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Abstract

This paper presents a model aimed at finding an efficient allocation of infras-

tructure investments in a region. The problem’s complexity is due, not only to

its combinatorial nature, but also due to the intrinsic multidimensional spatio-

temporal relationships of its variables. Furthermore, there is no explicit solution

for such NP-complete combinatorial optimisation problem; thus a heuristic op-

timisation technique such as Simulated Annealing is used to search for “good”

solutions in a finite but huge solution space. In this paper, the approach applied

in the “Xuzhou Integrated Settlement and Transportation Planning Project”,

carried out in the People’s Republic of China as a joint venture between the

Jiangsu Development Planning Commission (JDPC) and the Institute of Re-

gional Development Planning of the University of Stuttgart (IREUS), is to be

presented. This study considered projects in 18 realms of infrastructure, in 115

locations of an administrative unit with about 9 million inhabitants. The results

of the study suggest a significant gain in allocation efficiency due to the applied

method of optimisation.

Keywords: Infrastructure location, combinatorial optimisation, Simulated An-

nealing.
∗Paper submitted for acceptance for the “44th European Congress of the European Regional Science

Association”.
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1 Introduction

The investment in key infrastructure projects is of crucial importance to create favour-

able conditions for the future development in a region. In general, it will boost its

economic growth, improve its efficiency, and raise the living standards of its inhabitants.

Decision makers often assume that the higher the investment in infrastructure, the

better the prospects for development of their region will be. Budgets for investments

and land availability, in contrast, are in most cases constrained within a time horizon.

In this context the following dilemma will eventually emerge. On the one hand, a

simplistic solution that is the result of a series of ad hoc decisions and/or uncoordinated

sectoral planning approaches will certainly not lead planners and/or decision makers

to the most efficient use of the available resources simply because of the complexity of

the system1, although it might appear politically interesting for some individuals. On

the other hand, a holistic approach that takes into account simultaneously all relevant

elements and objectives set for a given planning situation will very likely lead to a

much better solution because it exploits the synergy effects among the components of

the system. This approach, nonetheless, will be more difficult to implement because

it leads to a huge combinatorial problem, whose solution exists but is probabilistically

quite difficult to find. The ratio of benefits over costs associated with the application

of such a method, however, may become so big that it is worth trying it.

This implies that planners aiming for a holistic allocation of funds should also pursue

quantitative methods that provide insights on likely consequences of their infrastructure

location decisions with regard - at least - to their area of jurisdiction.

In this paper, a holistic investment decision approach as well as the results of its

application to a Study Area will be briefly presented and discussed.

1In this case the system comprises a large number of microelements or actors (e.g. people, firms, or

government) and a number of tightly coupled subsystems (e.g. anthropogenic activities, transportation

systems; urban and suburban biotopes; water supply, waste collection and waste water systems)

interacting in both space and time. The domains of interaction in space and time are called the region

and the time horizon respectively.
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2 Methodological Foundations

2.1 The Basic Question

One of the fundamental questions to be answered in the context of infrastructure

location is:

Which of the proposed infrastructure projects assumed to require more

funds than available should be built in order to get the highest benefits

from them at the end of a predefined time horizon under given budgetary

and environmental restrictions, and when?

Analytically, answering this question implies finding an optimal solution to one of

the most difficult problems in the context of location theory. The problem’s complex-

ity is due, not only to its combinatorial nature, but also due to the intrinsic multi-

dimensional spatio-temporal relationships of its variables. This, in turn, requires the

formulation of a dynamic evaluation model that should be able to estimate the main

effects of a given set of infrastructure investments in a given planning period.

An extensive description of such a model is out of the scope of the present paper,

however, for the sake of completeness, a brief description of the main characteristics

and variables involved in the model used in the present study is presented next. For

more details, please refer to [13].

2.2 Brief Description of the Model

2.2.1 Purpose, Scope, and Notation

The purpose of the evaluation model presented below is to interlink a number of interde-

pendent dynamical sub-models (which have been previously calibrated and validated)

in such a way that they together can resemble the most relevant development aspects

of a given region and then to use this ensemble to evaluate the costs and benefits of a

given infrastructure investment decision.

Let Ω denote the spatial domain of a region or an administrative unit where the

evaluation model is to be applied. Ω can in turn be subdivided into N spatial units

whose space is denoted by Ωi so that Ω =
⋃

i Ωi,∀i = 1, . . . , N . For practical and
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analytical reasons these spatial units may be grouped into U spatial unit classes so that

a given class u is Cu = {i | Cu(i) = 0}, where Cu(·) is a set of predefined characteristics

defining the class u. By definition, spatial unit classes are disjoint sets.

Let t = 1, . . . , T denote a time point within the time horizon T predefined for the

evaluation process. The time horizon, due to planning reasons, is also subdivided into

R planning periods (e.g. 5-year interval).

Furthermore, let each spatial unit i have its economy subdivided into S economic

sectors, where a given sector is denoted by s = 1, . . . , S; and the infrastructure equip-

ment levels in i be composed of G infrastructure categories, where a given category is

denoted by g = 1, . . . , G. Finally, let its population Pi be subdivided by gender and

one year age groups; and its land use Li be characterised by l land use types.

Based on the previous definitions, the most important variables of the model are

(based on [8]).

I Investment in infrastructure in AC.

X Indicator vector (e.g. statistical information) related to an infrastructure cate-

gory. It has various additive dimensions denoted by the index p. Dimension q

denotes the implementation cost in AC.

∆X Increment in the indicator X due to investment I.

Z Evaluation of the infrastructure situation on the basis of indicators (defined in

the interval [0, 1], dimensionless).

γ Evaluation parameters (various dimensions according to each indicator Xq).

T Accessibility (e.g. average travel time in minutes).

E Employment (people).

K Economic investment in AC.

∆E Change in employment (people).

β Economic model parameters.

Y GDP of the region Ω in AC.

A Infrastructure attractiveness for in-migration (dimensionless).

Â Attractiveness for economic investment (dimensionless).

U Environmental function.
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∆P Natural population growth (people).

M Migration component of population growth (people).

η Natural population change parameters (various dimensions).

B Total available budget in AC.

α Fraction of the GDP invested in infrastructure (dimensionless).

2.2.2 Basic Equations of the Model

In general the model contains six main components, namely: 1) the population sub-

model that includes natural change and migration; 2) the infrastructure evaluation

sub-models; 3) the environmental evaluation sub-models; 4) the land use sub-model;

5) the economic forecasting sub-model; and 6) the transportation sub-model.

The system of equations described below evaluate the change in GDP of the region

given a set of infrastructure investments It = {I t
igp}. Where I t

igp denotes an identifica-

tion index of a given project p of the infrastructure category g, whereas I t
igpq represents

statistical information associated with project p, e.g. its implementation cost in spatial

unit i and time point t. The main equations are:

Y t
is = Y t−1

is + ∆Y t
is (1)

∆Y t
is ≡ ∆Y t

is

(
Kt

is, ∆Et
is, Â

t
is, βus

)
(2)

Kt
is ≡ Kt

is

(
Y t−1

is , Ât−1
is

)
(3)

Et
i = Et−1

i + ∆Et
i + E

(
I t
igp

)
(4)

∆Et
is ≡ ∆Et

is

(
Et−1

is , Kt
is

)
(5)

P t
i = P t−1

i + ∆P t
i + M t

i (6)

∆P t
i ≡ ∆P t

i

(
P t

i , η
t−1
i

)
(7)

M t
ji ≡ M t

ji

(
At−1

j , At−1
i , P t

i , ∆Et
j, ∆Et

i , L
t
i, U

t
i

)
(8)

Ât
is ≡ Ât

is

(
Zt

ig, L
t
i, U

t
ig

)
(9)

At
i ≡ At

i

(
Zt

ig

)
(10)

Zt
ig ≡ Zt

ig

(
X t

ijgp, γ
t
igp, T t

ijgĝ, P
t−1
i , Et−1

i , Y t−1
i

)
(11)

X t
igp = X t−1

igp + ∆X t
igp

(
I t
igp

)
(12)

T t
ij ≡ T t

ij

(
I t
igp

)
(13)
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Additionally, these variables should satisfy the following consistency equations:

Et
i =

∑
s

Et
is (14)

M t
i =

∑
j

M t
ji (15)

The GDP of the region at the end of the planning horizon T is therefore:

YΩ =
∑

i

∑
s

Y T
is (16)

Because of the nature of the economic sub-model—which interrelates investment,

employment, and production—the system of equations has to be solved iteratively for

a given planing period until convergence is reached. The parameters βt
us are to be

calibrated with observed past information for the region Ω.

Ceteris paribus, the estimation of the travelling time from every spatial unit i to

every j, T t
ij, given a road network N t and a transport mode, is obtained by the shortest

path algorithm developed by Dijkstra [5]—because of its extraordinary efficiency [18]—

and assuming average speeds which depend on link type only.

The evaluation of the infrastructure category g in spatial unit i in time point t, Zt
ig,

is based on indicators for this spatial unit with dependence on population, employment

and/or economic level. It may also include time accessibility T t
ij of the same and - if

necessary - other infrastructure ĝ in other spatial units j [8].

3 Problem Definition

The question stated in section (2.1) can be formalised as:
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Find I∗ so that

Φ (I∗) = max Φ (I) (17)

subject to
∑
t∈r

∑
i∈Cu

∑
g

∑
p

I t
igpq > τuY

r ∀r, u (18)

∑
t∈r

∑
i

∑
p

I t
igp > τgY

r ∀r, g (19)

∑
t∈r

∑
i

∑
g

∑
p

I t
igp 6 Br ∀r (20)

∑
t

∑
i

∑
g

∑
p

I t
igp 6 αYΩ (21)

Zt
ig 6 ξug ∀r, u, i ∈ Cu, t ∈ r (22)

Lt
i (I∗) = 0 ∀r, u, i ∈ Cu, t ∈ r (23)

I∗, I ⊂ Υ (P) , (24)

and

Y r =
∑
t∈r

∑
i

∑
s

∆Y t
is ∀r (25)

Br = αY r ∀r (26)

where Φ (·) is an economic objective function; P is the pool of infrastructure projects

proposed for Ω. τu and τg are fractions associated with the minimum investment

for each spatial unit class and investment category respectively. ξig is an exogenous

threshold value to be satisfied by the overall evaluation indicator in order to accept

a given project. This threshold is i and g specific to avoid overspending in a given

infrastructure category and/or a spatial unit class when a given level has been attained.

Finally, Υ (P) is the set of all possible combinations—with repetition—of projects in

the pool P that fulfil all constraints of the problem stated above.

The objective function Φ (·) may be set either as a scalar, i.e. it deals with only one

objective, or as a vector composed by many sub-objectives dealing with many areas of

interest separately. In this study, just for the sake of simplicity, the former approach

was adopted only for the formulation of the problem. Here the explicit objective is
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an “economic objective function” (17) dealing with the effects of the infrastructure

allocation on the region’s economy, whereas the indirect objectives —internalised as

constraints of the system—are taking into account the budget availability, environmen-

tal protection issues, the improvement of “quality of life” and the “attractiveness” due

to infrastructure investment.

The simplest long-term economic-orientated objective function2 among other pos-

sibilities (please refer to [12] for more details) to be considered for this study—given a

random allocation of infrastructure investments I and assuming that a given society

is willing to sacrifice its short term effects for those at the end of a time horizon—is

the region’s cumulative GDP gains over the time horizon. Formally it can be written

as follows:

Φ = YΩ (I) (27)

Moreover, the set of constraints given by (18) and (19) were included to ensure both an

appropriate distribution of the available investment funds among every infrastructure

category and an appropriate distribution of the available investment funds among every

spatial unit class [17]. The constraints denoted by (20) and (21) were set to define the

available investment funds as a percentage of the GDP of the region, and those given

by (22) were introduced to avoid overspending when a given evaluation threshold was

satisfied in the infrastructure category g in the spatial unit i. Put differently, they are

effectively restricting the level of supply of infrastructure to satisfactory levels. Conse-

quently, it is assumed that the higher the value of ξig is, the better the attractiveness

and the quality of life in spatial unit i. Finally, all solutions have to fulfill land use

consistency equations denoted by (23).

4 Optimisation Method

Analytically the problem stated in (17) is termed a NP-complete3 combinatorial opti-

misation problem, which is the most difficult problem to be solved in the context of

2Proposed by Wang et al. [7, 19].
3A combinatorial problem that is solvable in Non-Polynomial time, i.e. a problem that cannot be

solved to optimality because the search for an optimum requires prohibitive amounts of time [14].
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combinatorial optimisation theory and for which there is no explicit mathematical solu-

tion. In the present case, for example, if the cardinality of the set of possible projects P
is 845 (as the case study presented in section 5), then the number of feasible combina-

tions with repetition of n ≈ 500 investment projects is greater than 10100! Finding the

global optimum or optima for such an intractable NP-complete combinatorial problem

would demand eons of computing time. Therefore, one can only aim to find a “good”

solution that is close enough to the global minima (or maximum) of the objective func-

tion under given constraints. Because of this, the only alternative that can effectively

be utilised to find “good” solutions are heuristic optimisation techniques such as the

Monte Carlo Search, Genetic Algorithms (GA), Tabu Search, and Simulated Annealing

(SA), among others.

In the present study some technical considerations were analysed in order to choose

the most appropriate heuristic optimisation method for the present problem. As a

result of them, for instance, it was found that GA is not appropriate because the

cardinality of the solution of the problem, #{I}, varies from realisation to realisation,

which in turn, makes an implementation of GA more complicated than that of other

methods. Furthermore, there is no criteria available to guide regarding the size of

the representative population to be used for this huge combinatorial problem in an

implementation of GA. , the main issue regarding other optimisation methods was

their expected efficiency. Finally, SA was found to be the most advantageous for the

problem defined before. Hereafter, its main concept and then its implementation to

solve this problem will be described.

SA is a heuristic optimisation technique based on the Metropolis algorithm [10]

that simulates the evolution of a melted solid in a heat bath towards thermodynamic

equilibrium, which is noting but reaching the ground state of this solid where a crys-

talline structure is attained. When a solid reaches the ground state, its atoms have self

organised in a spatial lattice with the lowest internal energy and thus entropy (i.e. a

measure of disorder in thermodynamics); put differently, the most stable configuration

of its atoms has been achieved, one having the best mechanical properties [1].

In metallurgy, the process to obtain the ground state of a melted alloy is called

annealing. It basically consists of heating up a solid until it melts, decrease its temper-
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Table 1: Analogy between a physical many-particle system and a combinatorial

optimisation problem.

Physical Many-Particle Combinatorial Optimisation Variable

System Problem

State Solution Ik

Temperature Control parameter υ`

Energy of a state Cost of a solution Φ′(Ik)

Perturbation Generation Ik+1 = G(Ik)

Metropolis criteriona Acceptance criteria

Cooling schedule Decrement of the control parameter υ`+1 = d(υ`, δ)

a The Metropolis criterion states that the acceptance probability is estimated according to

the Boltzmann distribution, which specifies that the probability to find a system in a new

state Ik+1 is proportional to exp
(
−∆Φ′(Ik+1)

υ`

)
.

ature carefully a very small amount and then let its particles to reorganise themselves

into a stable state - at this temperature -. Continue this procedure until ambient tem-

perature is reached. If the cooling is done too fast (i.e. quenching) a polycrystalline

structure—i.e. a non-desirable meta-stable state—will be obtained.

A relevant question at this point may be — Is there a relationship between this

metallurgical process and a combinatorial optimisation akin to that mentioned above?

The answer to this fundamental question was provided by Kirkpatrick et al. [9]. They

found out that there exists a strong analogy between these apparently disparate realms

as is summarised in table 1.

Mathematically this optimisation technique can be seen as a Markov chain [14]

of finite length Λ = `(ι+ + ι−) in which a starting solution I0 is set to evolve by

introducing small systematic changes aimed at improving the value of the objective

function Φ(Ik). Here, ` is the number of consecutive transitions at a given value of

the control parameter denoted by υ`. ι+ and ι− are the number of accepted transitions

that either decrease or increase, respectively, the cost of the solution as can be seen in

algorithm (1).
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After the introduction of SA by Kirkpatrick et al. this general stochastic opti-

misation technique has been very successfully applied in a large variety of problems

belonging to different disciplines such as engineering, physics, operations research, biol-

ogy, and economics. Few remarkable examples are the design of integrated circuits [9], a

heuristic solution to the famous Travelling Salesman Problem by Lawler et al.(1988) [1],

Scheduling problems by Dige and Lund (1992) [15], telecommunication networks by

Chardaire (1993) [15], the afforestation problem by Valqui-Vidal (1993) [15], and clas-

sification of remotely sensed imagery by Bárdossy and Samaniego (2002) [2] among

many others. The success of SA in theses applications comes from the following facts:

1) it can deal efficiently with cost or objective functions possessing quite arbitrary

degrees of nonlinearities, discontinuities, and stochasticity; 2) it can process quite ar-

bitrary boundary conditions and constraints imposed on these cost functions; 3) it can

be implemented quite easily with a degree of coding quite minimal as to other non-

linear optimisation algorithms; and finally 4) the algorithm converges to the minimum

global solution if Λ → ∞ and υ` ↓ 0 , thus, finding a “near optimum” solution is

mathematically guaranteed [14] if Λ is large enough.

A disadvantage of this method is that there is no general procedure for its appli-

cation apart from its general four components shown in table 1: 1) generation of a

feasible solution or transition mechanism, 2) evaluation of the objective function and

the acceptance criterion, 3) the so-called cooling schedule, and 4) the stopping criteria.

The algorithm used in this study to optimise the problem given in (17) is presented

below.

Algorithm 1 Minimisation Algorithm using Simulated Annealing

1. Set k = ` = 0 and initialise the control parameter υ`

2. Find a random initial solution Ik and calculate its cost function fo = Φ′(Ik), set

I∗ ≡ Ik and f ∗ = fo

3. Repeat

a. Initialise ι+ = ι− = 0

b. Repeat ζ times
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Generate a perturbation of the previous solution so that Ik+1 = G(Ik)

Evaluate the cost of the new solution fn = Φ′(Ik+1)

If fn ≤ fo then

ι+ ← ι+ + 1

fo ← fn

If fo < f ∗ then f ∗ ← fo and I∗ ← Ik+1

k ← k + 1

Else

Generate a random number π ∈ unif[0, 1)

Estimate the transition probability ρ = exp
(

fo−fn

υ`

)

If ρ > π then

ι− ← ι− + 1

fo ← fn

k ← k + 1

Else reject the perturbation Ik+1

c. Estimate the acceptance ratio χ` = ι++ι−
ζ

d. Update the control parameter υ`+1 = d(υ`, δ)

e. Evaluate the stopping criteria S`(fo, f
∗, χ`, ζ, ε, ε, κ)

f. ` ← ` + 1

4. Until S` ≡ 1

5. End

It should be noted that this algorithm is conceived for a minimisation problem. A

maximisation problem such as that shown in (17) can be converted into a minimisation

problem by reversing the sign of the scalar objective function, i.e. −Φ′.

In order to apply the algorithm (1) to maximise the combinatorial problem proposed

in (17), some issues still have to be discussed.

12



4.1 Initialisation of the Control Parameter

The appropriate selection of the initial value of the control parameter υ0, given a par-

ticular problem is normally very tricky unless some additional information is employed.

The additional information used in this case is the acceptance ratio4, χ`, which is esti-

mated for each ζ−proposed random transitions. As a rule of thumb, υ0 is chosen large

enough so that χ0 = χ(υ0) is close to 1, say between the interval 0.90 to 0.98 [1]. The

physical analogy of this situation corresponds to the random arrangement of particles

in the liquid phase of a melted alloy, or in other words, a state of very high entropy.

4.2 Decrement of the Control Parameter

The second issue to be discussed is the so-called cooling schedule or decrement of the

control parameter. Based on many proposals found in the cited literature [15, 1, 2]

many experiments were carried out for this study to find out which strategy renders

the best results for the present problem. As a result of them, a two-phase decrement

of the control parameters was implemented. It is given by

υ`+1 =





δfυ` if χ` < χf

δυ` otherwise

(28)

Where δ and δf are rates of decrement in the first and second phase, respectively. The

latter is also called the “freezing” phase. Additionally, a reheating schedule may be

implemented as a way to escape from local minima when the system is in the freezing

phase.

The elapsed “time” at a constant control parameter υ` was modelled as a Markov

chain of length ζ. Its value is a function of the neighbourhood size but it is not advisable

to have values less than 100.

4This indicator is calculated as the quotient between the number of all accepted transitions and all

proposed ones. It ranges from 0 to 1. A value greater that 0.90 means that the system is in a state

of very high disorder or entropy, whilst a value close to 0 represents a state quite close to the ground

state.
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4.3 Generator of Feasible Solutions

The purpose of the function G introduced in algorithm (17) is to find a random per-

turbation in the neighbourhood of Ik that fulfils the problem’s constraints (18), (19),

(20), (22), and (23) simultaneously. The new state or solution of the system is there-

fore Ik+1 = G(Ik). Finding, however, a new state that satisfies these conditions is

computationally too expensive given the myriad of constraints of the problem at hand.

This implies that, in order to solve (17) using SA, some constraints have to be initially

relaxed but, later, penalise the objective function if a violation of a given constraint

happens. This procedure has been successfully applied in many problems reported in

the literature, e.g. in [4, 2]. Consequently, G will only retain the budget [(20), (21)],

level of supply (22), and land use (23) constraints, since the former ones will ensure

the convergence of the economic model and the remaining ones can easily be checked.

Those constraints not observed by the generator will be internalised as penalty func-

tions ψ that will be discussed afterwards.

Some definitions are necessary to define the generator. Let Pr
k ∈ Υ(P) be a set

composed of indices of those investment projects to be carried out in the planning

period r in a given solution k, so that Ik = ∪rPr
k . Furthermore, it is necessary to

define three transition modes termed Mm, m = 1, 2, 3, each of them occurring at a

predetermined probabilities πm, so that
∑

m πm = 1. These modes are designed to

meet specific purpose related with the nature of the optimisation problem at hand.

Now, this function can be written in an algorithmic way as follows

Algorithm 2 Generator function G

1. Given Ik and πm

2. Generate a random number % ∈ unif[0, 1)

3. Select the transition mode m so that min(
∑

m πm − %) > 0

4. Select randomly two indices r, r′ ∈ [1, R], and r 6= r′

5. Define the sets Lr and Lr′ as follows

Lr =




Pr

k if m = 1, 2

P otherwise

(29)
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Lr′ =




Pr′

k if m = 1, 3

P otherwise

(30)

6. Select randomly a project from the set Lr, say p̂, whose total cost is θr and call

this subset ∆Lr

7. Chose randomly a set of projects from the set Lr′ whose total cost θr′ satisfy both

the condition |θr − θr′| ≤ $ and the supply levels5. Call this new subset ∆Lr′

8. Swap these two sets so that the new state becomes

Ik+1 =





∪{P1
k , . . . ,Pr

k −∆Lr + ∆Lr′ , . . . ,Pr′
k −∆Lr′ + ∆Lr, . . . ,PR

k } if m = 1

∪{P1
k , . . . ,Pr

k −∆Lr + ∆Lr′ , . . . ,PR
k } if m = 2

∪{P1
k , . . . ,Pr′

k + ∆Lr −∆Lr′ , . . . ,PR
k } if m = 3

(31)

Where the cost of a project p̂ that belongs to region i and category g is θr =
∑

t∈r I t
igp̂q;

$ is a threshold tolerance in AC.

The purpose of mode M1 is shifting projects along time, hence it helps to determine

when the best moment to implement an investment project p̂ is. This sort of operator

is called inversion in many applications of GA [11].

Modes M2 and M3 are called mutations6 because they swap a set of projects from a

randomly selected planning period r with those belonging to another planing period

r′ or those from the pool of investment projects provided that the budget constraint,

as well as the constraint associated with the level of infrastructure supply are fulfilled.

These transition mechanisms have something in common, namely: To find which in-

vestment project p̂ should be implemented in a given planning period (the question

of where is inherent to the project itself). This goal will be achieved by introduc-

ing projects from the pool to the original list while removing others from it. These

operators have a fundamental difference though. M2 tends to increase the number of

investment projects in a given planning period whereas M3 does the contrary.

5These ensure the fulfilment of constraints (20), (21), and (22).
6This type of operator is also borrowed from GA [11].

15



4.4 Evaluation of the Objective Function

The next point to be discussed in this section is the evaluation of the overall objective

function Φ′. As it was explained before, all transition modes have a downside, i.e. they

may alter the solution Ik in such a way that at least one of the remaining constraints

[(18) and/or (19)] with the new solution Ik+1 are no longer satisfied. This implies that

in order to achieve a near-optimum solution employing the algorithm 1, the objective

function should not only maximise the economic objective function but should also

internalise remaining constraints as objectives as well. One way of doing so is the

following.

Let ϑ be the degree of fulfilment (DOF) of a given constraint to be equal to the

ratio between the proposed investment over the minimum guaranteed investment, then

(18) and (19) can be rewritten as

ϑr
u =

∑
t∈r

∑
i∈Cu

∑
g

∑
p I t

igpq

τuY r
> 1 ∀r, u (32)

ϑr
g =

∑
t∈r

∑
i

∑
p I t

igp

τgY r
> 1 ∀r, g (33)

These new variables can be seen as “social objectives” because they ensure an equitable

distribution of funds among spatial unit classes and infrastructure categories in all

planning periods. Hence, the higher the DOFs, the more equitable the distribution of

funds. Creating, however, a newly composed objective function that internalises these

constraints still requires some additional considerations.

First, since the order of magnitude of the various objectives differs considerably, it

is necessary to transform them into the common interval [0, 1], where 1 would mean

the best and 0 the worst case respectively. Second, the pure maximisation of the

DOFs will also have a drawback, namely: it will tend to favour those regions with high

productivity, which are nothing but those that already have good accessibility and

supply of infrastructure. Therefore, it will be convenient to penalise the overspending

either in a given infrastructure category or in a given spatial unit class if this occurs.

By doing so, the situation in lagging regions will tend to improve. Third, if this multi-

objective optimisation problem is transformed into a scalar one7, then the issue of the

partial substitution of one objective by others at lower values of these indicators should

7For example by an additive weighted aggregation [4, 3].
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be dealt with thoroughly in order to avoid misleading results. The procedure adopted

in this study in this respect is a technique called compromise programming [6, 3]. This

method reduces these non-desirable substitution effects among different objectives by

powering each objective to an exponent ς before they are aggregated. If ς is big

enough, say 6 or more, the substitution effect is practically negligible. Additionally,

each objective is weighted so that its relative importance is reflected by the magnitude

of its corresponding weight. Finally, since the algorithm (1) is conceived to minimise

a given objective function, the transformed scalar objective to be maximised should

be transformed into a minimisation problem. In the present study this can be easily

be done by minimising the degree of discordance with respect to the ideal objective

vector 1.

Mathematically these considerations can be written as

ψ0 =





0 if Φ 6 a1

Φ−a1

a2−a1
if a1 < Φ 6 a2

1 otherwise

(34)

and

ψc =





0 if Φ 6 b1

ϑr
c−b1

b2−b1
if b1 < Φ 6 b2

1 if b2 < Φ 6 b3

b4−ϑr
c

b4−b3
otherwise

(35)

where c ∈ {1, . . . , u, . . . , U, U +1, . . . , U +g, . . . , U +G},∀r. The transformed overall

objective is

Φ′ =

[
U+G∑
c=0

ωc(1− ψc)
ς

] 1
ς ∑

c

ωc = 1, ωc > 0, ∀c (36)

Summarising, minimising Φ′ is equivalent to finding one Pareto-optimum of the multi-

objective function ~Φ = {ψ0, . . . , ψG+U}, in which the relative importance of the objec-

tives is given [4].

Additional constraints, if necessary, can be modelled as multiplicative penalty func-

tions applied to ϑr
c. These functions are equal to one only if a given constraint is fulfilled
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and less than one if it is not. Its value is proportional to the degree of mismatch with

respect to its target value [4].

4.5 Stopping Criteria

The purpose of the stopping criteria S`(fo, f
∗, χ`, ζ, ε, ε, κ) is to ensure the convergence

of the proposed algorithm to a solution close to the “global minimum”. Since the size of

the solution space of the proposed problem is enormous, two hard-to-fulfill conditions

were set in the previous function to indicate when a quasi-optimal state has been

reached. In this study S` ≡ 1 —i.e. convergence was reached— only if the following

conditions are satisfied simultaneously: 1) the “best” value (f ∗) found has not been

further reduced by a given percentage ε during κ successive Markov chains of length ζ

and 2) the acceptance ratio χ` is less than a threshold value ε.

5 Application

5.1 The Study Area

The model reported in this paper was applied in the “Xuzhou Integrated Settlement

and Transportation Planning Project” which was carried out in the People’s Repub-

lic of China as a joint venture between the Jiangsu Development Planning Commis-

sion (JDPC) and the Institute of Regional Development Planning of the University of

Stuttgart (IREUS). The region chosen for its implementation was the so-called Xuzhou

City8.

This administrative area is located in the north-west corner of Jiangsu Province

(see figure 1) and is almost surrounded by the territories of the Anhui, Henan, and

Shandong provinces. Xuzhou City is a typical case of an important regional centre,

which, because of both its particularly favourable situation on the transportation axis

from Beijing to Nanjing and Shanghai and its hinterland population of about 50 millon

inhabitants, promises excellent perspectives for its future development. At the moment,

this region is already participating in the economic boom occurring in East China [13].

Its GDP in 2000 was 6.4 billion AC with an average growth rate of 12.2%.

8In Chinese the whole administrative area is designated — in translation — “ Xuzhou City” [13].
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Figure 1: Left: Location of the Study Area in Eastern China. Right: Spatial disaggre-

gation of the area of the Xuzhou City into spatial units and spatial unit classes.

In the year 2000 Xuzhou’s population was 8.91 million inhabitants and the settle-

ment population density was generally above 600 inh/km2. This fact together with

the continuing increase of per capita income and the need to improve the population’s

living conditions will certainly induce land use changes, specially from agriculture to

settlement or industrial areas. If the population development continues as indicated in

the last census, Xuzhou’s population is expected to reach a maximum of 9.28 million

people by the year 2017, and then decrease to 9.26 million by 2020 [13].

5.2 Data Requirements

The data employed in the proposed model was surveyed in the last national population

census held on November 2000. The spatial information was disaggregated into 115

(N) spatial units (see figure 1), which were, in turn, classified into 5 (U) spatial unit

classes because of technical and planning reasons. The characteristics of each class are

explained hereafter.

Spatial Unit Class 1 is composed of the central urban core districts that provide

supra-regional infrastructure functions [13].
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Spatial Unit Class 2 is composed of district and county towns that are already

firmly established as regional centres, hence, provide regional infrastructure func-

tions [13].

Spatial Unit Class 3 is composed mainly of the ring of spatial units surrounding the

core area and other spatial units along a possible southeast development axis up

to the airport located in spatial unit No. 73. These are the potential locations

with an expansion role for the core area either with residential, commercial or

manufacturing functions [13].

Spatial Unit Class 4 is composed of all key towns that potentially could strengthen

the development of a northwest axis. These spatial units are potential sub-

regional centres and from their presently low level of development will need to

be equipped with infrastructure for their intended future residential and manu-

facturing functions [13].

Spatial Unit Class 5 is composed of the remaining rural spatial units presently hav-

ing, and intended to retain it in the future, a principal function of agricultural

production. These areas must, of course, not be neglected by investment mea-

sures [13].

The data concerning the economy of each of spatial unit was obtained for 15 (S)

sectors and branches, namely: Agriculture; mining; food processing; textiles; chemi-

cals; machinery; construction materials; other manufacturing; water, electricity, and

gas; construction; real estate; banking, insurance, and stock market; transportation

and communications; commerce; and other services including government. The infras-

tructure investments, on the other hand, were subdivided into 6 (G) categories, which

were further disaggregated into 18 subcategories: road transportation; education (high

schools, senior secondary schools, universities and colleges); medical care (comprehen-

sive medicine, Chinese medicine, specialised hospitals, and university clinics); recre-

ation (culture- and sport-facilities, parks); residential supply (water and piped gas

supply), and environmental protection (sewage treatment plants; solid waste disposal

and open urban areas). In total, 849 economically feasible infrastructure projects were

analysed.
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Additionally, for each spatial unit, environmental and land use transfer conditions

were established. Finally, it is worth mentioning that the information used in this

study, with regard to time, was disaggregated at one-year intervals. In the case of

population information, further disaggregation into gender and one year age groups

was still needed. The time horizon for the present study was set to start in 2005 and

end by 2020 because the present five-year plan ends by the end of 2005, thus giving

enough time for the implementations of the recommendations of this study. Hence, the

parameters T = 15 and R = 3 were adopted.

5.3 Model Calibration

Each sub-module of the proposed model was calibrated and verified with past infor-

mation. The economic model, for example, was calibrated by regression analysis with

data available for the region from 1991 to 2000. The Pearson’s correlation coefficient

obtained for the various economic sectors ranged from 0.80 to 0.95 [16]. Similar ap-

proaches were used for the calibration of the parameters of the remaining equations of

the model (see section 2.2.2).

The optimisation method also required some fine-tuning of its various parameters.

This was done by a series of experiments aimed at finding the sensitivity of the pa-

rameters with regard to the convergence of the algorithm. The parameters adopted

were: ζ = 500, κ = 50, δf = 0.995, δ = 0.95 and χf = 0.40 for the cooling scheduled;

the tolerances ε = 0.01 and ε = 0.0001 for the stopping criteria; and π1 = 0.90 and

π2 = π3 = 0.05 for the generator. With regard to the overall objective function, the

relative weights between the first component and the sum of the rest were set to iden-

tical values because both are equally important in the present optimisation problem,

i.e. ω0 = 0.5 ωc = 0.5
(U+G)R

∀ c. The scaling factors for the objective functions were:

a1 = 3.70× 1012 AC , a2 = 3.95× 1012 AC and b1 = 0.9 , b2 = 1.0 , b3 = 1.5 , b4 = 2.0.

In order to run the model, additional exogenous parameters were set according

to socio-economic recommendations ([17, 13]), thus no calibration was required. For

example, the ratio between the investment budget and the government revenue, α, was

set to 0.6%; the vectors of minimum fractions of GDP for allocation of funds for spatial

units classes and infrastructure categories were set to τu = {9.0 9.0 9.0 6.0 9.0}× 10−4

21



and τg = {9.6 12.0 4.8 1.8 6.0 7.8}×10−4 respectively. The vector of relative importance

of the infrastructure categories was set to λg = {0.13 0.18 0.17 0.14 0.25 0.13}.

5.4 Results

As shown in the previous paragraph, the stopping criteria and the so-called cooling pa-

rameters were adjusted so that the optimisation algorithm conducts intensive searches

within the solution space of the present problem. The cardinality of this set is unknown,

but raw estimates indicated that it is larger than 10100, taking into account that projects

can be repeated if necessary, but always satisfying the myriad of restrictions imposed

on the problem. As a result of these parameters, about 1.5 × 106 realisations were

needed to find a “very good” solution for (Φ∗) that lies about 8 standard deviations

to the right of the mean value of the economic objective function, which was obtained

from a large sample of size (n = 4.0×105) taken from 5.5×106 Monte Carlo realisations

carried out for the same problem (see figure 2). It is worth mentioning that (Φ∗) is

also higher than the maximum value obtained during the Monte Carlo search, despite

the fact that the computational effort of the SA algorithm was about a quarter of the

latter. This demonstrates clearly the efficiency of the proposed algorithm.
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Figure 2: Distribution of the economic objective function Φ and location of the best

solution found by the proposed algorithm.
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The solution related with (Φ∗) is certainly not the global optimum, but it is good

enough for planning purposes. In fact, the probability that a well-intentioned but tra-

ditional planner would not have chosen such a solution —without the aid of modelling

an optimisation techniques— is about 1− 2× 10−7, i.e. very unlikely!

The modus operandi of the algorithm—depicted in figure 3—systematically pre-

vents the generation mechanism from getting stuck in local minima by accepting dete-

riorations in the objective function at given acceptance probabilities given by Metropo-

lis criterion. This characteristic oscillating behaviour of SA is clearly shown in figure

3. The range of these oscillations, however, tends to zero when the control parameter

approaches the value of zero. By doing so, the algorithm is compelled to search for

the optimal solution in new “valleys” of the overall objective function which eventually

leads to finding a solution probabilistically close to the “global minimum or “optima”.

Therefore, the Metropolis criterion is what makes SA a robust stochastic optimisation

technique, and definitely what characterises it from other heuristic approaches such as

the so-called hill-climbing method or the Monte Carlo search.

For any NP-complete combinatorial problem -in general- and for the present prob-

lem -in particular- there is no 100% certainty that a heuristic optimisation technique

would be able to find the “global minimum”. This shortcoming, however, can be over-

come in a pragmatic way. For instance, one can plot the results obtained for some

key variables during many optimisation runs and then analyse how consistent these

solutions are. If the sub-set of the n′−best solutions exhibit small ranges of variation

with respect to the mean of these variables, then one can conclude that any of these

solutions can be regarded as the final solution, i.e. the quasi-global minimum. Other-

wise, some parameters of the the optimisation algorithm have to be strengthened and

then this procedure has to be repeated again.

In this study the algorithm was run 20 times, from which the best five solutions were

selected for further analysis. Figures 4 and 5 depict the mean fraction of investment for

each planning period —according to infrastructure categories and spatial unit classes—

with respect to the mean GDP obtained in the best five solutions. As expected, each

solution differs from each other, however, these figures show that the structure of

investments is highly consistent among the best-five solutions. In this case, for example,

23



1x10
-7

1x10
-8

1x10
-1

1x10
-2

1x10
-3

1x10
-4

1x10
-5

Control Parameter υ

1.4

1.5

1.6

1.7
O

b
je

c
ti

v
e

 F
u

n
c
ti

o
n

 Φ
'

3.74x10
12

3.76x10
12

3.78x10
12

3.80x10
12

3.82x10
12

3.84x10
12

3.86x10
12

G
D

P
 [
×

1
0

1
1

 €
]

GDP
max
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(i.e. The GDP of the region over the planning period).

these results clearly indicate that a policy guideline for this region should state that

the education sector should be a priority for the policy makers if they want to raise as

much as possible the GDP of the region by the end of 2020. These results also point

out that the distribution of funds is uneven—specially in the first planning period—if

this objective is to be realised by 2020. In particular, spatial unit classes one and two

(i.e. the urban core area and the regional centres) appear to be the most favourable

places where to invest in order to achieve the previously stated objective.

Finally, figure 6 is presented as a complement to the previous results and to depict

the spatio-temporal distribution of the fraction of total investment in each spatial

unit and planning period within the region. This figure clearly shows that the most

favourable places for investment are both those along the main transportation axes

that pass through the region and those around the main urban core. Rural areas

receive investment funds but only the minimum stipulated by the guarantees. This

effect is mainly a result of the high migration flows originated in rural areas toward
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main settlements. These results also point out the well known effect of the accessibility

into the spatial unit’s productivity.
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6 Final Discussion and Conclusions

In a real planning situation, such as that presented before, finding the “optimum

distribution” of funds fulfilling some predefined objectives and constraints is a non-

trivial and cumbersome task. Thus, based on previous experiences including this one,

it can be stated that if a well-intentioned regional development planner does not have

a systematic planing tool to guide his or her investment decisions, the probability that

a “very good” solution is found by ad-hoc procedures is very small. Finally, as a result

of the development and application of this method, some relevant conclusions can be

presented here.

• The results of the study suggest a significant gain in allocation efficiency due

to the applied method of optimisation. Consequently, policy recommendations

based on these results will have higher probabilities of success than other possible

solutions.

• This method can be applied everywhere if the appropriate parameters and data

are available. However, much is still to be done regarding the modelling tech-

niques, sensitivity analyses, and the quality of the available data in general.
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• This method may deal with additional objective functions and /or constraints if

a given situation required it.

• Results of this method can easily be linked with a GIS system for further visual-

isation and analysis.

• Insightful recommendations can be draw by combining the proposed modelling

technique and some plausible future development scenarios of the region.

• The costs for development and application of this kind of formal model and

optimisation technique in real planning situations is minimal compared with its

potential benefits.
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[2] A. Bárdossy and L. Samaniego, “Fuzzy rule-based classification of remotely sensed

imagery,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 2,

pp. 362–374, 2002.

[3] C. C. Coello, D. V. Veldhuizen, and G. B. Lamont, Evolutionary algorithms for

solving multi-objective problems. New York: Kluwer, 2002.

[4] K. Deb, Multi-objective optimization using evolutionary algorithms, ser. Wiley-

Interscience series in systems and optimization. Chichester: Wiley, 2001.

[5] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, pp. 269–271, 1959.

[6] L. Duckstein, “Multiobjective optimization in structural design: The model choice

problem,” in New Directions in Optimum Structural Design, E. Atrek, R. H. Gal-

lagher, K. M. Ragsdell, and O. C. Zienkiewicz, Eds. New York: Eds. John Wiley

and Sons Inc., 1984, pp. 459–481.

27



[7] C. Gee, “The Treatment of Objective Functions,” 2001, Working Paper 12, Uni-

versity of Stuttgart, IREUS.

[8] ——, “The Equation System for the Xuzhou Project,” 2003, Working Paper n.n.,

University of Stuttgart, IREUS.

[9] S. Kirkpatrick, C. G. Jr, and M. Vecchi, “Optimization by simulated annealing,”

Science, vol. 220, no. 4598, pp. 671–680, 1983.

[10] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation

of state calculations by fast computing machines,” J. Chem. Phys., vol. 21, no. 6,

pp. 1087–1092, 1953.

[11] D. T. Pham and D. Karaboga, Intelligent optimisation techniques : genetic algo-

rithms, tabu search, simulated annealing and neural networks. London: Springer,

2000.

[12] L. Samaniego and P. Treuner, “A two-step optimisation procedure for integrat-

ing transportation and other infrastructure investment planning,” To appear in

Proceedings of the 2nd International Symposium Networks for Mobility. Stuttgart,

Germany Sep 29 - Oct 1, 2004.

[13] P. Treuner et al., Eds., Xuzhou Integrated Settlement and Transportation Develop-

ment Project: final report on a co-operative research project. Stuttgart: Univesity

of Stuttgart, IREUS research report, 2003, vol. 24.

[14] P. van Laarhoven and E. Aarts, Simulated annealing: theory and applications.

Dordrecht: Kluwer, 1992.

[15] R. Vidal, Ed., Applied Simulated Annealing. Berlin: Springer, 1993.

[16] Y. Wang, “The Initial Calibration of the Economic Model,” 2003, Working Paper

28, University of Stuttgart, IREUS.

[17] Y. Wang and L. Zuo, “Investigation objectives and budget constraints,” in Final

report of Xuzhou Integrated Settlement and Transportation Development Project,

C. Gee et al., Eds., vol. 22, University of Stuttgart. Stuttgart: IREUS, 2003, pp.

65–69.

28



[18] L. G. Willumsen and J. de D. Ortuzar, Modelling transport, 2nd ed. Chichester:

Wiley, 1990.

[19] Y. Zhang et al., “Locational Requirements for Economic Development in Jiangsu’s

Riverside Zone,” IREUS Research Reports No. 18, Stuttgart, Tech. Rep., 1995.

29


