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Abstract 

The robustness of the results coming from an econometric application depends to a great 

extent on the quality of the sampling information. This statement is a general rule that becomes 

especially relevant in a spatial context where data usually have lots of irregularities. 

The purpose of our paper is to examine more closely this question paying attention to one 

point in particular, namely outliers. The presence of outliers in the sample may be useful, for 

example in order to break some multicollinearity relations but they may also result in other 

inconsistencies. The main aspect of our work is that we resolve the discussion in a spatial context, 

looking closely into the behaviour shown, under several unfavourable conditions, by the most 

outstanding misspecification tests. For this purpose, we plan and solve a Monte Carlo simulation. 

The conclusions point to the fact that these statistics react in a different way to the problems posed. 
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1. - Introduction 

The main purpose of this paper is to examine the relationship between the quality of the 

sampling information and the trustworthiness of econometric results in a cross-sectional setting. We 

will focus specifically on outliers. 

 The existence of outliers is a cause of concern and uncertainty for econometricians. 

Concern, because it reveals a certain weakness in the data, which always undermines our 

confidence in the final results. Uncertainty, because any decision, that is taken in these situations, 

can end up generating undesired effects. Consequently, the attention that the subject has received is 

not surprising. The works of Hawkins (1980), Chatterjee and Hadi (1988), Belsley (1991) and 

Barnett and Lewis (1994) are some of the essential references. Furthermore, the literature on the 

subject has grown in recent years, both in volume and in details, as the use of high frequency series 

has become more generalised. The works of Chang et al. (1988), Tsay (1988), Perron (1989) or 

Peña (1990) were pioneer works in this line, which now occupies a preferential position in the 

modern analysis of time series. 

 The situation described contrasts notably with that which exists in a context of spatial 

econometrics. In the first place, because spatial data are prone to the generation of anomalous 

observations (heterogeneity, instability, irregularity,... very common terms in this area). 

Nevertheless, the references dedicated explicitly to the subject are scarce (the works of Wartenberg, 

1989, and of Haining, 1994 and 1995, are an exception). However, the treatment of outliers is much 

more mature in the specific area of spatial statistics (Cressie, 1993). 

 From our point of view, outliers are not necessarily bad, quite the opposite. We 

essentially agree with Shekhar et al. (2002) when they state that ‘Outliers have been informally 

defined as observations which appear to be inconsistent with the remainder of a set of data, or 

which deviate so much from other observations so as to arouse suspicions that they were generated 

by a different mechanism. The identification of outliers can lead to the discovery of unexpected 

knowledge and has a number of practical applications in (different) areas (…)’ (pp. 451-452). 

These observations become harmful only when they escape from the control of the analyst. Their 

presence will contaminate the sampling information, distorting the performance of the estimators, 

etc. If, on the other hand, these observations are conveniently detected and isolated, they may 

become a source of very valuable information given that they come from bad represented regions of 

the sample space. 



While the framework to be presented naturally serves well as a device to trace the impact of 

multicollinearity as well as the impact of joint presence of outliers and multicollinearity, the present 

study concentrates on the outlier problem. An analysis of the effect of multicollinearity in spatial 

cross-sectional regression appears in Lauridsen and Mur (2004), and an integrative study combining 

the two anomalities is planned to occur (Lauridsen and Mur, 2005). 

The purpose of the present investigation is to address the specific problems caused by 

outliers when performing misspecification tests in a spatial regression. In section 2 we go deeply 

into the issues raised by outliers. It is shown that these will have a noticeable impact on most of the 

statistics and may result in misleading conclusions. A simulation study is carried out in the third 

section in order to analyse the finite sample impact of anomalous data on tests of misspecification. 

The paper finishes with a section of conclusions. 

2. - Outliers in cross-sectional econometric models  

 For the moment we will limit ourselves to evaluate the impact that outliers have on the 

misspecification statistics habitually used in cross-sectional econometric models, that is, on Moran's 

I, LM-ERR, LM-EL and KR, which address the problem of spatial dependence in the error term, 

together with the LM-LAG and the LM-LE whose objective is to analyse the dynamic structure of 

the equation. To these we add the SARMA test, whose null hypothesis is composite (static structure 

in the equation and a white noise error term). In Appendix 1 there is a brief presentation. With 

respect to our work, it is important to point out that the seven tests are constructed from the 

residuals of the LS estimation. Given that these residuals react in a different way to the presence of 

anomalies in the sample, this sensitivity should appear, at least in part, also in the tests. Next we 

discuss both topics one by one. 

The impact of these points depends, in the first place, on the dimensions of the anomaly 

itself, to which must be added, in this case, its geographical location and the structure of cross-

sectional dependencies that exist in the data. To appreciate this more clearly, we can proceed with 

the following model which incorporates an outlier: 
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 The anomaly consists in a shift in the mean of observation r and its value is π. If we 

omit this fact to propose a linear equation: y = Xβ + v, we will have committed a specification error 

of not including a relevant variable in the systematic part. The consequences derived from this error 

are well known: the LS estimators are biased and the distribution of the residuals is no longer 

centred on zero: 
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where M is the matrix ( ) 1I X X 'X X '− −  
; vector Md=mr corresponds to the r-th column of matrix 

M. The special feature that we wish to introduce is either an error term with spatial dependence 

(SAR or SMA), or the presence of dynamic elements in the main equation of (1). 

In the case of residual dependence with an SAR structure, the equations are: 
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 Unlike what occurs in case (2), the shift in the mean will affect all the error terms to a 

different extent ( *
SARdπ ; that is the r-th column of the matrix [ ] 1I W −−ρ  multiplied by π). The error 

of omitting the outlier in observation r will give biased LS estimators: 
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− − β = ⇒ β = β + π   (4) 

The LS residuals will not be centred on zero: 
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 If a moving average structure dominates the error term, the results are similar. The LS 

estimators are biased and the vector of residuals also undergoes a shift: 
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where ρ is the parameter of the process and [ ]*
SMA I W dd = − ρ . The impact of the outlier is 

spatially concentrated in this case, because the vector *
SMAd  corresponds to the r-th column of the 

SMA matrix [ ]I W− ρ . Lastly, in the case of substantive spatial dependence, the impact of the 

outlier reaches to all the observations: 
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 The bias of the LS estimators is strong, as is the shift in the first order moment of the 

residuals: 
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 In spite of the above results, it is not easy to define the impact of these errors on the 

misspecification tests. Moran's I suffers a shift, of an indeterminate sign and quantity, that affects 

the first order moment1. Now, the new expected value, under the null hypothesis of no correlation in 

the error term and assuming an anomaly similar to that in (1), becomes: 

 [ ] ( )0

2 2 '
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 (11) 

where prr is the r-th element of the main diagonal of the matrix P=X(X’X)-1X’. This element 

measures the leverage of the associated observation and is bounded as: 0≤prr≤1, so that it will 
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 in normal circumstances. 



always be true that 2
rr(1 ) 0p− ≥π . However, the impact on the numerator is uncertain because the 

quadratic form '
r rWm m  is undefined. The consequences on the second order moments of the 

probability distribution of Moran's I are even vaguer. 

 The Lagrange Multipliers also undergo several adjustments. For example, the ML 

estimation of the model of (3), introducing an explicit error of not detecting an outlier in the r-th 

observation, leads to the score vector: 
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 (12) 

where l is the log-likelihood, γ the vector [β,ρ,σ2]’ and B the matrix [I-ρW]. Its expected value 

under the null hypothesis of no correlation (H0: ρ=0) will not be zero: 
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where xr  is the (1xk) vector corresponding to the exogenous variables in the contaminated point. 

The outlier, as can be seen, does not have any influence on the expected value of the second 

element of the score, corresponding to the ML estimation of ρ, that is still zero. Furthermore, the 

Hessian matrix, again under the null, is no longer block diagonal: 
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 (14) 

where sr is the r-th element of the main diagonal of W’W (if this matrix is of a binary type, sr 

corresponds to the number of contacts of the contaminated region). 



 These results will be unknown to the analyst who limits himself to working as usual. 

Particularly, to test the null hypothesis that the error term is a white noise (H0: ρ = 0) against the 

alternative of spatial dependence (HA:ρ  ≠0), the LM-ERR specified will be: 

 [ ] [ ]1A Aˆ ˆ ˆg( ) ' ( ) g( )LM ERR H
−

 = γ γ γ−    (15) 

 The superscript A indicates that we are dealing with an approximation to the relevant 

element. Really, the structure of the Lagrange Multiplier that should have been used is the 

following: 
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 To relate both statistics (LM-ERR and LM-ERRA) we may decompose the Hessian 

matrix of (14) into: 
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 Introducing the last expression into (16) we get: 
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where ( ) ( ) ( ) ( ))ˆ(H)ˆ(H)ˆ(H)ˆ(H)ˆ(H AB 1A 1A 111* γ



 γ+γγ=γ −−− −− . In short, the relationship we are 

looking for is: 

 ( ) 1A Aˆ ˆ ˆg( ) ' ( ) g( ) LM ERRLM ERR H
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= γ γ γ = − + +− 1 2lmerr lmerr  (19) 

 The term lmerr1 tends, with R, to a positive constant: 
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 On the other hand, the term lmerr2 is a quadratic form of a random vector, which 

obeys a Central Limit Theorem, ( ) ( ) ( )
D 1R g Eg N 0;H − γ − γ → γ     

, in a (now) known matrix, 

)ˆ(H* γ . The probability distribution of this quadratic form is not standard, and corresponds to that of 

a sum of mutually independent chi-squared variables, with weights λj: 

 [ ] [ ] R* 2
jj 1 jˆ ˆ ˆ ˆ ˆg( ) Eg( ) ' ( ) g( ) Eg( )H z== γ − γ γ γ − γ = ∑ λ2lmerr  (21) 

The random variables zj are independent unit normal N(0,1) variables and the elements {λj, 

j=1, 2, ...R} are the eigenvalues of the matrix ( ) ( ) ( )*L ' LHγ γ γ , where ( )L γ  is the matrix that 

factorizes the information matrix of (14): ( ) ( ) ( )H L L 'γ = γ γ  (Kendall and Stuart, 1977). 

The consequences on LM-LAG test can be followed using the model of expression (8). The 

score vector corresponding to this specification will be: 
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It should be remembered that, now, ρ is the parameter that accompanies the lag of the 

endogenous variable in the main equation of the model; B continues to be the matrix [I-ρW]. The 

expected value of the score of (22), under the hypothesis of static structure (H0: ρ=0), is again 

different from zero: 
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 The information matrix, under the null, is of the general type: 
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with W2=W’W. This matrix admits a decomposition similar to that used before, so that: 
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 The last result allows us to develop the LM-LAG test as: 

[ ] [ ] [ ]

( ) ( ) [ ] [ ]

( )

1

1 1A A *

1A

ˆ ˆ ˆ ˆˆLM LAG g( ) Eg( ) ' g( ) Eg( )H( )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆg( ) ' ( ) g( ) Eg( ) ' ( ) Eg( ) g( ) Eg( ) ' ( ) g( ) Eg( )H H H

ˆ ˆ ˆg( ) ' ( ) g( )H

−

− −

−

− = γ − γ γ − γ =γ

= γ γ γ − γ γ γ − γ − γ γ γ − γ =

= γ γ γ − −1 2lmlag lmlag

 

 (26) 

The matrix H*(γ) maintains, formally, the same structure as that already used, it being 

sufficient to update the contents of the constituent matrices ( )A ˆ( )H γ  and ( )B ˆ( )H γ . We can write: 
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where V[ρ] is the probability limit of the variance of the ML estimator of parameter ρ: 

[ ]
1

2

'X 'W 'MWX
V

−
 β βρ =  

σ 
 and pr the r-th column of matrix P. The behaviour of the term lmlag2 

is more imprecise, although the result of (21) can be adapted here: 

 [ ] [ ] R* 2
jj 1 jˆ ˆ ˆ ˆ ˆg( ) Eg( ) ' ( ) g( ) Eg( )H z== γ − γ γ γ − γ = ∑ λ2lmlag  (29) 

The variables zj are still independent unit normal N(0,1) variables and the weights {λj, j=1, 

2, ...R} are the eigenvalues of the matrix ( ) ( ) ( )*L ' LHγ γ γ , where ( )L γ  is the matrix that 

factorizes the information matrix of expression (24). 

To conclude this discussion it remains to consider the case of the SARMA test. Its null 

hypothesis is composite, so that the model must be general: 
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There are no surprises in the score: 
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where B=[I-ρW] and D=[ I-θW]. Again the presence of the outlier does not affect the term of the 

score associated with the ML estimator of θ, whose expected value is zero. The structure of the 

Hessian matrix associated with this case is complex even under the null of no spatial interaction: 
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 (32) 

In any case, that matrix can be decomposed into the sum of two matrices, as has already 

been done on other occasions: 
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 The SARMA statistic can finally be expressed as: 
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The structure of the matrix H*(γ), and that of the matrices A ˆ( )H γ  and B ˆ( )H γ  that form it, 

remain the same. The SARMA statistic, wrongly specified because it does not reflect the anomaly 

of the r-th observation, corresponds to: 

 ( ) 1A Aˆ ˆ ˆg( ) ' ( ) g( ) SARMASARMA H
−

= γ γ γ = + +1 2sarma sarma  (35) 

 The term sarma1 has the same probability limit as that corresponding to lmlag1: 
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 (36) 

The term sarma2 is again a quadratic form of a vector of standardised normal variables on a 

diagonal matrix with elements {λj, j=1, 2, ...R}, so that: 

 [ ] [ ] R* 2
jj 1 jˆ ˆ ˆ ˆ ˆg( ) Eg( ) ' ( ) g( ) Eg( )H z== γ − γ γ γ − γ = ∑ λ2sarma  (37) 

These weights {λj, j=1, 2, ...R} coincide with the eigenvalues of the matrix 

( ) ( ) ( )*L ' LHγ γ γ , where ( )L γ  is the matrix that factorizes the information matrix of (32). 

3. - Monte Carlo results 

 In the previous section, the impact of having low quality sampling information on the 

misspecification statistics has been discussed. That results allow us to affirm that the presence of 

outliers hinder the performance of these statistics. Particularly, it has been shown that the size and, 

surely, also the power of the tests are affected by a downwards bias. 

 Two models have been simulated: a static one with a structure of residual dependence 

and the other, dynamic with a white noise error term. The model simulated in the static case has a 

simple design: 

 R,....,2,1r;vxy rr110r =+β+β=  (38) 

The error term vt responds to the different cases that have been planned, SAR or SMA, 

including outliers: 
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where 2
εσ  has been set equal to 1. The d term stands for the dummy variable used in (1) and π it is a 

parameter that defines the outlier. The parameters βj (j=0,1,2) where set to 10. Furthermore, three 



systems of regions, always of a regular shape, and of sizes 25, 100 and 225, have been introduced as 

represented in Appendix 2. The matrix W has been specified accordingly, row-standardised. Only 

positive values of parameter ρ, ranging between 0 and 0.99 have been simulated and the number of 

simulation is 1000 for each case. 

Different combinations of location and value of the outlier have been simulated. For the 

moment, we have only developed two possible localizations for the anomaly, peripheral or central. 

The former means intervening in the regions 25, 100 or 225, depending on the system simulated, 

while in the latter the observations 13, 45 or 112 have been altered. Lastly, the value of the outlier 

depends on the dispersion of the vector ε obtained previously. Concretely, if we denote the standard 

deviation of this vector by ˆ εσ , parameter π has been set equal to 0 (there is no anomaly), 2.5 ˆ εσ  

(the anomaly is small), 5 ˆ εσ  (the anomaly is relevant) or 7.5 ˆ εσ  (the anomaly is very high). For ease 

of exposition, we only present the results corresponding to the case of a big outlier (π equal to 

7.5ˆ εσ ) and a central position. 

 Finally, the dynamic model simulated can be expressed as: 
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The specifications about the different elements that intervene have been maintained in this 

case. 

The principal results obtained are gathered in Table 1, dedicated to the empirical size, and in 

Figures 1 to 7 which represent the estimated power functions of the tests. 

TABLE 1: Empirical size of the tests for a theoretical significance level of 0.05.(*) 

R=25 R=100                                           R=225 
 No Outliers 1 Outlier No Outliers 1 Outlier No Outliers 1 Outlier 

Moran’s I 0.034 0.009 0.043 0.029 0.050 0.047 
LM-ERR 0.044 0.014 0.049 0.030 0.048 0.049 
LM-LAG 0.068 0.033 0.047 0.025 0.061 0.061 
LM-EL 0.044 0.027 0.054 0.024 0.052 0.050 
LM-LE 0.070 0.017 0.054 0.024 0.063 0.065 
SARMA 0.053 0.007 0.048 0.021 0.052 0.057 
KR 0.061 0.033 0.050 0.035 0.050 0.051 

 (*) 95% Confidence interval for p (probability of rejecting the null hypothesis), around the theoretical value for the 

case of 1000 replications, is 0.036 < p < 0.064. 



 The results reflected in Table 1 do not contain surprises. As we said, the presence of 

an outlier in the sample has harmful effects on the size of the statistics, especially when the sample 

is small and the outlier is big. Its influence is evident in samples of 25 observations where the 

empirical size frequently falls below 1.0% due to the presence of the outlier. The KR statistic seems 

to be the most robust to their presence, while the different Lagrange multipliers show a greater 

sensitivity, sharpened in the Moran’s I. The situation improves slightly using 100 observations, the 

empirical size is reduced to roughly a half from the theoretical one of 5.0%, and the impact of the 

outlier goes unnoticed in a sample made of 225 data.  

 The results corresponding to the estimated power functions are presented in graphic 

form in Figures 1 to 7 (the details can be obtained from the authors upon request). 

 Some aspects of these graphs were already well known beforehand. The weakness of 

the spatial dependency tests in a context of small samples is one of them. Another is the worsening 

of the performance of the tests when a moving average is used in the alternative hypothesis. Neither 

is the greater reliability of Moran's I for detecting dependency processes in the error term nor the 

weaknesses of the KR test, especially in SMA structures (Florax and de Graaff, 2004), anything 

new. The figures also illustrate the low level of specificity of the traditional statistics which react to 

all types of spatial dependence. This is the raison d'être of the robust Lagrange multipliers (LM-EL 

and LM-LE). 

 Our results ratify the non-neutrality of outliers. The impact appears to be, in all the 

cases, a loss of power. The most significant falls occur when the sample is small and when the 

process simulated in the alternative hypothesis is an SMA. In such circumstances, the KR and LM-

EL tests do not reach the minimum percentage of rejections of 50% even using autocorrelation 

coefficients higher than 0.90 (see Figures 3 and 4). Furthermore, the KR test appears to be the most 

robust to the presence of outliers when the dependency structure is an SAR (no matter residual or 

substantive). 

 The distortions created by outliers are less important when there is substantive 

dependence in the equation. In this case, as can be seen in Figures 5, 6 and 7 the power cuts 

suffered by the tests are reduced. The LM-LAG test is the one that performs best in this situation, 

although its superiority weakens as the sample size increases. With a sample of 225 observations, 

the differences between this test and the LM-LE (robust to misspecifications of the alternative 

hypothesis) are inappreciable. 



 Lastly, another aspect, that we wish to underline, is that, although it seems evident that 

the incidence of the outliers is reduced as the sample size increases, certain dysfunctions in the 

performing of these tests are still observable when using a sample of 225 observations. It should be 

borne in mind that only one observation has been contaminated in spite of increasing the sample 

size, which does not seem very reasonable in real circumstances: as the number of observations 

increases, the probability of there being a larger number of outliers also grows. This possibility goes 

beyond the objectives of the present paper, although it forms part of the agenda for future 

investigation. 

4. - Conclusions and final remarks  

 The objective of this paper was to examine the influence of atypical observations on 

the misspecification tests more often used in a context of spatial econometric modelling. 

 The analytical approximation resolved in the second section allows us to affirm that 

the probability distributions corresponding to the statistics used are influenced by the impact of 

outliers. These distributions tend, in the first case, to be displaced to the right of the probability 

space. The worst situation combines a large outlier and a high leverage in the exogenous variables. 

This outline corresponds to an observation that is anomalous both in the space spanned by X and in 

vector y. A high leverage implies that the observation tends to take control of the regression forcing 

it to pass through its neighbourhood. As a consequence, the associated residual will be negligible 

(first error: the residual should be important enough to warn of the anomaly) at the expense of 

distorting the informational content supplied by the other observations (second error: the net of 

spatial dependencies is distorted). 

 The simulation carried out in the third section has served to corroborate some 

hypothesis. It was foreseeable that the impact of the outliers would maintain an inverse relationship 

with the sample size. Neither is it surprising that the same occurs with respect to the parameter of 

spatial dependence. However, unexpected results have also been observed. For example, the fact 

that the anomalies in the data have less incidence, when they arise from a process of substantive 

spatial dependence. The sensibilities shown by the different statistics is another aspect to highlight, 

including the apparently robust behaviour of the KR statistic.  

 Finally, we wish to insist that this paper is nothing more than a first approximation to 

the problem of outliers in cross-sectional econometric models. We have analysed a limited number 

of combinations with which we have been reaching a few conclusions. Nevertheless, the cases that 



remain to be studied (increasing number of outliers, different geographical locations, characteristics 

of the variables, joint impact of multicollinearity and outliers, etc) provide even more interesting 

topics which merit further investigation.  



APPENDIX 1: Misspecification tests used. 

The tests used always refer to the model of the null hypothesis; that is, of the static type such 

as: y = Xβ + u. This model has been estimated by LS, where 2σ̂  and β̂  are the corresponding LS 

estimations and û  the residual series. The tests are the following (see Anselin and Florax, 1995, or 

Florax and de Graaff, 2004, for details): 
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SARMA Test: 
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Moreover, 2
1

ˆ ˆˆR (β'X'WMWXβ) / ˆTJρ−β = + σ  and M=[I-X(X’X)-1X’]. Furthermore, ê  is the 

vector of residuals from the auxiliary regression of the Kelejian-Robinson (KR) test, of order 

(hRx1), Z is the matrix of exogenous variables included in the last regression and γ̂  the estimation 

obtained for the corresponding vector of parameters. 



As is well known, the asymptotic distribution of the standardised Moran’s I is an N(0,1); the 

two Lagrange multipliers that follow, LM-ERR and LM-EL, have an asymptotic )(12χ , the 

distribution of the KR test is a 2( )χ m , with m being the number of regressors included in the 

auxiliary regression. The three final tests also have a chi-square distribution, with one degree of 

freedom in the first two, and two degrees of freedom in the SARMA test. 



APPENDIX 2: Systems of regions used in the simulation 

R=25 
 

1 2 3 4 5 
6 7 8 9 10 

11 12 13 14 15 
16 17 18 19 20 
21 22 23 24 25 

 
R=100 

 
1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 
21 22 23 24 25 26 27 28 29 30 
31 32 33 34 35 36 37 38 39 40 
41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 
61 62 63 64 65 66 67 68 69 70 
71 72 73 74 75 76 77 78 79 80 
81 82 83 84 85 86 87 88 89 90 
91 92 93 94 95 96 97 98 99 100 

 
R=225 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 

 

 The contaminated regions appear in bold on grey ground: 13, 45 or 112 in the case of 

central location or 25, 100 or 225 if it corresponds to a peripheral location. 
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Figure 1: Size and power of Moran’s I test under outliers. 
 Residual dependence. SAR Process Residual dependence. SMA Process Substantive dependence. 
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Figure 2: Size and power of LME-ERR test under outliers 
 Residual dependence. SAR Process Residual dependence. SMA Process Substantive dependence. 
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Figure 3: Size and power of KR test under outliers 
 Residual dependence. SAR Process Residual dependence. SMA Process Substantive dependence. 
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Figure 4: Size and power of LM-EL test under outliers 
 Residual dependence. SAR Process Residual dependence. SMA Process Substantive dependence. 
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Figure 5: Size and power of LM-LAG test under outliers 
 Residual dependence. SAR Process Residual dependence. SMA Process Substantive dependence. 
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Figure 6: Size and power of LM-LE test under outliers 
 Residual dependence. SAR Process Residual dependence. SMA Process Substantive dependence. 
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Figure 7: Size and power of SARMA test under outliers 
 Residual dependence. SAR Process Residual dependence. SMA Process Substantive dependence. 
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