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Abstract 
This paper considers different alternatives for including spatial aspects within the activity-
based approach for modeling destination choices.  The study area is the urban 
agglomeration of Antwerpen (Belgium); the city and its suburbs are considered.  Individual 
travel surveys are used.  The paper pays particular attention to the inclusion of space within 
the decision context by including specific land-use explanatory variables generated by 
Geographical Information Systems. A preliminary geographical analysis is performed in 
order to represent the city by a limited set of destinations (n = 33) and to characterize those 
zones in terms of land use.  Discrete choice modelling is used:  each individual faces the 
total set of spatial destination alternatives.  Several modelling approaches are explored and 
compared in terms of utility function (for instance Box-Cox; random coefficients) and in 
terms of global formulation (multinomial logit versus nested logit).  The mixed nested logit 
formulation is selected as best and the parameter estimations are interpreted; it shows the 
importance of space within destination choices.  This paper provides a useful background 
for decision-makers and planners of transportation policy related to individual mobility 
patterns. 
 
Keywords  
Discrete choice model, activity-based approach, GIS, land use, urban mobility, Antwerpen 
 
1. Introduction 
 
In activity-based modeling, researchers view travel as a derived demand for personal 
activities that are distributed in space and time (Jones et al., 1990; Axhausen and Garling, 
1992). Travel decisions can also be considered as being part of a broader activity 
scheduling process. It is known that this approach leads to a better understanding of travel 
behavior compared to traditional modeling.  It also enables a better analysis of possible 
responses to policies and their effect on traffic and spatial planning in urban development. 
Travel demand analysis is intrinsically spatial, i.e. spatial separation is the essence of travel 
demand.  Therefore, in travel analysis and modeling, the spatial distribution of travel has 
recently been taken into account explicitly (Bates, 2000, p. 14).  However, up to now, in 
most studies temporal aspects (e.g. the distribution of activities in time) have only been 
considered (Cirillo et al., 2002), whereas the spatial dimension clearly remains unexamined 

                                                 
1 hammadou@geog.ucl.ac.be, Address : Place Louis Pasteur 3, 1348 Louvain-La-Neuve 
2 isabelle@geog.ucl.ac.be, Address : Place Louis Pasteur 3, 1348 Louvain-La-Neuve (corresponding author) 
3 hans.tindemans@ugent.be, Address : De Sterre Building S8, Krijgslaan 281, 9000 Gent 
4 frank.witlox@ugent.be, Address : De Sterre Building S8, Krijgslaan 281, 9000 Gent 
5 dries.vanhofstraeten@ua.ac.be, Address : Prinsstraat 13, 2000 Antwerpen 
6 ann.verhetsel@ua.ac.be, Address : Prinsstraat 13, 2000 Antwerpen 



How to incorporate the spatial dimension within destination choice models?                                                2 

(Bhat and Zhao, 2002).  We even ascertain that there is a lack of papers on activity chains 
models including spatial components. To our knowledge only a few exceptions exist: Bhat 
& Zhao (2002), McNally (2000) and Dijst & Vidakovic (1997). They consider the 
‘spatialisation’ of the activities, but do not try to completely incorporate the spatial 
dimension in the model building process. Dijst and Vidakovic (1997) for example focus on 
people’s action space in the city using only the spatial variable ‘distance between locations 
of activity bases’. By explicitly adding the spatial dimension to travel resulting from 
household activities, the present research aims at making a valuable contribution to the 
modeling and understanding of travel behavior.  Moreover, the objective is to obtain a 
complete spatially detailed and disaggregated destination choice model for the city region 
of Antwerpen.  This research uses the OVG data set of the Antwerpen city region (1999) 
based on individual surveys describing the daily activities. 
 
An important problem in destination choice modeling is the large number of choice 
alternatives. Ben-Akiva (1985) suggested to use a restricted set of alternatives rather than a 
full set.  In this paper, we prefer to define a new zoning instead of using a sampling 
method. Therefore, the study area was divided into destination choice zones representing 
the alternative destinations. Instead of extracting the alternatives by using a random 
sampling approach, the total set of spatial destination alternatives for each individual was 
considered and aggregated into zones. We assume that the choice is dependent on the 
characteristics of the alternatives and the travelers. Hence, it is necessary to have 
information on attributes of the zones, and on individual and household characteristics.  
New data on the characteristics of land use, density and accessibility were generated using 
GIS techniques in order to have detailed information on the spatial structure of the study 
area (see Section 3).  
 
The objective of a destination choice model is to give insights into the respondent’s 
probability for choosing within a set of destination zones.  The purpose of this study is to 
incorporate the real value of space in destination choice models, and hence to develop an 
appropriate modelling procedure.  In order to obtain the best model fit, several sensitivity 
analyses are performed (see Section 4).  First, the utility function is considered.  We 
particularly consider (1) the statistical significance of the Box-Cox transformation 
compared to the linear formulation, and (2) a formulation of the model with random 
coefficients.  The latter enables us to take into account the existence of heterogeneous 
preferences.  Second, the performance of the multinomial logit is compared to that of the 
nested logit (Figure 1) 
 
The paper is organized as follows.  Section 2 discusses the methodological problems and 
defines choice models used.  Section 3 is dedicated to the data set and the introduction of 
the spatial variables on land use, density and accessibility.  Results of the destination 
choice models are presented in Section 4.  Simulations are conducted to test the influence 
of spatial planning on destination choice.  Conclusions and research perspectives are 
reported in Section 5. 
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Figure 1: Structure of the paper and analysis 
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2. Methodology 
 
2.1. Model specification and estimation procedure 
 
Discrete choice models assume that the global utility of a choice alternative is composed of a 
fixed (i.e. systematic or deterministic) utility value and a random or error utility component. 
Depending on the assumptions made regarding the distributions of the error terms, several 
discrete choice models have been developed in the literature (see e.g. Timmermans and 
Golledge, 1990).  
 
The best known and also most applied discrete choice model is the MNL, the multinomial 
logit model (see Domencich and McFadden, 1975).  In this model, the random utility 
elements are assumed to be (i) independently, (ii) identically and (iii) Type I extreme value 
(or Gumbel) distributed  (McFadden, 1973, 1976). Independently and identically distributed 
(IID) error terms imply that the variances of the random components of the utilities are equal 
(homoscedasticity) and that all co-variances (or cross-effects) are assumed to be equal to 
zero. If IID can be defended, the Type I extreme value distribution seems the most suitable 
distribution (Johnson and Kotz, 1970).  A detailed description can be found in Ben-Akiva 
and Lerman (1985), Ortuzar and Willumsen (2001); the basic ideas were developed by 
McFadden (1973). 
 
The conditional MNL model for the destination choice analysis in the Antwerpen city 
region may be derived as follows. Assume that the utility that an individual  i (= 1,..., I) 
derives from a choice alternative j (= 1, ..., J) is equal to: 
 

Uij = ßjk Xijk + εij  [1] 
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where ßjk is the parameter for attribute k of alternative j, Xijk is a vector of observable 
attribute values, and εij represents the random unobserved component of utility. 
 
Individual i will choose alternative j if the expected utility, Uij, exceeds the expected utility, 
Uim, of alternatives m, where m indexes the elements of the set of alternatives. Hensher and 
Johnson (1981), Maddala (1983), Ben-Akiva and Lerman (1985), Train (1986) and Cramer 
(1991) have shown that, if the errors terms in equation [1] are IID according to a Type I 
extreme value distribution, the probability that individual i will choose alternative j, P(j Ci), 
is given by: 
 

)X(
)X(

 = )C|P(j
imkmk

Cm

ijkjk
i

i

β
β

exp
exp

∑
∈

  [2] 

 
Equation [2] can be estimated using a Maximum Likelihood method. It has been shown that 
this method produces consistent estimates of the parameters of the utility function as long as 
the disturbance terms are independent across all alternatives (McFadden, 1978). 
 
As mentioned by Papola (2004), simple covariance matrix assumptions (e.g. 
homoscedastic diagonal matrix) gave rise to simple closed form models such as the MNL, 
while general covariance matrix assumptions have given rise to non-closed form models 
such as (among others) the mixed multinomial logit model (MXMNL) (Train and 
McFadden, 2000).  MNL models have a strong theoretical base, have a simple 
mathematical structure and are also quite easy to estimate.  However, they are based on 
restrictive hypotheses among which the IID which means that the model can only be 
applied to situations in which alternatives from which you can choose are totally 
independent.  This is for sure not the case for spatial alternatives (our concern).  Literature 
suggests the nested logit (NL) as a modelling alternative: choice alternatives are 
segmented, structured in branches that are more similar. Indeed, if we view the destination 
choice process as hierarchical and group similar alternatives into the same branches of the 
choice hierarchy, then establishments within each branch are more likely to follow the IID.  
However, at some exceptions, the mixed logit is rarely used in destination choice models 
(see e.g. Suarez et al, 2004). 
 
In our case, we group spatial choice alternatives into subgroups.  Each individual is 
supposed to first choose an urban level (e.g. urban versus suburban) and then, within that 
broad spatial zone, to choose a more precise destination.  Hence, spatial choices are 
hierarchically organised (Figure 2). That is why in this paper the performance of the mixed 
logit will be compared to that of the multinomial logit. 
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Figure 2: Decision-making structure according to the proposed nested logit model of 
destination choices in Antwerp (a, b, c : number of destinations within each zone) 

 
 
In order to interpret the nested logit model as a discrete choice model, we consider a 
random utility function.  We assume that the utility function of the destination choice j can 
be split into a part that characterises the urban level and that does not vary with the choice 
within that level (Vj(l) ) 

                                  Uj = Vl + Vj(l) + εj                              [3] 
 
where εj is the stochastic part of the utility (error term).  We assume that  ε1 , ε2 ,…, εj (the 
individual specific error terms) are random and IID distributed following this distribution 
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McFadden (1978) has shown that this formulation enables to write the model as a utility 
maximisation.  In our case, the probability that an individual chooses a destination j is 
hence given by 
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which corresponds to the nested logit formulation with two levels of decision for 
destination.  
 
Following Hensher and Greene (2002), the nested logit is indeed appealing in terms of its 
ability to accommodate differential degrees of interdependence (i.e. similarity) between 
subsets of alternatives in a choice set, but most published applications display a frequent 
lack of attention to the very precise form that these models must take to ensure that the 
resulting model is consistent with utility maximisation.  As we do not know the utilities of 
the choice alternatives when building our destination choice model, two alternatives for the 

Dest …  Dest a Dest a+1  …  Dest b Dest b+1  …  Dest c Dest c+1  …  Dest 33
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utility functions were considered in this paper: the Box-Cox transformation and the 
random coefficients.   
 
The search for a utility function is restricted to travel time. This choice was made a priori 
and it was recently and totally independently confirmed by Suarez et al. (2004). Let us 
here remind that the Box-Cox transformation of a variable x can be written as 
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Using this transformation, one alleviates the restriction of linearity. 
 
In a second set of sensitivity analyses, we consider random coefficients.  Indeed, in a MNL 
formulation coefficients are constant (fixed for all individuals): the explanatory variables 
have the same effect for each individual.  However, the population is by definition 
heterogeneous and the effect of each explanatory variable can vary from one individual to 
another. Let us give the example of travel time: it can depend upon non observable 
characteristics of the individuals (Revelt and Train, 1999).  Hence the utility function 
associated to a destination j for an individual i can be considered. 
 

Uij = γTij +  Xij β + εij       [7] 
 
For each individual i and for each destination j, Tij is the travel time, Xij is a vector of 
observable attributes and β is the vector of parameters to be estimated.  We assume that 
residuals εij follow a Gumbel distribution. γ is the parameter which measures the travel 
time effect; we further assume that it is random and follows a normal distribution.  The 
density function f(y) can be written as follows : 

 

²),(
2

2
1exp

)(

2

σω
πσ
σ

ωγ

γ nf =
















 −−

=     [8] 

 
where n(ω,σ² ) is the density function of a normal distribution with mean ω and variance 
σ². 
 
The conditional probability to choose a destination j will be given by : 
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The unconditional probability to choose a destination j is obtained by integration of γ : 
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However, since the error term follows a Gumbel distribution, this model is based on the 
hypothesis of IID.  This model is also called mixed logit with random coefficients. 
 
2.2. Activity and tour structure and the intermediate stop model 
 
A first step in the estimation of disaggregated destination choice model consists in defining 
the choice set for activity patterns. There are numerous possible activity structures and tour 
structures that a person can make. One of the many decisions in each activity-based model 
is how to simplify and aggregate the various structures to a reasonable (limited) number of 
choice alternatives. In our model it was decided to consider only the destination from the 
main stop in the tour. Work is a mandatory activity and often fixed in space. Due to this 
deterministic character of work, only non-work stops are here considered.  It is not possible 
to apply probabilistic models to explain this type of mandatory activities. 
 
The four possible tour structures are: 

•  Home-Main-Home 
•  Home-Intermediate-Main-Home 
•  Home-Main-Intermediate-Home 
•  Home-Intermediate-Main-Intermediate-Home 

 
The model structure considers the choice of the main destination of the tour. The 
alternatives in the destination choice models determine the tour structure and stops for 
various purposes. Our model estimates the probability that a person who makes a stop in a 
tour chooses a specific zone as his/her destination. The model includes stops made before 
and after the main activity in the tour.  Table 1 shows the distribution of these four types of 
tour structures in the studied data set. 
 
Table 1: Distribution of tour types 
 
Tour type            Frequency        Percentage                     
Home-Main-Home     2889   80,0% 
Home-Intermediate-Main-Home     359     9,9% 
Home-Main-Intermediate-Home     246     6,8% 
Home-Intermediate-Main-Intermediate-Home   115     3,3% 
Total       3609            100,0% 

Source: OVG Antwerpen city region (1999) 
 
3. Data sets and definition of destination zones  
 
In our model, a key role is assigned to the spatial characteristic of the studied area. To that 
end, spatial variables are incorporated into the model in two ways. First, the definition of 
the choice alternatives is based on the spatial characteristics of the study area.  Spatial data 
generated from land use, density and accessibility data sets will be analyzed.  The study 
area is divided into 33 homogeneous destination choice zones.  Second, the spatial 
characteristics of destinations zones are introduced in the model as explanatory variables.  
In this section, we first define the travel data set (Section 3.1), then the study area and the 
spatial variables (Section 3.2), and lastly, the destination choice zones using the spatial 
information (Section 3.3). 
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3.1. Travel data 
 
The travel data set used in this research is the so-called OVG travel data set of the 
Antwerpen city region collected in 1999 (part of the Flemish Travel Behavior Research-
project).  In this survey, each person above the age of five and being a member of the 
selected sample of households is asked to fill in a travel diary for two consecutive days. 
This resulted in a large data set, including data on each trip (e.g. activity, mode, distance, 
duration) as well as socio-demographic information on each person and household (e.g. 
age, income, household type, sex).  In sum, the Antwerpen data set contains information of 
about 30,000 trips made by 5,613 different persons (Verhetsel et al., 2004).  
  
3.2. Study area and spatial variables 
 
Our study area is defined by looking at the location of the trip destinations of the 
respondents of this survey.  It consists in 608 statistical sectors (also called neighborhoods 
or wards) that are equivalent to 32 zip codes or 18 communes. On the sector level, several 
spatial characteristics were generated: variables on land-use, density and accessibility.  The 
characteristics of space, the density or availability of functions and services and the 
accessibility of functions and facilities in other areas have also an impact on travel 
behavior and destination choice.  Van Wee (2002) stressed the importance of the 
introduction of spatial variables in the analyses of travel behavior.  Badoe and Miller 
(2000) and Stead (2001) also indicated that land use, density and accessibility are three 
important groups of spatial variables that explain travel choice behavior.  After generating 
the spatial attributes, the 608 sectors are aggregated to a limited set of homogeneous 
destination choice zones by using a spatial zoning algorithm which is explained hereafter.  
 
3.2.1 Land-use variables 
 
The first category of spatial variables is land use.  In 1996 the OC-GIS Flanders developed 
a first digital land use map for the Flemish region in the framework of the federal research 
program TELSAT.  In 2001, this land use data set has been updated in order to analyze 
changes in land use.  The data set is based on satellite images, soil information and the 
road network.  By using an automatic classification procedure, satellite information is 
converted into 19 categories of land use (see Table 2) (see OC-GIS Vlaanderen, 2002).  A 
second data set concerning land use was used: the MultiNet data set (2001) collected by 
TeleAtlas which consists of administrative borders, the road network and specific land use 
information such as “built-up area”.  
 
Let us now compute for each of the 608 statistical sectors the surface occupied by each 
type of land use (in square meters as well as in percentage of the total surface). Each sector 
receives the same items of land use that can be compared with each other and with 
percentages of other sectors.  The most interesting variables are (i) housing development 
(densely, built-up, green residential,…), (ii) industrial, commercial and port development, 
(iii) green areas and open spaces, and (iv) infrastructure (highways, airports, railways,…).  
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Table 2: Overview of the 19 categories of land use 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Land cover and land use data set - OC-GIS VLAANDEREN (2002) 
 
3.2.2 Density variables 
 
A second group of spatial variables consists in density variables, which give an indication 
of the population density, employment, shopping and schools.  Given that the shape and 
size of the statistical sectors are not identical - cf. MAUP, (Openshaw and Taylor, 1979) -
density is here roughly defined as the number of people, jobs, dwellings,… per square 
kilometer.  The expected effect on travel behavior is clear: the higher the density, the more 
destinations within the activity range, thus, saving time and money of the respondent.  In 
other words, a high density enables people to participate in more activities during a giving 
time range (Van Wee, 2002). 
 
Cervero (1996), Cervero and Knockelman (1997) and Badoe and Miller (2000) also found 
that a high population density leads to shorter trip distances and the discouragement of the 
use and possession of cars; they discussed the relationship between population density and 
travel behavior.  That is why it is interesting to attach the population density to each origin 
and each destination sector.  The data used here are those provided by the National 
Institute of Statistics (NIS, 2001).   
 
In the literature the link between employment, travel behavior and activity patterns also 
received some attention.  Badoe and Miller (2000, p. 251) indicated a consistency in the 
research results: a higher concentration of employment has a significant impact on travel 
behavior. The data set used to compute employment density is the employment data set of 
the Regional Development Agency of 2001.  This is only a rough but workable estimation 
of the exact employment figures of the National Census of 2001.   
 

1 Agriculture and open space 
2 Meadowland
3 Alluvial meadowland
4 Orchards
5 Coniferous forests
6 Broad-leaved forests
7 Mixed forests
8 Municipal parks
9 Densely-built housing

10 Housing and other development 
11 Industrial and commercial area 
12 Highways
13 District roads
14 Airport infrastructure
15 Port infrastructure
16 Other infrastructure (railways,…) 
17 Heathland
18 Dunes
19 

Heathland and dunes 

Water 

Agriculture/Meadowland

Forests and parks 

Development and industry

Infrastructure 
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A third density variable is the school density for each sector in the city region.  The data 
set of the Department of Education of the Flemish Government contains a list of addresses 
for all the Flemish schools (primary and secondary schools, colleges, universities etc.).  
After geo-coding the addresses, it was possible to compute the number of schools per 
square kilometer.  A high density of schools will no doubt have an impact on the modal 
choice (i.e. bringing or getting children from school) and the distance of school trips. In 
future research, data on the size of schools (number of pupils) will be taken into account to 
calculate school density variables. 
 
A final density variable is shopping density.  This is more difficult to introduce since 
complete data sets on commercial activities are not easy to obtain.  However this is a 
crucial variable in our analysis since shopping trips frequently appear in our travel data set.  
We expect high shopping density to lead to shorter trips and lower use of cars.  An internet 
data source (SCOOT) gave us the opportunity to find addresses and extra information on 
shopping alternatives.  This resulted in approximately 6,000 stores (great and small) in the 
Antwerpen city region.  Geo-coding these addresses made it possible to assign this 
information to the sectors and to compute shopping density. Data on the size of shops 
(store surface) will be available in the near future. 
 
3.2.3 Accessibility variables  
 
Between each centroid of the 608 sectors the shortest path network distance and the fastest 
path network time were generated on the basis of the StreetNet 2001 network and by using 
ArcView Network Analyst.  The StreetNet road network includes information on traffic 
regulations, such as closed streets, one-way streets, underpass and overpass and travel cost. 
We did however not account for congestion, waiting time at traffic lights or extra time to 
take turns.  To partly compensate, slightly lower than the actual maximum speed  were 
assigned to all streets. To generate the shortest route between each centroid, ArcView 
Network Analyst implements a modified Dijkstra algorithm (ESRI, 2003; Sherlock et al., 
2002; Wise, 2002). The StreetNet software enables one to compute two variables, namely 
network distance and travel time by car. For the other transport modes (foot and bike) 
network distance is used to calculate travel time. The assumptions made on speed factors 
are 4 km/h for walking and 15 km/h for biking. 
 
The business service schedule of the local public company (De Lijn) was used to estimate  
the cost factor for public transport. The cost is calculated as the total time between two 
centroids of sectors in the study area, including walking time, weighting time and in-
vehicle time. A second variable focuses on the availability and frequency of public 
transport.  Using the frequency tables of De Lijn, i.e. a network of public transport lines 
and bus and/or tram stops, it was possible to compute for each statistical sector the 
frequency (either per day or per hour) of public transport lines at bus and/or tram stops 
located in the sector. 
 
3.3. Defining destination choice zones 
 
Travel demand models typically investigate the interactions among aggregated travel 
analysis zones within a study area. However, spatial aggregation can substantially affect 
the resulting travel demand modeling results. Miller (2004) indicated some major spatial 
analytical issues related to zoning: spatial dependency, spatial heterogeneity, boundary 
problems and scale effects. Unfortunately, there is no predefined method for zoning which 
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avoids these analytical pitfalls. Hence, in the present paper, we attempt to tackle these 
fundamental spatial problems by constructing a zoning algorithm that aims at maximizing 
internal homogeneity and external heterogeneity of the aggregated zones.  For 
computational tractability and data availability reasons, the study area is aggregated into 33 
geographic analysis zones, based on GIS generated data.   
 
The basic spatial unit is the statistical sector (or neighbourhood).  Working at this level 
might cause problems due to the high number of sectors in the study area (N=608) and to 
their often small size.  The level of the zip codes (mostly administrative borders) is also not 
suitable since zip code borders do not always take into account the characteristics of the 
spatial structure or the functional offer.   That is why in this research the use of a Spatial 
Zoning Algorithm is advocated, i.e. an algorithm that is based on the results of a clustering 
or classification of sectors by their spatial characteristics as calculated in the previous 
section.  
 
The cluster variables are obtained through a principal component analysis.  Six 
components are extracted, each of them contains a group of variables with the same spatial 
patterns (e.g. the component “employment” contains number of firms, number of stores, 
employment density and percentage of densely-built housing).  Each sector receives, in a 
second step, a score on each of the six components (i.e. the higher the score, the better it 
matches with the component).  Next, these standardized scores on the six components are 
the basis of a cluster analysis.  Ward’s Clustering Method is used to generate the necessary 
clusters.  Nine clusters best reflected land use in the city region.  The average factor scores 
on the components for each cluster indicate its spatial characteristics.  For example, one 
cluster is the sector with a lot of highways, district roads and infrastructure and a low 
percentage of housing or facilities.  Step by step the Spatial Zoning Algorithm (an example 
of one part of the algorithm is presented in Appendix A), which is based on the results of 
the cluster analysis, administrative and infrastructure borders, groups the sectors to larger 
zones, finally resulting in 33 destination choice zones (see Figure 3).  The 33 destination 
choice zones form the input for our model that aims at explaining the destination choice 
and the activity patterns on different spatial levels (section 4).   
 
Figure 3: From 608 sectors to 33 Destination Choice Zones in the study area 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source: Van Hofstraeten and Verhetsel (2004) 
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4. Results 
 
Before modeling destination choices, different combinations of variables are tested.  The 
best result is obtained by the variables presented in Table 3 which summarizes and 
describes the data selected for modeling.  
 
Table 3: Variables selected for modeling destination choices 
 

 
 
The complexity of the data is obvious: different types of variables are combined for 
different data levels. However, by doing so, spatial planners are able to analyze 
sensitivities on different levels.  The model can also explore socio-economic behavior and 
urban development simultaneously.  
 
Let us first discuss the linearity of the utility function and the econometric models (Section 
4.1).  This will lead to the choice of the “best” model formulation.  Modelling results and 
operational decisions are reported in Section 4.2 .    
 
4.1. Impact of the utility function and the model choice on the modelling results 
 
Table 4 compares the results obtained by a linear multinomial logit formulation to that of 
the Box-Cox estimation and the mixed logit with random coefficients.  In the Box-Cox 
Logit, the estimated coefficient of variable λ is not significantly different from zero.  In 
this case, the transformation of travel time is logaritmic (see equation [6]).  For the model 
with random coefficients, the estimated variance of the distribution of the travel time 
coefficient is significantly different from zero; hence, we accept the hypothesis of a 
random coefficient of time: the perception of travel time varies randomly from one 
individual to another.  These two alternative solutions to the standard MNL conduct to a 
drastic reduction in the log-likelihood: it drops from –4745 in the standard MNL to –3268 
in de Box-Cox logit and to –2830 in the random coefficient mixed logit model.  That is 
why the random coefficient formulation is preferred to the others. 
 

Data source Levels Attributes Types
OVG data Individual Age Continuous

  Gender Binary (2 categories)
Household Income Discrete (5 categories)

Location Discrete (4 categories)
Household type Discrete (8 categories)

Trip  Purpose Discrete (4 categories)
Mode of transport Discrete (5 categories)

GIS Zone Land uses: Continuous 
 - built-up housing
 - industrial / commercial /port area Percentage of the geographical area 
 - agriculture and meadowland by land uses type
 - housing and other developments;
Density variables:
 - employment Continuous
 - shopping; Aggregated indicator by zone 

Trip Travel time Continuous
Accessibility measure
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Table 4 : Comparing results for different utility functions for travel time only. 
 

 Multinomial Logit Box-Cox Logit Mixed Logit 
 Value t-test Value t-test Value t-test 
Accessibility variables       
Time -0,90 -71,46 -4,97 -19,05 - - 

mean - - - - -4,09 -28,17 
variance - - - - 15,69 14,59 

 Lambda - - 0,01 0,32   
        

Number of parameters: 1 2 2 
Sample size: 3517 3517 3517 

Null log-likelihood: -12297 -12297 -12297 
Final log-likelihood: -4745 -3268 -2830 
Likelihood ratio test: 15104 18058 18934 

Rho-square: 0,61 0,73 0,77 
 
Table 5 : Parameter estimates for the multinomial logit and the nested logit 
 

 Multinomial Logit Nested Logit 
 Value t-test Value t-test 
Accessibility variables      
Time -0,86 -67,99 -0,83 -63,11
Land Use variables     
Agriculture 0,034 7,75 0,027 6,20
Industry -0,008 -2,10 -0,011 -3,09
Housing 0,021 14,60 0,019 13,44
Built up area -0,012 -5,89 -0,011 -5,49
Size variables     
Employment 0,000021 2,49 0,000020 2,50
Number of shopping 0,002798 16,99 0,002422 14,59
Socio demographic variables     
Age 0,0155 3,14 0,0166 3,44
Income     
   Income <500 euro 0,48 0,73 0,49 0,76
Household type     
   Monoparental with 2 Children and more 1,13 1,97 1,16 2,04
   Couple with 2 children and more 1,44 2,56 1,48 2,65
Household location     
suburb -1,68 -5,71 -1,64 -5,70
Characteristic of chains     
Purpose     
    Service 0,31 0,64 0,33 0,68
Mode     
    bike 0,64 1,37 0,65 1,41
inclusive value 1  1 Fixed 
inclusive value 2  1,24 28,71
inclusive value 3  1 Fixed 
inclusive value 4  1,02 12,65

Number of estimated parameters: 14 16 
Sample size: 3517 3517 

Null log-likelihood: -12297 -12297 
Final log-likelihood: -4421 -4401 

Likelihood ratio test: 15753 15792 
Rho-square: 0,64 0,64 
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Table 5 compares the modelling results obtained by the standard multinomial logit model 
against those obtained by the nested logit.  In this first attempt, all explanatory variables 
were included in the models.  The MNL is here considered as a benchmark.  The log-
likelihood slightly drops from –4421 in the MNL to –4401 on the nested logit and the 
coefficients of the inclusive factors for each branch of the nested logit are significantly 
different of 1.  We hence can confirm that there is a hierarchical structure of stop choices 
in our studied area.  In Antwerpen, an individual seems to first choose a broad zone (i.e. 
suburb, urban fringe, city centre, 19th century centre) and then within that zone, he chooses 
a more precise ward of destination.  The nested logit enables one – in a certain way – to 
consider the nested effect of spatial scale as well as spatial correlation in destination 
choices.   Let us also mention here, that as the coefficients of the inclusive variables are all 
significantly higher that 1, the IID does not anymore hold.  The MNL is no more robust for 
explaining the destination choices.   This gives us a good reason for preferring the nested 
logit formulation. 
 
4.2. Modelling destination choice 
 
In the previous section, the existence of a random coefficient in the travel time variable is 
shown.  In Table 6, the results obtained in the estimation of the mixed multinomial logit 
are compared to those of the mixed logit.  Compared to Table 5, we obtain a better fit in 
the quality on the estimators: the log-likelihood ratio is reduced and the Rho-Square is 
much higher. As shown in Table 5, the structure of choice is nested. The inclusive 
variables are significantly greater than 1.  Given that the model includes a random 
coefficient, the mixed logit model is chosen as the best estimation of the spatial choice 
process in the case of Antwerpen (nested logit with random coefficient).   
 
This confirms recent results obtained by Suarez et al. (2004) on the better fit of nested logit 
in selecting shopping centres. These authors also propose random effect models to perform 
the modelling. In this case, the structure of the error term can be decomposed as: 

 
                            εji = µj + ωji        [11] 

 
where µj represents the random geographical effect; it is assumed to be normally 
distributed. ωji is the residual effect which follows a Gumbel distribution.  We end up with 
a mixed-logit model that takes into account the decomposition of the error term.  Given 
that the performance of this kind of model is much lower than the previous one, it was not 
used in further analysis. We conclude that the most relevant model to explain the 
destination choice in the Antwerp city region is the mixed nested logit (random 
coefficients).  
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Table 6 : Parameter estimates for the multinomial logit and the mixed logit 
 

 Mixed Multinomial Logit Mixed Nested Logit 
 Value t-test Value t-test 
Accessibility variables    
Time : mean -4,67 -23,54 -4,15 -22,86
            Variance  20,21 12,36 16,21 11,79
Land Use variables     
Agriculture 0,030 4,15 0,029 4,63
Industry 0,028 5,00 0,025 4,95
Housing 0,038 15,80 0,031 12,80
Built up area -0,023 -7,30 -0,017 -4,98
Size variables     
Employment 0,000019 2,01 0,000006 0,56
Number of shopping 0,004842 17,29 0,004320 14,13
Socio demographic variables     
Age 0,0003 0,06 0,0007 0,09
Income     
   Income <500 euro 0,33 0,57 0,33 0,36
Household type     
   Monoparental with 2 Children and more 1,03 1,94 1,03 1,12
   Couple with 2 children and more 1,19 2,39 1,20 1,52
Household location     
suburb -1,70 -4,88 -1,62 -3,41
Characteristic of chains     
Purpose     
    Service 0,14 0,28 0,16 0,21
Mode     
    bike 0,37 0,89 0,39 0,58
      
inclusive value 1  1 Fixed 
inclusive value 2  1,85 3,55
inclusive value 3  1 Fixed 
inclusive value 4  2,64 2,46

Number of estimated parameters: 15 17 
Sample size: 3517 3517 

Null log-likelihood: -12297 -12297 
Final log-likelihood: -2582 -2552 

Likelihood ratio test: 19430 19490 
Rho-square: 0,79 0,79 

 
The travel time variable, i.e. an accessibility measure, has a high significance compared to 
other variables of the model.  This means that travel time between origin and destination is 
able to explain a large part of the model’s variability. Destinations located further away are 
less interesting than those closer to the home address. 
 
The choice of a destination is additionally influenced by spatial variables and socio-
economic variables: 
- Spatial variables include density and land use information.  The influence on the number 

of shopping and employment alternatives is positive: they increase the attractiveness of 
destination. The higher the percentage of housing and industrial surface in the zone, the 
higher the probability to choose the alternative. In contrast, the land use variables built-
up area has a negative effect on the attractiveness of the destination.  These results 
correspond to our expectations. 
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- Socio-economic variables include age, income and household type.  These variables 
affect  all the destinations simultaneously: e.g. increasing the mean age of the population 
in an origin zone affects the probability of all alternatives in the choice set, including the 
origin zone.  In other words, besides having an impact in one specific zone, the socio-
economic variables also explain the flux between the origin (individual location) and the 
destination. 

 
4.3. Simulations 
 
Besides analyzing the MNL results, it is also interesting to analyze the impact of a specific 
change in variables on the choice of an alternative.  To illustrate the simulation process, it 
is now explained what would happen if two urban development projects are introduced in 
the Antwerpen city region, the so-called Nieuw-Zuid and Petroleum-Zuid.   
 
Nieuw-Zuid is a project that aims at connecting the Southern suburbs with the Antwerpen 
city centre.  This prestigious project contains a new Court, new residential areas along with 
office space, a public park and retail space.  It is located near the Scheldt River and 
nowadays the area is characterized by waste land and obsolete port infrastructure.  In order 
to make these new development areas more easily accessible by public transport, plans also 
contain the expansion of the neighboring railway station and the development of extra tram 
lines to this area (Stad Antwerpen, 2002).  Figure 4 maps the Nieuw-Zuid project. 
 
In this simulation, the calculated spatial variables on land use, density and accessibility for 
the statistical sector (which encloses the urban development project Nieuw-Zuid) are 
modified according to the architect’s plans.  Nieuw-Zuid will generate 13 hectares of 
housing area (equal to approximately 3000 new inhabitants), 8 hectares of offices  (equal 
to 200 000 square meters of floor-space) and 9 hectares of municipal park (Vespa, 2004).  
Appendix B shows the estimated changes in spatial variables. 
 
Figure 4: Plan of the urban development project Nieuw-Zuid 

 

 
Source: Stad Antwerpen (2002) 

PLANS 
1 Ring road 
2 Housing & offices 
3 Court house 
4 Boulevard to the city 
5 City park 
6 Train station 
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On the other side of the ring road, another urban development project is planned in the near 
future: Petroleum-Zuid.  The urban development area of Petroleum-Zuid is still part of the 
port area, even if most port activities left the site years ago.  One of the major goals is to 
open the southern border of the city of Antwerpen and connect some less prosperous 
neighborhoods with the inner city.  Today only five companies are still active in this zone.  
Land destination plans at regional level point out the area as industry and park zone.  
However, it is not clear yet what exactly is understood by park zone.  More specifically, 
plans are to redevelop the urban area as a zone of mixed-use, namely as a city project (with 
economic activities) in green setting (Van Dyck, 2003).  A study now examines the impact 
of the development of an industrial area of 75 to 80 hectares.  It is proposed to create more 
public space (either a municipal park or a square) on a total area of 20 hectares (VESPA, 
2004).   
 
Both urban development projects are situated in the same destination choice zone.  By this, 
next to calculating the impact separately of one project on the attractiveness of its sector, it 
is also possible to study the effect of introducing both projects simultaneously on the 
probability to choose the destination choice zone to which both sectors are assigned.  
These results presented in Table 11. 
 
Table 11: Impact on the urban development projects 
 

Sector  
Nieuw Zuid Petroleum Zuid 

Destination zone 
(including Nieuw Zuid and 

Petroleum Zuid) 
Change in attractiveness +78.2% -65.2% +12.7% 

 
According to our simulation results, the Nieuw Zuid project will be more attractive to 
inhabitants of the Antwerpen city region than the Petroleum Zuid project.  This can be 
explained by the fact that a project containing new shopping facilities, a municipal park, 
housing and offices obviously attracts more people than an industrial project containing no 
residential or shopping facilities.  Finally, the positive effect on the probability to choose 
the destination zone of both projects can be noticed in Table 11. 
 
5. Conclusions 
 
This paper deals with the introduction of the characteristics of space in destination choice 
modeling.  Several modeling alternatives are suggested and compared.  The application is 
limited to the city region of Antwerp (Belgium) and to one data set  (OVG).  Results seems 
to be quite promising methodologically and empirically.   
 
When considering space in destination modeling, the main methodological problems 
encountered are: (1) summarizing the spatial reality by a few variables, (2) defining 
independent spatial alternatives, (3) the availability of geographical information systems 
(adequate data, software and “lifeware”), and (4) choosing an adequate formulation for the 
model choice.  This explains why only a few approaches of this problem are to be found in 
the former discrete choice literature.  In our case, several variables were created in order to 
“measure” space and spatial attractiveness.  Several modeling methodological formulations 
were also developed and compared in order to avoid the numerous methodological pitfalls 
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of discrete choice modeling; in our case, the mixed nested logit (MXNL) seems the be the 
best formulation.    
 
The application consists in comparing different formulations of the model, interpreting the 
parameters for the present situation in Antwerp but also considering new infrastructures in 
the city planning process.  By using this approach, public stake holders can encourage 
developments in specific areas and study the impact of this policy measure on the overall 
mobility. They can also play an active role in investing in land development, housing, 
infrastructure, etc.   
 
 
Further analyses will be done. Besides simulating techniques, the calculation of elasticities, 
which specify the proportional demand increase or decrease caused by a one-percent 
change in variable, can also be calculated. The elasticities will be computed for spatial and 
socioeconomic variables. Further simulations will enable to test the sensitivity of the 
model to changes in spatial and behavioral measures and statistical modeling choices.  
Avenues for future research consist in further developing the model and in adding new 
variables in the explanatory process.  Furthermore, the techniques developed in this paper 
for generating spatial variables, defining destination choice zones and destination choice 
modeling will be applied to other city regions (e.g. Gent, Mechelen.) in order to compare 
the empirical results and further test the robustness of the methods. 
 
 Acknowledgements 
 
The research is performed in execution of the Second Scientific Support Plan for a 
Sustainable Development Policy (SPSD II) for the account of the Belgian State, Prime 
Minister's Office - Federal Office for Scientific, Technical and Cultural Affairs (OSTC).  
We thank the Flemish Government, in particular Eddy Peetermans for the provided 
practical assistance with the GIS applications and Wilfried Goossens for providing OVG 
data. The authors are also grateful to the public transport company “De Lijn” for providing 
useful data deliverance. 
 
References 
 
− Axhausen, K. & Gärling, T. (1992) “Activity-Based Approaches to Travel Analysis: 

Conceptual Frameworks, Models and Research Problems” Transport Reviews, Vol. 
12(4), pp. 323-341. 

− Bates, J. (2000) “History of Demand Modeling”, In: D.A. Hensher & K.J. Button (Eds.), 
Handbook of Transport Modeling, Pergamon, Oxford, pp. 11-33. 

− Badoe, D.A. & Miller, E.J. (2000) “Transportation-Land-Use Interaction: Empirical 
Findings in North America and their Implications for Modelling” Transportation 
Research D, Vol. 5, pp. 235-263.  

− Ben-Akiva, M. & Lerman, S.R. (1985) Discrete Choice Analysis: Theory and 
Application to Travel Demand, Cambridge (Mass.) and London, MIT Press. 

− Bhat, C. & Zhao H. (2002) “The Spatial Analysis of Activity Stop Generation” 
Transportation Research B, Vol. 36(7), pp. 593-616. 

− Cervero, R. (1996) “Mixed Land-Use and Commuting: Evidence from the American 
Housing Survey” Transportation Research A, Vol. 30(5), pp. 361-377. 



How to incorporate the spatial dimension within destination choice models?                                                19 

− Cervero, R. & Knockelman, K. (1997) “Travel Demand and the 3D’s: Density, Diversity 
and Design” Transportation Research D, Vol. 2(3), pp. 199-219. 

− Cirillo, C., Cornélis, E., Legrain, L. & Toint, P. (2003) “Combining Spatial and 
Temporal Dimensions in Destination Choice Models” Transportation Research Group, 
FUNDP, Namur. Unpublished. 

− Cramer, J.S. (1991), The Logit Model: An Introduction for Economists, London, Edward 
Arnold. 

− Dijst, M. & Vidakovic, V. (1997) “Individual Action-Space in the City”, In: D.F. Ettema 
& H.J.P Timmermans (eds), Activity-Based Approaches to Travel Analysis, Pergamon, 
Oxford, pp.117-134.  

− Domencich, T. & McFadden, D. (1975) Urban Travel Demand: A Behavioural Analysis,   
North-Holland Publishing Company, Amsterdam, The Netherlands. 

− ESRI (2003), Technical Article, No. 18856. Downloadable from website: 
http://support.esri.com 

− Hensher D.A. & Greene, W. (2002) “Specification and Estimation of the Nested Logit 
Model: Alternative Normalisations”  Transportation Research B, 36, 1-17. 

− Hensher, D.A. & Johnson, L.W. (1981), Applied Discrete-Choice Modeling, Croon Helm, 
London. 

− Johnson, N.L. & Kotz, S. (1970) Continuous Univariate Distributions-1, New York, 
Houghton Mifflin Company. 

− Jones, P.M., F. Koppelman, & J.P. Orfeuil (1990) “Activity Analysis: State-of-the-art and 
Future Decisions”, In: P.M. Jones (Ed.) Developments in Dynamic and Activity-Based 
Approaches to Travel Analysis, Gower, Aldershot, UK  

− Maddala, G.S. (1983) Limited Dependent and Qualitative Variables in Econometrics, 
Cambridge, Cambridge University Press. 

− McFadden, D. (1973) “Conditional Logit Analysis of Qualitative Choice Behavior” In: 
P. Zarembka (Ed.) Frontiers in Econometrics, Academic Press, New York. 

− McFadden, D. (1976) “Quantal Choice Analysis: A Survey”, Annals of Economic and 
Social Measurement, Vol. 5(4), pp.363-390. 

− McFadden, D. (1978) “Modelling the Choice of Residential Location”, In: A. Karlqvist, L. 
Lundqvist, F. Snickars & J.W. Weibull (Eds.) Spatial Interaction Theory and Planning 
Models, Amsterdam, North-Holland Publishing Company, pp. 75-96. 

− McNally, M. (2000) “The Activity-Based Approach”, In: D.A. Hensher & K.J. Button 
(Eds.), Handbook of Transport Modeling, Pergamon, Oxford, pp. 53-69. 

− Miller, H.J. (1999) “Potential Contributions of Spatial Analysis to Geographic 
Information Systems for Transportation (GIS-T)” Geographical Analysis, Vol. 31, pp. 
373-399. 

− NIS, (2001) Bevolking van het Rijksregister op 1 januari 2001, Databank NIS 
− OC-GIS Vlaanderen (2002), Bodembedekkings- en Bodemgebruiksbestand, CD-ROM. 
− Openshaw, S. & Taylor, P.J. (1979) "A Million or So Correlated Coefficients: Three 

Experiments on the Modifiable Areal Unit Problem," In: N. Wrigley & R.J. Bennet 
(Eds.), Statistical Applications in the Spatial Sciences, Pion, London. 

− Ortuzar, J.D. & Willumsen, L.G.  (2001) Modeling Transport, John Wiley & Sons, 
Chichester. 



How to incorporate the spatial dimension within destination choice models?                                                20 

− Papola, A. (2004) ”Some Developments on the Cross-Nested Logit Model” 
Transportation Research B. Article in press.  

− Revelt, D., & Train, K. (1999) “Customer-Specific Taste Parameters and Mixed Logit,” 
working paper, Department of Economics, University of California, Berkeley. Paper 
available on: http://elsa.berkeley.edu/users/train/index.html 

− Sherlock, R., Mooney, P., Winstanley, A. & Husdal, J. (2002) Shortest Path 
Computation: A Comparative Analysis, Paper presented at the GISRUK 2002 
Conference, University of Sheffield, Sheffield. 

− Stad Antwerpen (2002), Nieuw Zuid: De Nieuwe Place To Be, Antwerpen. Unpublished. 
− Stead, D. (2001) “Relationships between Land Use, Socio-Economic Factors and Travel 

Patterns in Britain” Environment and Planning B, Vol. 28(4), pp. 499-529. 
− Suarez A., Rodriguez del Bosque I., Rodrigues-Poo J. & Moral I. (2004) “Accounting for 

heterogeneity in shopping, centre choice models”  Retailing and Consumer Services, 
Vol.11, pp. 119-129. 

− Timmermans, H.J.P. & Golledge, R.G. (1990) “Applications of Behavioural Research on 
Spatial Problems II: Preference and Choice”, Progress in Human Geography, Vol. 14(3), 
pp. 311-354. 

− Train, K. (1986) Qualitative Choice Analysis, Theory, Econometrics, and an Application to 
Automobile Demand, Cambridge (Mass.) and London, MIT Press. 

− Train K. & MacFadden D.  (2000) “Mixed MNL Models for Discrete Response” Journal 
of Applied Econometrics, Vol.15, pp. 447-470. 

− Van Dyck, B. (2003) Brownfields Redevelopment: Governance and Partnerships, 
Erasmus University Rotterdom/EURICUR, The Netherlands. 

− Van Hofstraeten, D. & Verhetsel, A. (2003) De Introductie van Ruimtelijke Variabelen 
en Zoneringstechnieken in de Analyse van het Verplaatsingsgedrag, Unpublished. 

− Van Wee, B. (2002), ‘Land Use and Transport: Research and Policy Challenges’, 
Journal of Transport Geography, Vol. 10, pp. 259-271. 

− Verhetsel, A., Witlox, F., Tindemans, H. & Van Hofstraeten, D. (2004), SAMBA: Spatial 
Analysis and Modeling based on Activities. A pilot study for Antwerp and Ghent 
(Flanders, Belgium), In: K. Williams (Ed.) Travel/Mobility and Urban Form, Ashgate 
Publishers (forthcoming). 

− Wise, S. (2002) GIS Basics, Taylor & Francis, London. 
 
Websites  
− SCOOT, Internet search engine: http://www.scoot.be 
 
Other Sources 
- VESPA (Isabelle Van Achter, Koen Der Kinderen) 
 
 
 
 
 



How to incorporate the spatial dimension within destination choice models?                                                21 

Appendix A: Example of the spatial zoning algorithm 
 

 THEN Zone ni(Destination Zone) = i 
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Appendix B: Impact of the urban development project Nieuw-Zuid  
 

LAND USE 2001 CHANGE ESTIMATED LAND USE
Housing & development 0,19% +33,63% 33,82%
Municipal Parks 0,00% +13,68% 13,68%
Highway roads 7,45% +2,63 10,08%
District roads 0,00% +2,57% 2,57%
Alluvial Meadowland 0,01% +0,01% 0,00%
Mixed Forests 0,41% -0,18% 0,23%
Broad-Leaved Forests 13,05% -1,30% 11,75%
Meadowland 7,59% -6,47% 1,12%
Infrastructure 13,60% -6,69% 6,91%
Port Infrastructure 28,69% -18,80% 9,89%
Agriculture/open space 25,82% -19,69% 6,13%
Densely Built Housing 0,24% 0 0,24%
Water 2,67% 0 2,67%
Land use total 99,71% 99,04%

DENSITY CHANGE ESTIMATED DENSITY
Population 1 +2999 3000
Population density 1,02 / km² +2455,33 / km² 2456,35 / km²
Employment 7 +1993 2000
Employment density 7,12 / km² +1957,96 / km² 1965,08 / km²
Number of firms 1 +49 50
Number of shops 0 +40 40
Shopping density 0 / km² +39,30 / km² 39,30 / km²
Number of schools 0 0 0
School density 0 / km² 0 0 / km²

ACCESSIBILITY CHANGE ESTIMATED ACCESSIBILITY
Accessibility to shopping 0,61 +0,59 1,20
Accessibility to industry 0,13 +0,07 0,20
Accessibility to housing 1,27 +0,13 1,40
Public transport freq/hour 44,19 +500 544,19  

 
Appendix C: Impact of the urban development project Petroleum-Zuid  
 

LAND USE 2001 CHANGE ESTIMATED LAND USE
Industry 1,25% +44,62% 45,87%
Municipal Parks 0% +10% 10%
Alluvial Meadowland 0,63% +0,19% 0,82%
Housing & development 0% 0 0%
Highway roads 0,46% 0 0,46%
District roads 0% 0 0%
Densely Built Housing 0% 0 0%
Water 4,23% 0 4,23%
Mixed Forests 0,04% -0,04% 0%
Broad-Leaved Forests 10,92% -2,53% 8,39%
Meadowland 11,51% -6,41% 5,10%
Agriculture/open space 15,18% -8,71% 7,01%
Infrastructure 16,91% -11,13% 5,78%
Port Infrastructure 33,18% -20,40% 12,78%
Land use total 100% 100%

DENSITY CHANGE ESTIMATED DENSITY
Population 15 0 15
Population density 9,96 / km² 0 9,96 / km²
Employment 533 +521 1054
Employment density 354 / km² +346 / km² 700 / km²
Number of firms 10 +20 30
Number of shops 0 0 0
Shopping density 0 / km² 0 0 / km²
Number of schools 0 0 0
School density 0 / km² 0 0 / km²

ACCESSIBILITY CHANGE ESTIMATED ACCESSIBILITY
Accessibility to shopping 0,53 +0,08 0,61
Accessibility to industry 0,12 +0,30 0,42
Accessibility to housing 1,14 +0,13 1,27
Public transport freq/hour 0 0 0  

 


