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Abstract

When the city centre is the major destination of passengers, public transport vehicles
will get fuller as they approach it. The disadvantage of time loss due to stops on the
way to the centre is thus experienced by an increasing number of travellers. We
demonstrate that optimal stop distances increase as vehicles get closer to the centre.
This is at variance with the usual assumption of constant stop distances employed in
this type of models. A countervailing force is that urban densities increase as one
approaches the centre. We demonstrate that there exist combinations of the various
cost and density gradient parameters that result in constant stop distances as an
optimal outcome. However, this is found for rather steep density gradients, so that the
overall conclusion is that there are good reasons to let stop distances increase as one

approaches the city centre.
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1. Introduction.

Most cities depend on a mixture of public and private transport to satisfy travel
demand. Acces and speed are essential elements of a well-functioning public transport
system. It should preferably be close to the places where people live, work or do other
activities, and it should also preferably be fast. This leads to various trade-offs, one of
them related to the density of the network, and more in particular the optimal stop
distances. Small stop distances allow high accessibility of the network, but lead to low

speeds because of the many stops the vehicles have to make.

In the literature (Spasovic et al., 1994, Van Nes, 2002) optimal stop distances in
public transport networks are usually modelled to be constant. This seems to be a
plausible approach when the density of travellers is uniform along public transport
lines. In the present paper we will focus on an aspect that calls for variable stop
distances, even when the density of travellers is uniform. The background relates to
the point that when all travellers go to the same destination, public transport vehicles
get fuller and fuller as one approaches the city centre implying that more and more

passengers experience the disadvantage of the waiting times.

In section 2 we give a simple formulation of a model to determine optimal stop
distances. Minimisation of generalised costs can be demonstrated to imply shorter
stop distances near the city fringe compared to stops closer to the centre. Some
variants of the model are discussed, such as the case where the centre is not the sole
destination of trips. In section 3 we present a case where population densities increase
as one approaches the centre. We demonstrate that with exponential density gradients
there are certain combinations of cost and density parameters that would lead to
constant stop distances throughout the urban area, but such combinations are
implausible because very steep density gradients would be implied. A numerical

illustration is given for transport networks in Dutch cities. Section 4 concludes

2. Optimal distances between metro stops, basic formulation.



Consider a line that runs from the city edge O to D where D is the centre of the
metropolitan area. We assume that all passengers use the metro to travel between their
residence and the centre and vice versa. Thus, in the morning the metro gets fuller and
fuller when it approaches the city centre, and in the afternoon the opposite occurs.
Passengers are assumed to be uniformly distributed along the line with a density a per
unit distance. Passengers are assumed to go to the closest stop'. Demand for metro

services is inelastic: it does not depend on service levels and location of stops.

Consider the costs as far as they are associated with the location of the stops. The
present paper does not address the optimal total number of stations N, but only, once
N is known the optimal distances between them. From the perspective of the traveller
we consider two components of generalised costs: costs of in-vehicle travel time and

costs of walking to the nearest stop.

Weuse Ly, Ly, ..., Ly to represent the location of the stops between edge O and city
centre D. O is located left from L;, and D right from Ly. Thus L, denotes the distance
between the edge O and stop n.

In-vehicle time as a function of the number of metro stops.

We start with computing the expected number of times people sitting in the metro
experience a stop. For the stop at the city edge O (n=0) our assumption that travellers
go to the nearest stop implies for the expected number of passengers entering the

metro:

Py=0.5(L))a (1)

Before arriving in the city centre D, these travellers will experience N stops.

The expected number of passengers entering at stop n is:

' This assumption has as an advantage that it keeps the formulas simple since the border of a market
area between two stops is just in the middle. An alternative approach would be to have the border
between two stops shifted a little towards the edge of the city since a traveller living just between two
stops would gain a little by walking into the direction of the centre because this would save in-vehicle
time. This case is shortly discussed in Appendix 1. It appears that the way of separating market areas of
stops does not affect the outcomes of our analysis in terms of stop distances.



P, = 0.5(Ly-Ly1)a+0.5(Lysi-Ly)a =0.5(Lysi-Ly1)a n=1,2,....N )

These passengers will experience N-n stops while sitting in the metro before arriving

in D. Note that in the case of n=1, P; equals 0.5(L;)a because L, equals 0.

Thus, the mean number of stops E(S) the collective of travellers experiences depends

on the location of the stops in the following way:

E(S) = L; [(0.5)a(N) —(0.5)a(N-2)] + L, [(0.5)a(N-1) —(0.5)a(N-3)] +......... =
(L1+L2+. . .)a (3)

The loss of time due to a stop is denoted as Ts. Note that this is more than the time the
vehicle stands still at the platform, since it includes time loss related to accelerating
and decelerating. Assume that there is no congestion at the metro stations: Tg does not
depend on the number of passengers entering the metro. Then total time loss due to
entering passengers equals E(S).Ts. Assuming that congestion is absent, it also
appears that as long as the number of stops is given, from the operator’s viewpoint,
the choice of location of stops does not have an impact on operator’s costs. Therefore
it is sufficient for our analysis of optimal stop distances to focus on passenger related

costs.

Let v be the time costs involved of a stop per seated passenger. This is the product of
time loss Tg times the value of time related to a stop. Then the related costs of in-

vehicle travel time are:

E(S).v=(Li+Ly+...).a.v 4)

It follows from (4) that the marginal in-vehicle time cost of shifting a stop one unit of
distance towards the centre equals a.v: moving a stop location towards the centre
implies that more passengers are will board at the preceding stop and these passengers

experience a longer in-vehicle time because of an extra stop.



Expected walking distance as a function of the number of metro stops.

The average walking distance to stop O is Li/4. The expected number of people
experiencing this is Py as given in (1). Similarly, the average walking distance of
passengers using stop n and arriving from the left side is (L,-L,.;)/4, whereas for those
arriving from the right side it is (L,+-L,)/4. The expected numbers of passengers

involved are 0.5(L,-Ly.1)a and 0.5(L,+1-Ly)a.

Hence the expected walking distance of travellers E(d) is:

E(d)=a [(L))* + (L,-L))* + (Ls-L,)* +....]/4 (5)

This quadratic formula makes clear that when travellers are uniformly distributed,
increasing the space between two stops has two reinforcing effects on walking
distances: the average distance to be walked increases, but also the number of

passengers involved is larger.

The effect of a marginal shift in the location of stop n towards the centre implies that
at the left side of the stop walking distances increase, and at the right side they
decrease. Minimisation of expected walking distance as a function of the location of

stop n results in [(L,-Ly.;)-(Ly+1-Ly)]=0, and hence

Ln = (Ln+1 +Ln—1 )/2

This implies that stop n will be in the middle of stops of n-1 and n+1. Thus, in order
to minimise expected walking distances, stops should be equally spaced, as long as
the spatial distribution of passengers is uniform. We now turn to an integrated

treatment of total costs as a function of both access costs and in-vehicle time costs.

Minimisation of social costs.

We assume that the transport company minimises social costs of transport, i.e., the
sum of costs of operations and the generalised costs of passengers. For our purpose it
is sufficient to specify only those costs that depend on the location of stops. Since, as
already outlined above operator costs do not depend on the location of stops under the

given assumptions, we focus on traveller costs. Let w denote the time costs involved



in walking a unit distance to a stop per passenger. Then the total costs as far as they

depend on the location of stops are:

C=va(L+L+...) + wa[(L)*+ (Ly-L)?+ (Ls-Ly) +....]1/4 (6)

The first order condition for cost minimisation is:

0C/0Ly =v.a +w.a [(Lo-Ln-1)-(Ln+1-La)1/2 =0 n=12,...N (7

This implies that as one comes closer to the city centre the intervals should become

larger:

(Ln+l'Ln) = (Ln'Ln—l) + 2-V/W>

hence

Ln = (Ln+l+Ln—l)/2 - V/W,

so that each stop is not in the middle of the two neighbouring stops, but shifted a
distance v/w away from the centre. When we assume that the value of time of in-
vehicle transport and walking would be equal, v/w equals the ratio of stop time and
walking time per unit distance. This is equal to the distance a pedestrian walks during
the time loss of the metro vehicle due to a stop. This implies equality of marginal
costs of shifting a stop away from the centre in terms of longer access time and
marginal benefits in terms of a smaller number of passengers that experience the

delay due to an extra stop.

Consider the following numerical example. Total time loss related to a metro stop is
about 0.5 minutes. The access speed will be about 5 kms per hour. When the value of
time would be the same for walking and sitting in-vehicle, the optimal increase in the
distance 2.v/w between neighbour stations as one approaches the centre is about 83
meters. This is two times the distance a pedestrian would walk during the time loss
due to a stop, as outlined above. A similar result is found for the increase in distances

between bus stops, because time loss due to stops is of a similar magnitude.



Consider for example a line with 10 stops and a distance between the origin L and the
first stop L; of say 600 m, then the distance between the last two stops Lipand Ly,
would be 600 + 10.(83) = 1430 m. Thus, in this numerical example the stop distance

substantially increases as one moves from the fringe to the city centre.

For trains we would have larger increases in stop distances since time loss due to
stops is higher. If we would count a loss of 2 minutes per stop for a train, the increase

in stop distances as one approaches the centre would be about 333 meters.

The above calculations are based on the assumption that the value of time is equal for
in-vehicle time or access time. A general result of the literature is that access-time is
valued higher than in-vehicle time, at least with a factor 2 (see for example Wardman,
2002). This would imply that the above values suggested for the spacing of stops
should be halved. On the other hand, it may well be that passengers have a certain
dislike against stop-and-go of public transport vehicles and hence value in-vehicle
time at stops higher than in-vehicle time when vehicles are moving. This would move

the optimal stop distances again into the direction of the figures mentioned above.

The result illustrated in Table 1 implies that the metro gradually changes in its
function along the line. At the edge of the metropolitan areas it starts as a feeder with
the function of collecting passengers near their residences. It gradually moves into a
transport mode with a connecting function where high speed is important. The
shifting balance from collecting (priority on short access times) to connecting
(priority on high speeds) is reflected by the increasing number of travellers in the

vehicles.

In more refined network settings, collecting and connecting functions are usually
carried out by different vehicles. For example, busses may collect passengers near
their homes and bring them to metro stations. But also in such cases the principles
outlined here will appear to be relevant. First, busses collecting passengers to bring
them to metro stations are typical examples of public transport where demand builds
up as one approaches the station, so that stopping distances should preferably
increase. And second, irrespective of the access mode used by metro travellers, the

basic trade-off between access time and in-vehicle time remains of relevance,



implying that the basic results also remain valid for the metro part of the transport

system.

Extensions

There are several empirical reasons why this result must be used with care when
putting it in practice. First, not all passengers will use the metro until the end. If all
passengers would enter and leave at random places the first term in the total cost
function would vanish and we would simply arrive at equal stop distances to be
optimal. When for example only a share b of the passengers would use the metro to
travel to the end, and the other half would leave at random places, total costs would be
modified in two ways. First, the alighting costs would only put a burden on the share
b, and the walking costs would now also be relevant for the share (1-b) on its way to

the city centre. Thus, the modified cost function C(b) becomes:

C(b)=b.v.a (Li+Ly+...) + (2-b) w.a[(L)* + (Lo-Ly)* + (Ls-Ly)* +....]/4 (®)

The first order condition for cost minimisation implies:

(Lot1-La) = (Lo-Lu1) + 2.b.v/[(2-b).w] (9)

It is immediately clear that for b=1 we arrive at the original model formulation. When
b=.5 the result is that optimal stop distances no longer increase with 83 meter, but at

the much more moderate pace of about 30 meter (83/3).

The second reason why the model does not always comply with reality is that a metro
line may indeed have an end station D being the dominant destination of most
passengers, but that in reality it may well be that near D there are several important
destinations. City centres are not just points, but in stead they are often rather spread
out. As a result, when many travellers would benefit from a stop near D instead of in
D, the optimal stop distance formula has to be modified for stops near D so that with

in the central area the stop distances may again be smaller

3. Stop distances and density gradients.



Another point that deserves our special attention is that in urban areas the assumption
of constant density is unrealistic. Near the centre densities tend to be higher and
therefore there is a countervailing force: when the number of entering passengers
increases rapidly as one approaches the city centre, one might even expect decreasing
rather than increasing stop distances. Consider the case that the density gradient is

exponential, a result that is often found in empirical urban research (Mills and

Hamilton 1984):
Density, = exp(yL,) where y > 0 (10)

By dropping the assumption of constant density, the formula becomes more complex.
First, we have to determine the expected number of passengers entering the metro at

point O:

0.5L,
Po= [exp(r)de=" exp(0.5yL,)~ ",
. Y Y

as well as the expected number of passengers entering at an arbritrary point n:

0.5(L,+L,.,) . .
Po= [exp(r)dx = expl0.5y(Ly + Lyu)] =~ expl0.57(L oy + L))
0.5(L, ,+L,) v v

In this way the collective of travellers experiences the following number of stops:

N-1 N-1 1 1
D N=i)P; =) {—exp[0.5¢(L; +Liy)] -} (11)
i=0 ic0 ! Y

This is the first part of the cost function, the second part is the expected walking

distance of the travellers. The walking distance can be divided into two components:

= The distance contributed by travellers coming from the right of the stop:

N—10.5(L;+Li,)
z I(x —L;)exp(yx)dx
i=0 L;



= The distance contributed by travellers coming from the left of the stop:

N L;

> j (L; —x)exp(yx)dx

i=l 0.5(L;_+L;)

Thus the expected walking distance of the travellers equals:

N-1 0:5(Li+Li, ) N L

I(x —L;)exp(yx)dx + Z I(Li —x)exp(yx)dx =
i=0 L, =l 0.5(L;,+L;)
N-1 1 1 2
Z {— exp(yL;) + y—z exp(yLi,) - FCXP[0~5Y(L1 +Li)l (12)
i=0

Combining equations (11) and (12) gives the cost function C(y):

N-1
C(y) =Zv{iexp[o.5v<Li +Liy)] —i} +
i=0

N-1
1 1 2
D wiy exp(rLy) + 5 exp(yLiy) = expl0.57(L; + Ly}
iz0 Y Y Y

The first order condition for cost minimisation implies for n=1,...,N-1:

oC vV W vV W 2w
——=[- = —1exp[0.5y(L, + L, )]+[- ——Jexp[0.5¢(L, ; +L,)]+~—exp(yL,)=0
oL, 2 vy 2 v Y

(13)

It appears that when y approaches the value 0, implying a uniform distribution of
population, this formula again coincides with the old formulation. The effect of the
introduction of increasing densities is that a countervailing force starts to operate so
that stop distances may both increase and decrease as one approaches the centre.
Various patterns might be possible such as increasing stop distances; decreasing stop
distances; decreasing stop distances near the city edge followed by increasing stop
distances as one approaches the centre, etc. Figure 1 gives results for various values of

the gradient parameter y given values for v and w as used above. The figure shows
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that for low values of y stop distances increase monotonically, and for high values of y
stop distances are decreasing as one approaches the centre. An interesting finding is

that there are certain combinations of v, w, and v that yield constant stop distances.’

This result of constant stop distances is interesting because it would imply that the
constraint usually adopted in this type of modelling may follow as a result of a more
complex underlying model with varying spatial densities and focus of traffic flows on
one destination. However, it is important to note that the parameter combination for
which this result is found is rather extreme. A density gradient with y=0.377 must be
considered as very high. It would imply that the population density near the centre is
about 43 times higher than at a distance 10 kms away. In reality one expects much
flatter density gradients along public transport lines. This implies that the result of
constant stop distances as an optimal outcome in a non-uniform density city is
implausible. On the other hand, incorporation of other model elements such as the one
in equation (8) indicating that part of the metro travellers does not have the centre as
their destination would make the curves in Figure 1 flatter and this would lead to

equally spaced stops for lower values of v.

Figure 1. Distance between stops for various values of the density gradient parameter

Y.

2 To under stand why this result follows, rewrite L,+L,; as 2L,+x,, and L, ;+L, as 2L, ;-x,.; so that x,,
denotes stop distance between stops n and n+1. Then, by dividing both sides of the equation (13) by
exp(L,) we arrive at

1Y~ exp[0.57(r, )+ T2 — Y lexp[0.57 (—x, )]+ 22 =0
2y 2 vy /4

Note that this equation holds for all n=1,...,N. Thus, when a combination of v,w,y exists such that
x, equals x, for a certain n, then this holds for all n, implying equal stop distances. The existence of
such a point where x,, equals x,_; follows from Brouwer’s fixed point theorem.

11
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Finally we note that the form of the stop distance curves in Figure 1 depend on the
specification of the density function. In appendix 2 we carry out a parallel analysis for
a power function, and it appears that here other results are obtained: decreasing stop
distances at the beginning of the line, followed by increasing distances as one gets
closer to the centre. Thus, the actual spatial density pattern does have a definite

impact on optimal stop distances.

As an empirical test we collected data on public transport networks in the three largest
metropolitan areas in The Netherlands (Amsterdam, Rotterdam and The Hague). For
the railways we compared distances between stations at the edge of the city and near
the city centre. We find a slight tendency that distances between railway stations are
smaller near the edge (see Table 2). The background is partly that during the last
decades as cities expanded new railway stations have been built to serve the newly
developed residential areas and that station distances were chosen to be relatively low.
For metro we did a similar exercise; here densities near the centre are similar to those
near the edge. An interesting observation is that a more recently constructed light
metro line in the Amsterdam region that uses the same infrastructure as the ordinary
metro near the centre indeed has low stop distances at the city edge. This light metro
line thus provides a good illustration of the principle discussed in this paper, the rail
case is a weak illustration, and the ordinary metro does not comply with the principle.
We note in passing that there may still be another reason to have higher stop density

at the edge. The fixed costs of constructing a station tend to be lower there, not only

12



because land is cheaper, but also because near the centre the stations tend to be

underground and at the edge they may well be above the ground.

Table 2. Stop distances in metropolitan areas in The Netherlands: train versus metro>.

Mode Average distance Average distance Ratio of stop
between stops near  between stops near  distance at edge

city edge (metres)  city centre (metres) and near centre

Train 1500 1700 0.88
Metro 880 850 1.03
Light metro 490 850 0.58

4. Concluding remarks.

In our analysis we focussed on central city oriented public transport systems. When
the centre is the major destination, vehicles will get fuller as they approach the centre
and as a consequence stopping times will be experienced by an increasing number of
travellers. We demonstrate that optimal stop distances increase as vehicles get closer
to the centre. A countervailing force is that urban densities increase as one approaches
the centre. We demonstrate that there exist combinations of the various cost and
density gradient parameters that result in constant stop distances as an optimal
outcome. However, this is found for very steep density gradients, so that the overall
conclusion is that there are good reasons to let stop distances increase as one
approaches the city centre. This tendency will be stronger, the larger the dominance of
the centre as an origin or destination of passenger flows.

Confrontation of these outcomes with public transport systems in Dutch metropolitan
areas only gives a partial confirmation that this principle is used. For light rail stop
distances are indeed smaller near the fringe. But for metro systems no such result

could be obtained.

3 The figures in the table are based on the following railway lines: Berkel-Hofplein, Vlaardingen-
Rotterdam CS, Barendrecht-Rotterdam Zuid, Mariahoeve- The Hague CS, Voorburg-The Hague CS,

13



Of course the present analysis can be extended by a more refined treatment of travel
demand such as dropping the assumption of inelastic demand. This will make the
analysis more complex, but there is little reason to expect that the results will be

different in a qualitative sense.
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Appendix 1. Model formulation when market areas of stations are based on

minimisation of generalised travel costs.

Consider the case that travellers go to the station implying the lowest generalised
travel costs. Consider the locations L, and L,+; of two subsequent stops. Let x,, denote
the border between the market areas of both stops. Then the resident who lives at x,
will be indifferent between travelling via stop n and stop n+1. Hence: (x,-L,)w+v
+(Ly+1-Ly)z =(Ly+1-x,)W Where z is the time cost per unit distance so that

Xn= Y2[(Lyp.1tLy)-(z/W)(Lys1-Ly)-(v/W)]. This shows that the market area border
between the two stops is shifted away from the centre. Total costs are:

TC= %a xoz W
5 a (L1-x0)’ W+ ¥ a (L1-x1)* W + a (X,-X0)(-Liz) +
s a (Lo-x1)> w+ ¥ a (Ly-x2)” w + a (x2-x1)(-Loz) + ...

e T

na (LN-I'XN-2)2 w+%a (LN—I‘XN—1)2 w+a (XN_l-XN_z)(-LN_1Z) +
s a (LN'XN-I)Z w +

axn. Ly z + av(Xotx+...tXn01)

and where:

xo = Y42 [L1-(z/W)L;-(v/W)]

x1 = Y2 [LitLo-(z/W)(La-L1)-(v/W)]

Xy = Y [L2+L3-(Z/W)(L3-L2)-(V/W)]

X0 = ¥ [LaetHae(2/W)(Ln-Lav)-(v/w)]

Minimisation of total costs leads to a linear system of equations in terms of Li,..,Lx.
Applying Cramer’s rule leads to the conclusion that for the differences between stops

the same results are found as in section 2.
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Appendix 2. Stop distances given a power function density gradient.
Density, = L,,” where ¢ > 0

Thus, as distance from the centre increases with 1%, the number of customers

decreases with ¢%.

The expected number of passengers entering the metro at point O:

0.5L,
Po= Ixcdx

0

_ (0'5)c+l

c+l
Ll
c+l1

The expected number of passengers entering the metro at point n:

0.5(Ly +Lys1)

c+l c+l
Po=  [xdx =%<Ln FLy)"! —%(LM +L,)e
0.5(L, +L,) ¢ ¢

The expected number of stops the collective of travellers experiences:

c+1

N-1 N-1 c+l
S n-ipp =Y O e
i=0 i=0 +

The expected walking distance of travellers:

Two components

= Travellers coming from the right:

N-10-5(Li+Li, )

Z I(X—Li)xcdx

i=0 L.

= Travellers coming from the left:

N L
Z .[(Li - x)x°dx

=1 0.5(L;_+L;)

16



Thus,

N-10.5(L;+L; 1) L;

z I(X L;)x dx +z I(L- -x)x%dx =

i=0 =1 0.5(L; +L;)

Z{[ B s e (E R (A B L
c+1 c+2 c+l c+2 c+l c+2

The total costs to be minimised are:

05)c+1 Ly
C= V( L;+L.,)"
z ct1 ( 1+1)

Yl - e o e L)
ry c+l c+2 c+l c+2 c+l c+2

The first order condition for cost minimisation is:

L L L L
€ oy Mt baidyg et yrye gy Yt hayg e e
oL, c+1 c+1
2w c+l
c+1 "
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