, would indicate that accommodating random taste 

heterogeneity in a study of the joint choices of airport, airline and access-mode could lead to 

further gains in model performance. The requirement to accommodate these substitution patterns 

as well as random taste variation suggests the need for a Mixed GEV structure, in which GEV 

choice probabilities are integrated over the assumed distribution of the random taste coefficients 

(c.f. Train, 2003). Two other aspects that should be considered are choice-set generation (as 

proposed by Basar & Bhat, 2002) and the availability of different fare classes (c.f. Battersby, 

2003). These additional modelling components could relatively readily be incorporated into a 

wider framework of an MGEV model, and could lead to important further gains in model 

accuracy. Finally, it would be desirable to extend the existing models to provide an explicit 

characterisation of the effects of the use of aggregate fare and service frequency data, analogous 

to the classical treatment of treatment of aggregate or erroneous data in linear regression analysis 

(Maddala, 1977).  



9. CONCLUSIONS AND FURTHER RESEARCH 
In this paper, we have described part of an ongoing study of airport choice in multi-airport 

regions. In line with the results of previous research, the present analysis has shown that there 

exist significant influences on airport choice due to access time, fare and frequency of service. 

Moreover, the results also indicate that there are significant differences across travellers in their 

sensitivity to these factors and that while differences in sensitivity to fare and frequency can be 

adequately accommodated by deterministic market segmentation, the sensitivity to access time 

additionally varies randomly within these market segments. Finally, results show that the use of a 

non-linear specification of flight frequency can lead to improved model fit, reflecting the 

decreasing marginal return of increases in flight frequency beyond a certain level. 

It should be noted that all the models assign a higher-than-expected coefficient to access 

time, along with rather low fare coefficients, leading to a high implied willingness to accept fare 

increases in return for access-time decreases. High implied values of access-time have been 

observed in previous research (e.g. Pels et al., 2003), and we believe that such results reflect in 

large part the use of highly aggregated fare data, with the resulting tendency towards the 

attenuation of the fare coefficient. An additional explanation may be that that travellers associate 

a higher risk of missing their flight with higher access time, so that the coefficient associated 

with access time reflects not just the sensitivity to the actual access time but indirectly also the 

willingness to pay for reductions in the risk of missing a flight.  
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