~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Leung, Yee; Ge, Yong; Ma, Jianghong; Wang, Jinfeng

Conference Paper

Measurement Errors and their Propagation in the
Registration of Remote Sensing Images

43rd Congress of the European Regional Science Association: "Peripheries, Centres, and Spatial
Development in the New Europe”, 27th - 30th August 2003, Jyvaskyld, Finland

Provided in Cooperation with:
European Regional Science Association (ERSA)

Suggested Citation: Leung, Yee; Ge, Yong; Ma, Jianghong; Wang, Jinfeng (2003) : Measurement
Errors and their Propagation in the Registration of Remote Sensing Images, 43rd Congress of the
European Regional Science Association: "Peripheries, Centres, and Spatial Development in the New
Europe", 27th - 30th August 2003, Jyvaskyla, Finland, European Regional Science Association (ERSA),
Louvain-la-Neuve

This Version is available at:
https://hdl.handle.net/10419/116249

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/116249
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Study on Registration of Remote Sensing Image with Measurement Errors and Error Propagation

Measurement Errors and their Propagationin

the Registration of Remote Sensing I mages

YeeLeung!, Yong G&* 4, Janghong Ma®, Jnfeng Wang?

1. Department of Geography and Resource Management, The Chinese

Universty of Hong Kong, Shatin, Hong Kong.

E-mal: yedeung@cuhk.edu.hk

2. State Key Laboratory of Resources and Environmental Information
System, Institute of Geographic Sciences & Natura Resources

Research, Chinese Academy of Sciences, Beijing 100101, China

3. Ingtitute for Information and System Science, Faculty of Science,

Xi” an Jaotong Universty, Xi’ an 710049, China

4. Laboratory of Remote Sensing Information Sciences, Institute of

Remote Sensing Applications, CAS, Beijing 100101, China



Study on Registration of Remote Sensing Image with Measurement Errors and Error Propagation

Abstract

Reference control points (RCPs) used in establishing the regression model in the
registration or geometric correctionof remote sensing images are generally assumed to be
“perfect”. That is, the RCPs, as explanatory variables in the regression equation, are
accurate and the coordinates of their locations have no errors. Thus ordinary least squares
(OLS) estimator has been applied extensively to the registration or geometric correction
of remotely sensed data. However, this assumption is often invalid in practice because
RCPs always contain errors. Moreover, the errors are actually one of the main sources
which lower the accuracy of geometric correction of an uncorrected image. Under this
situation, the OL S estimator is biased. It cannot handle explanatory variables with errors
and cannot propagate appropriately errors from the RCPs to the corrected image.
Therefore, it is essentia to develop new feasible methods to overcome such a problem.

In this paper, we introduce the consistent adjusted least squares (CALS) estimator
and propose a relaxed consistent adjusted least squares (RCALS) method, with the latter
being more general and flexible, for geometric correction or registration. These
estimators have good capability in correcting errors contained in the RCPs, and in
propagating appropriately errors of the RCPs to the corrected image with and without
prior information. The objective of the CALS and our proposed RCALS estimatorsis to
improve the accuracy of measurement value by weakening the measurement errors. The
validity of the CALS and RCALS estimators are first demonstrated by applying them to
perform geometric corrections of controlled simulated images. The conceptual
arguments are further substantiated by a real-life example. Compared to the OLS
estimator, the CALS and RCALS estimators give a superior overal performances in

estimating the regression coefficients and variance of measurement errors.

Keywords. error propagation, geometric correction, ordinary least squares, registration,
relaxed consstent adjusted least squares, remote sensing images.
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1 I ntroduction

Remote Sensing technologies have been widely applied to monitor natural and
marnmade phenomena such as desertification, land cover changes, coastal environments
and environmental pollutions (Chen and Tong, 1998). However, remote sensing devices
have limitations such as the restrictions on spatial, spectral, temporal, and radiometric
resolutions. Furthermore, the data acquisition process is affected by factors such as
rotation of the earth, finite scan rate of some sensors, curvature of the earth, non-idesl
sensor, variation in platform altitude, attitude, velocity and etc. (Richards and Jia, 1999).
Errors corrupting the data acquisition process may be associated with both the attribute
value and locations of the attribute values. Therefore, it is necessary to remove as least
some of these errors prior to anaysis (Jensen, 1996; Richards and Jia, 1999; Townshend,
et a., 1992). One important preprocessing is geometric correction (image to map) or
regidration (image to image) of remotely sensed data.

The purpose of geometric correction or registration is to explicitly determine the
mapping polynomials by the use of reference control points (RCPs) and then determine
the pixel brightness value in the image (Jensen, 1996, Richards and Ja, 1999). The
method of ordinary least squares (OLS) is most frequently used in this preprocessing. If
accurate registration between images is not achieved, then spurious differences will be
detected (Townshend, et al., 1992). That is, instead of comparing properties of the same
location in different images, we might mistakenly compare properties of different

locations instead. Accuracy of the corrected image, of course, will have direct impact on
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the resullts of classfication, change detection and data fusion.

In registration or geometric correction, the main uncertainties affecting their
accuracy include (1) quality of the uncorrected or corrupted image; (2) size and
arrangement of RCPs; (3) proficiency of the operator; (4) error from the model of
geometric correction and (5) error from the RCPs. The effects of the first four factors on
image classification and change detection have been studied in the literature (Congalton
and Green 1999; Janssenand Van der Wel, 1994; Dai and Khorram, 1998; Flusser and
Suk, 1994; Moreno and Melia, 1993; Shin, 1997). Though error of the RCPs, i.e. factor 5,
isone of the main sources affecting the accuracy of geometric correction for uncorrected
image (as depicted in Figure 4), it has seldom been studied (Congalton and Green, 1999;
Townshend et al., 1992; Carmel et al, 2001; Dai and Khorram, 1998). Since RCPs mainly
come from GIS and remote sensing images, errors in the RCPs are essentially due to
errors in data processing and data analysis (Lunetta, et a., 1991). Such errors will then be
propagated to the corrected image during the process of registration or geometric
correction.

Though the most effective way to improve the accuracy of geometric correction is
through ground survey with differential GPS, it is generally too costly for implementation.
Statistical procedures, such as regression are usually employed as a surrogate. In this
context, common questions for registration or geometric correction are: (1) When the
reference control points contain errors, how would these errors affect the regression

coefficients and the accuracy of registration? (2) How large an error in the explanatory
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variables is negligible? (3) How to correct the errors contianed in the explanatory
variables in order to improve the accuracy of registration? (4) Most importantly, how to
propagate errors in the RCPs to the corrected image and measure it accordingly? Since
the OL S estimator of the regression coefficients is biased when the explanatory variables
have errors (see section 2.2 for details), registration based on OL S does not appropriately
propagate errors from the RCPs to the corrected image. Though researchers such as
Buiten (1988, 1993) employed a variance-ratio and data- snooping test for the residuals
calculated in the registration, error propagation and compensation of errors in the RCPs
have not been discussed. It iswell known that error propagation plays a crucia role in the
uncertainty about remotely sensed images and the RCPs, as explanatory variables in the
regression equation, always contain errors. Therefore, it is essential to develop new
feasble methods to handle such a problem.

In this paper, we only concentrate on error analysis in image-to-image registration.
We introduce the consistent adjusted least squares (CALS) estimator and propose a
relaxed consistent adjusted least squares (RCALS) method for registration. These
estimators have good capability in correcting errors contained in the RCPs, and to
propagate correctly errors of the RCPs to the corrected image with and without prior
information. The objective of the CALS and our proposed RCALS estimators is to
improve the accuracy of measurement value by weakening the measurement errors.

We first introduce OLS and CALS in Section 2 and then propose RCALS for better

performance. In section 3, we employ the CALS and RCALS estimators to perform the
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registration of simulated images, and compare the results with OLS. A real-life example
is then used to further substantiate the conceptual arguments in section 4. We then

conclude our paper with a summary and viewpoint in section 5.

2 TheRegression Model and Estimation M ethods

In this section, we first introduce a multiple linear measurement error (ME) moded,
also called errors-in-variables model in statistics, in which both the response variable and
explanatory variables contain measurement errors. Limitations of the classical estimation
method, i.e. the OLS method, are identified. Then, a flexible approach, the CALS, is
introduced as a more appropriate method to handle errors in variables. The RCALS,
which can overcome the shortcomings of CALS, is then proposed for more flexible
applications. Finaly, we examine the issue of error propagation and give a significance

test.

2.1  MultipleLinear ME Model

In statistics, the standard multiple linear ME model assumes that the “true’ response h

and “true’ explanatory vector ? arerelated by
h=b,+?"R. (1

Due to measurement errors, we can only observe variables y and x . That is,

y=h +e,
X=?+d,

2

where the observed variables are x and vy ; the unobserved true variables are ? and nh,
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and the measurement erorsare d and e.
As always been done, withb, =i - 7 " 8, equation (1) becomes i-F=(?- 7)™}
To facilitate our discussion, we assume in this paper that al data are centered. Thus, for a

sample of 9ze n, equations (1) and (2) become

Y =? R +e,
X=? +D. (3)
Let
&, 0 gee a6 IO @0
g ; 9093 - g _1 XOQ. :l DOQ. :l
S5 %za .5 Sp &g

where x, T R?, B=(by,--,b,)T, 2,

and d, are p-dimensional vectors, while h,, y., and

e are scaars. The measurement errors (d/,e,) are independent identically distributed

(i.1.d.) random vectors, which are independent of the true vaues ?, .

2.2 OL S Esimator

If we ignore the measurement error when regressing Y on X, the OLS estimators of 12
and s * are respectively
Bos = (XTX) XY, 4
Sos =5 Y o= X(XTX) XY . ®)
It should be noted that the above two expressions are no longer consistent estimatorsof 2
and s * (Wansbeek and Meijer, 2000). In fact,
Y=?R+e =XB+e, where e=e-DR. (6)

e shares a stochastic term D with the regressor matrix X (see (3)). It impliesthat e is
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correlated with X and hence E( | X) t 0. This lack of orthogonality means that a crucial

assumption underlying the use of OLSisviolated.
2.3 CALSEsimator

We consider the case that there is a sufficient number of restrictions on the
parameters for model identification. These restrictions can be combined with the statistics
from OLS to yield a consistent estimator of the model parameters. This estimation
method is called consistent adjusted least squares (CALS) (Kapteyn and Wansbeek, 1984;
Wansbeek and Meijer, 2000).

We now consider equation (3). Assumethat rows of D arei.i.d. with zero expectation

and covariance matrix S,, and are uncorrelated with ? and € , i.e, E(D|?)=0 and
E€|D)=0. Let S, °1?™ 3#®S, , then S, ° 1XTX %4®S, . It can be shown
(Wansheek and Meijer, 2000) that
Bos =(XTX)IXTY 3#4® RB-S ISR = (1-Si!S,)R. 7
The bias of the OLS estimator of B is
wo -S 'S R. 8
When there is no measurement error, S, =0, itimpliesthat w =0 and OLSis consistent.
In addition,
Sas =n_—1pYT[I Lo X(XTX) XY Wi® s Z+RTS,SSR3s2 9
can be obtained.

¢ Prior Information Known
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If S, were known we can obtain aleast squares estimator that is adjusted to attain

consistency, denoted by CALS1 (Here CALSL is used to distinguish it from the CALS
estimator without prior information, which is denoted by CAL S2)
Bens = (- SES,) 1R Wi® R (from (7)) (10)
or
Bens =(Sx -Sp) ISy, ¥Wi® R, (11)

A

where S, ° 1XTY . Thus, the CALS estimator 3., g, Can obtain better regression
n

results than OL S when there are measurement errorsin variables,
¢ Prior Information Unknown
In practice, S, israrely known. We adopt the following equation to estimate the
regression coefficients, denoted by CALS2.
Bense =(1- S Bos, (12)
if Sy =s21, wherel is the minimum eigenvalue of S, i.e. the minimum solution of
|S-1 1'|=0and Sisdefined as

YYXO

; s (13)
XTY  XTXg

As an illustration, we smulate one set of data (listed in Table 1) to compare the

performances of equations (4), (10) and (12). In this experiment, we give the true value of

a.0 050

regression coefficients B =(R,, R,, B,)" =( 2, 3)"and thetruevalueof S, = -

The objective of this experiment is to investigate the performances of OLS, CALSI,

CALS2. b, ,i =0,1, 2 are the estimators of regression coefficients
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From Table 2, we can observe that the estimator of CALS2 obviously outperforms
the others However, equation (12) is obtained under the assumption that S, =s 2 . This
assumption is restrictive in many practical applications. In order to overcome this
disadvantage, a new estimator, called the relaxed CALS (denoted as RCALYS), is

proposed in the fallowing subsection.

24  TheReaxed CALS(RCALS) Estimator

We relax the assumption S, =s 2l into amore genera relationship: S, =t 1, where
t>0 isscaar. That is, s 2and t are not necessary equal to each other. According to the
definition of S,, S, =tl implies that all errors in the explanatory variables are
independent and have the same variance t. It should be noted that the CALS estimator of
Ris

B(®) =Beas
=(1- $0p) Bous

=(Sx -t |)_1Sx (S_xlsxv)
=(Sx - t1) 'S,y

(14)

Whent isvery smdl, (14) can be expressed approximétively as
@(t) =(Sy +t1)Syy . (15)
According to the idea of orthogona regression, we can establish the objective

functionf (t) asfollows:

_ (Y-XB(®)T(Y-XB(1))
T +RMRY)

f(t) (16)

We thus select t, as the estimator of variance s 2 of al explanatory variables, such

10
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that f(t) is minimized. The optimization problem reduces to the solution of the

fallowing quadratic equation
a,+a,t+a,t?=0, 17)

where

a,°-2Ca'b- Ca'a,

a,® 2C,b"'b- 2C,a"a,

a,°Chb'b+2C,a'b, (18)
a°y- XB.q,

b° XSy .,

CO ° 1+ SI(YS-XZSXY’

Cl ° 2S-;—(Y S-)g-SXY’

CZ ° SI(YSXY .

It can be shown that a solution to equation (17) is positive and the other is negative.

Only the positive solution { can be selected asthe estimator of s 3. Thuswe have

=L(Y - XBos) (Y- XBgs) - R - 1S8) B s (19)

25  TheError Propagation Mode

One of the great advantages of the CALS and the proposed RCALS estimators over
OL S isthat they can propagate errors. Having an error propagation mechanism is crucial
to the analysis of remotely sensed data. Now we can rewrite the variance estimators of
measurement errors of the explanatory variables and response variables for these

esimators as follows:

OLS sZ=7LYT,- X(XTX)'XT]Y. (20)

11
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/\

’ f S = 2|
CALS: s } 5 2 .I D. > . (21)
( e)OLS-BOLSSD oLS! |f SD |Sk0an
_I' 35 :f
RCALS: } Se=n(Y- XéOLS)T(Y - X[gOLS)_ fé-&_s(l - fs_xl)_lngLS, (22)
[
f S, =tl .
f o

From equations (21) and (22), we can know that CALS and RCALS estimators can
obtain the variance estimators of measurement errors and propagate the errors in the
explanatory variables to the response variable according to the law of error propagation
from equatiors (1) and (2). OLS, on the other hand, does not have such a capability.

Subsequently, we can obtain the estimator of variance of the response variable as follows:

=R'S,R+s2
(23)
=R'S,R-R'S, R +s 2
where S, isthe variance matrix of the measurement vector of X.
Here, we have two Stuations:
(& When ? is a deterministic variable, we can obtain the variance estimator of the
response variable as
202 _ 02
S, =S,- (24)

(b) When ? is a random variable, the variance estimator of the response variable is

obtained as

SAs =r§T(SX 'éD)rg +SA62. (25)

26  The Significance Test

We answer here the question on how small an error in the explanatory variables can

12
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we ignore. In other words, we need to have a significance test on the variances of the

measurement errors.

2
e

Under the assumptions: S, =s?2 and s;=sZ=s?, it can be proved that the
approximate relationship s 2 ~ N(s %,2s *) holds (Kapteyn and Wansbeek, 1984). In
order to test whether s ? differs significantly from zero, we first specify a sufficiently
small postive s ; > 0. The one-side significance test is structured as follows:
Ho: S?£sf -4® H;:s?>s}
When the ineguality S 23 (1++/2U, )s 2 holds (where U, isthe a upper quantile of
the standard normal distribution), H, isrejected at the significance level a . We can say

that there are significant measurement errors in the regression variables under the

assumption S, =s 21 .

3 Empirical Analysisin the Registration of Simulated | mages

In the remaining part of this paper, we discuss how to apply CALS and RCALS
estimators to improve the accuracy in registering simulated images and remotely sensed
data. For validating the CALS and RCALS estimator, we first employ some simulation
studies to examine the characteristics and effects of RCPs with errors on the accuracy of
registration in this section. We then apply the method to areal-life remotely sensed image
in the next section.

Registration generally includes two procedures: (a) a registration being a geometric

rearrangement of the pixels; (b) aresampling of the pixel values on the basis of the new

13
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pixel arrangement (Buitenand Clevers, 1993). Procedure (&) mainly consists of two
methods: interpolation and trend function. Interpolation is a mathematical treatment of
the transformation and is totally deperdent on the control points. Trend function is more
or less a statistical approach to the adjustment of the residuals of the control points by
OoLS

After the geometric rearrangement of two “images’ has been performed in procedure
(@), a resampling of the pixel values will be made on the basis of the new pixe
arrangement. Procedure (b) mainly consists of nearest neighbour resampling, bilinear
interpolation or cubic convolution. In this paper, we adopt the interpolation method and

neighbour resampling.

3.1 Mappingregisration into Polynomials

It is assumed that a map (or an image) corresponding to the concerned image is of
higher level of accuracy geometrically. Location of a point on the map is defined by
coordinates (g,,d,)and that of the image is defined by coordinates (m,,m, ). Suppose

that the two coordinate systems can be related viaapair of mapping functions f and hso

that

im=1(g,.,9,),
|

2
i m, =h(g,.0,) . (29)

Though explicit forms for the mapping functions in equation (26) are not known, they are
generally chosen as simple polynomials of first, second or third degree. For example, in

the case of first order polynomid, the pair functions are expressed as

14
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z, =m, =by +by,0, +b,,09,,
Z,=m, =bg, +by,9, + 05,0, .

(27)

N
e
T

Let 2 =(g,, 9,) and By =(by, by)", i =1 2. Then equation (27) can be written

3 _ T
[ 2,=bg+? By,

! (28)
f 2,70 +? B, .
For the case of second order polynomial, the pair functions are
[ z=m =bg+b;g, + b9, +b30,9, + b,0s + b519)2/ , (29)

'TI' Z, =M, =bg, +0,0, +b,0, +b,0,0, + 0,07 +bg, 05 .

If we let ?=(g,, 9y, 9,9,, 9z, 95)" and By =(by, by,...bg)" , i=1 2, then the
above eguations can till be expressed into (28).

Thus, based on the OLS, CALS, RCALS estimators discussed above, we can obtain

the corresponding estimators of the regression coefficients and variance estimators of the

measurement errors.
3.2  Smulation Study

The approach taken in this paper combines forma mathematical modeling with
simulation and is based on an error with specified properties (Arbia, et a., 1999). The
simulation study uses artificially generated images with specified image properties. The
purpose of using images and errors with simple but well defined properties is to better
understand the characteristics and effects of CALS and RCALS estimators on the
improvement of accuracy of geometry correction in a controlled environment. The

problem with using real images (rather than artificially generated images) is that real

15
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images usually have complex structures and real errors are usually not known. Thus it
becomes difficult to evaluate the effectiveness of using CALS and RCALS in image

registration.

3.2.1 Smulated data

¢ Simulated ideal image

To reduce matching error during the process of collecting pairs of control points, we
simulate one black and white image. The simulated ideal image is also called the master
image. We used the Arc/Info Grid module, Arc Macro language and IDL programming
language for this simulation. A 512-by-512 thematic raster ssimulated image was
constructed, with one of the K classes assigned randomly to each pixel, according to
predetermined class proportions. Here, we define k =2, that is, two classes, and the class
proportion is 1:1. Pixels of the first class were given 50 in gray value and the left were
given 240 in gray valuein order to enhance the contrast (Figure 1).
¢ Corrupted Simulated I mage

Corrupted Simulated Image is aso called slave image or uncorrected image. The
goal to simulate the error and add the error in the ideal image isto validate the CALS and
RCALS estimators. The corrupting process can include different types of transformations,
such as trandation, scale, rotation, skewing and random position error. Mathematically,
the transformation can be smulated via equation (29).

To avoid the effect of resampling and interpolation on image registration (Dai and

16
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Khorram, 1998) and to facilitate our comparing the corrected result and the simulated
ideal image, we artificialy create the corrupted image from the simulated ideal image.
First, we trandate the smulated ideal image in the x and y directions by 2 pixels
respectively. Second, we add random positional error with 2pixels variance into that
image to obtain the corrupted image. Though the simulated corrupted image is not as
complicated as the real corrupted image, this ssimplification, without loss of generality,
does not affect our analysis. It should be noted that the error of each pixel is introduced
through the same mechanism with a 2-pixels variance, so al pixelsin the corrupted image

are with variance 2 (Figure 2).

3.2.2 Matching Images

As mentioned above, registration includes two procedures, namely interpolation and
neighbour resampling. Here we mainly discuss the interpolation method, i.e. the
regresson mode!.

+ Collecting Control Points

The first step to registration is to collect control points in amap or areference image.
This is a very important process to improve the accuracy of registration. Accurate
identification of control points is a prerequisite for obtaining an accurate registration
(Janssenand Van der Wel, 1994). A sufficient number of well defined control-point pairs
must be chosen to rectify an image to ensure that accurate mapping polynomials can be

generated. However, attention must also be given to the locations of the points. A genera

17
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rule is that there should be a distribution of control points around the edges of the image
to be corrected with a scattering of points over the body of the image. This is to ensure
that the mapping polynomials are well-behaved over the image (Richards and Jia, 1999).
The sample of control pointsis subjected to uniform distribution, so the regression model
belongs to structure regression model (Wansbeek and Meijer, 2000). In this simulation
study, matching error of the locations of the points is controlled within 0.1 pixels. Figure
3 shows the distribution of control points in the smulated ideal image. Table 3 shows the
control pointsin the smulated ided image.
¢ Adding Random Error into Reference Control Points

In collecting the control points, we limit the matching error of their locations within a
very small neighborhood so that the impact of matching error on the accuracy of the
registration can be ignored. These control points are then taken as the ideal reference
control points, i.e. error free. When the RCPs are error free, the regression coefficients of
the CALS and RCALS are same as that of the OLS (see section 2 for details). In order to
test the ability of the CALS and RCALS in rectifying a deviation, we artificially add
random errors into the RCPs. The range of the variance of errorsisfrom 0.1 to 4.0. In this
way, we can observe systematically and quantitatively the impact of errors in the RCPs
on the accuracy of the registration. We performed 20 simul ated experiments and averaged
the 20 realizations to form the relationship between error in the control points and
accuracy of the regression coefficients (Figure 4). When we add just a 0.5-pixel variance

to the RCPs, the corrected image obtained by the OL S estimator differs significantly from

18
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the smulated ideal image (Figure 5). That is, the registered quality is greatly lowered
under small errorsin the RCPs.
+ Registration

Before calculating the regression coefficients using the CALS and RCALS
estimators, control points from the master image and slave image should be centralized

as

X -
y_

X center

: (30)

<l X

N
Ve
T

ycenter

Wethenput X, and VY., intothe CALS, RCALS and OLS estimators respectively.
To avoid the impact of resampling and interpolation on the registration, the slave image
is produced by one order deformation. So, we sdect the first order polynomid asthe
regresson function.

In the next section, we analyze the results of the registration based on the CALS,

RCALS and OLS estimators.

3.3 Analysis Results and Interpretation

3.3.1 TheComparison of Egimators

In this paper, we adopt two methods to compare the performances of the estimators:
namely the mean square error (MSE), commonly used in regression analysis, and the
difference between the reference and corrected images. Here we use the difference image

to analyze the effect of CALS, RCALS and OL S estimators. Accordingly, we make use of

19
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the mean and standard deviation of the differenceimagesto depict the difference between
the results obtained by the CALS, RCALS and OL S methods.

¢ The comparision of regression coefficients

Here, we adopt the MSE of the regression coefficient estimators to analyze their effects

on the accuracy of image regidiration. The method is detailed as follows:

Let

R=MSER)=ER-R)"(-R). (31)
The estimator of MSE is

F}:%ék_ RO -B)TRY- ), (32)

i=1

where k is the number of samples, R ¥ isthe estimator corresponding to the kth sample
and ® isthemeanof R, i=1..k.

We tested the 20 simulation experiments for different s> and the same s? =2 and
tabulate three of these experiments as representatives in Table 4, i.e. s 2= 1, 2 and 2.5,
$2=2; By =(05,R0)" =(bep b1 b,) " =(20,0)7, By =(by,Re)T =(by, brob,y) T =210 in (27)
and S, =s? 1. Wealso calculate the R value under different values of s 2, and find that
CALS2 have better performance than the others.

We can make severa observations from Table 4. First, CALS2 sometimes give good
estimation of the regression coefficients. For example, the Rvalue is the smallest when
s2=2and 2.5, but it isthe largest when s 2= 1. The reason is that CALS2 is effective for
large samples from the statistics point of view. However, it iswell known that collecting

sample points is time-consuming and expensive. So, the sample size must be kept to a
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minimum (Lunetta, 1991). That is, the sample size may not aways meet the qualification
of large samples. Consequently, the experimental results obtained by CALS2 are not
always consistent with the theoretical result. Second, CALS and RCALS estimators give
superior overall performances in estimating the regression coefficients and variance of
measurement error. Third, we can observe that the variance estimators of the
measurement error of the output variable of CALS2 are the smallest among these
variance estimators. The reason is that CALS2 utilizes more information than the others
(see Equation (21)).

+ | mage Difference

After a corrupted simulated image is corrected, the difference between the corrected
image and the ideal image is small. So, under this condition, mage difference is an
effective and simple method to analyze the effect on registration based on CALS, RCALS
and OLS estimators.

Image differencing generaly involves the subtraction of different images. The
subtraction results in positive and negative values in areas of change and zero values in
areas of no change (Jensen, 1996). Since the ssmulated image is an 8bit image, pixel
values range from 0 to 255 and the potential range is from —255 to 255. The results are
normally transformed into positive values by adding a constant, c. The operation is
expressed mathematically as

Ds;c =Cli @) - R, (2 +¢ (33)

where Ds;, = change in pixel value, Cl,,(1)= brightness value at time 1, Rl (2) =
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brightness value at time 2, c= constant. i =1,...., number of lines, j =1,....,number of
columns, k = band k.

When obtaining the difference image, we use the mean and standard deviation to
compare the results of CALS2 and OLS. In PCI software, we use histogram analysis to
obtain the mean and standard deviation of the difference images. The mean and standard
deviation obtained by CAL S2 are9.529 and 46.86 respectively, and that of OL S are 9.690
and 47.23 respectively. Figures 6-9 depict the result of theregistration. Table 5 shows that

CALS2 has better performance than OLS.

3.3.2 TheError Propagation of Remotely Sensed Data

Basic statistics about an original include the mean, standard deviation and degree of
autocorrelation. It is essential to know how these statistics will change in the corrected
image and how the errors of the control points will propagate. We have produced in
subsection 3.2.1 a simulated ideal image free of errors. The corrupted image is produced
by trandating the simulated ideal image in the x and y directions by 2 pixels and by
adding random positional error with a 2pixel variance. We can regard the corrupted
simulated image as the original image that was obtained with kinds of system errors and
random errors by remote sensors. After the corrupted image has been registered, called
the rectified image or corrected image, we have a corresponding change in uncertainty.

Through equations (21) and (22), we can obtain the variance estimator of the

measurement errorss 2 and s 2. From equation (24), we can derive the variance of each
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pixel of the rectified image after registration Sy =S¢ . It should be noted that the true

values of RCPs are deterministic variables, not random variables. In Table 4, we can find

theestimatorsof CALS2 CALS1 and RCALS. Therefore, we need to perform statistical

test to seeif the errors are Sgnificant.
3.3.3 The Significance Test

A common belief isthat when errorsin variables are small at some significance level
they can beignored. We consder the following null and dternative hypotheses:
Ho: s?£sf —4® H,:s?>si
Choose s /= 0.1and a = 0.05, we then obtain
$23 (1++2U,)s 2 =0.33. (as U, = 1.645)
For the first group of data in Table 4, we find s'2 = 0.60237374 and 0.44582912

respectively. Thus we reject H,. That is, s ? is more than s a 0.05 level of

sgnificance.
3.3.4 Evaluation and comparison of Esimators

Basing on the analysis and discussion in the above sections, we summarize the
characteristics of CALS and RCALS when applied to image registration as follows: the
models have good ability to (1) correct the error contained in RCPs (as detailed in section
2); (2) estimate correctly the error of RCPs to uncorrected image with and without prior
information (as detailed in sub sections 3.1-3.3); (3) compensate the model errors,

specifically improving the accuracy of R , and consequently the accuracy of the model; (4)
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estimate the propagated error in the rectified image (as detailed in sub sections 3.1-3.3).

The above are the common propertiesof CALS and RCALS. There are however some
differences between CALS and RCALS. As aforementioned, CALS is implemented
under the assumption that S, =s 2l , i.e. s 2=s 2. Thisassumption is too restrictive in
many practical applications. To overcome this disadvantage, RCALS is formulated by
relaxing the assumption S, =s 2l into a more generd relationship: S, =s?2l . That is,
sZand s 2 are not necessarily equal to each other. And, it has been argued that RCALS
can better estimate the variance of the measurement errors.

Though CALS and RCALS possess the above advantages when errors exist in the
variables, there are some problems that need to be further examined:

(1) From the point of view of statistics, the models are effective under large sample
theory. For small sample, though the result of regression is sometimes not very good,
better result should be obtained if the methods can be used in the whole process of the
registration or other relevant processesin handling remotely sensed data.

(2) The models can be made more perfect when the order of regression is high. It is
because the models have good compensation ability to linear regression.

(3) The arrangement of control points can affect the result of regression based on
CALS and RCALS. The variation in the accuracy of registration should be investigated

with reference to the variation of control- point arrangement.
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4 The Registration of Remotely Sensed Data

To illustrate the applicability of the proposed estimator, we applied our methods to
the study of a real-life SPOT multispectral image acquired over Xinjiang, China on
August 30, 1986. The size of the data set is 3000-by-3000 pixels with three channels. A
800-by-818 subset of the source image is used in this experiment (Figure 10). The RCPs
are obtained from ETM multispectral image acquired on September 30, 2000. The
matching error of the locations of the points should be controlled within 0.1 pixels, so that
the impact of matching error on the accuracy of the registration can be ignored.

In this example, we do not have any prior information, i.e. s2 and s > are unknown.
What we have done is to use the ME models to estimate the variance of the measurement
errors of the explanatory variables and response variables from the sample data. For
CALS estimator, the prerequisite for estimating the variance of the measurement errorsis
s 2=s 2 when prior information is unknown. However, it is not practical in the registration

of remotely sensed data. General speaking, thevalueof s 2 ismuch larger than that of s 2.

So under this condition, RCALS estimator is suitable.

Before the registration of aremote sensing image, some preprocessings need be done.
For efficient computation, we first convert the Geodetic Coordinates of RCPs
RG (RG = (RG, RG, ) ") into the corresponding image coordinates Rl (Rl =(RI, RI,)").
RG

The RCPs are shown in Table 6. Rl (RG,,;, = (RG ") means the minimum

min x miny )

vector in the x direction and y direction.
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R, = (RG, - RG«

i )/ 20,
| —
{ R, =(RG, - RG

)/20. (34)

miny

And then these control points are put into the OLS and RCALS estimators. Table 7
and Figure 11-12 show the result of the registration. At the same time, we can obtain
variances of the measurement errors. We can observe from Table 7 that in a noisy
environment the RCALS estimator has an overall superior performance compared to

OoLS.
5 Conclusion

We have discussed some basic issue of error analysis in image-to-image registration,
and have proposed an errors-in-variables model, called RCALS, for registration. It has
been demonstrated that the OLS model is incapable of handling problems in which errors
exist in the response and explanatory variables. While CALS is a suitable model to
perform the task, it is too restrictive in its assumption. By introducing a more general
relationship, the proposed RCALS model is more flexible in analyzing errors in
registration. It also renders significance test and error propagation mechanism. The
conceptual arguments have been substantiated by some simulated and real-life
experiments.

While the proposed RCALS model has a reasonably good performance, there are
issues that need further investigations. In this paper, we have discussed the registration of
corrupted image with the same error variance. For better application, we need to examine

the registration of corrupted image with different error variance and with certain degree
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of autocorrelation in further studies. To be more comprehensive, detailed analysis should

be made on the impact of RCPs with error on the accuracy of change detection and data

fusion of multi-spectral and multi-temporal remotely sensed data. Based on the proposed

error propagation method, we should also discuss the impact of RCPs on the accuracy of

classification of remotely sensed data. Furthermore, the error propagation of radiometric

correction and itsimpact on the accuracy of classification should also be carried out inthe

future,
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Hgures.

Fig.1 A Simulated Ideal Image. Thesizeis
512-by-512

Fig. 2 The Corrupted Simulated Image
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Fig. 3 The Distribution of Control Pointsin the
Simulated Ideal Image

The Comparision of Coefficients
35 o
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Fig. 4 The Effect of Reference Control Points (RCP) with
Errors on Registration
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Fig. 5 The Difference Image between the Corrected Image
and the Simulated Ideal Image
(RCP with 0.5-pixel variance; the corrected image is
obtained by the OLS. The size of thisimage is 128-hy-128)

Fig. 6 Corrected Image by CALS2
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Fig.7 Corrected Image by OLS

Fig. 8 Difference Image between the Corrected Image
by CALS2 and the Simulated Ideal image
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Fig. 9 Difference Image between the Corrected Image
by OLS and the Simulated Ideal image

Fig. 10 SPOT Multispectral image acquired over
Xinjiang on August 30, 1986
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Fig. 11 Corrected Image by RCALS

Fig. 12 Corrected Image by OLS
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Tables:
Table1 A simulated data set of size 35 (XI, Y| are the explanatory
variables; XO is the response variable)
Xl YI XO XI YI XO Xl YI XO
-1.09 -1.89 -4.7 4.13 0.05 12.79 2.78 1.1 2.42
-0.25 1.2 4.78 2.46 4 17.67 -0.1 1.84 6.62
-1.06 -2.46 -7.36 2.87 1.19 5.78 -1.74 -2.35 -11.76
1.24 -2.94 0.64 2.04 0.85 0.63 -1.34 -0.01 2.14
-1 -2.76 -8.13 1.44 0.72 5.21 -0.81 -1.86 -9.67
-4.37 -0.28 -9.34 2.27 0.6 7.15 1.21 1.58 7.39
-2.47 -2.98 -5.56 -6.53 -2.51 -16.83 2.59 3.68 15.88
-0.51 0.5 7.95 -0.21 1.98 2.26 0.18 0.51 2.97
-0.64 0.77 -3.55 -2.21 -0.91 -2.56 1.08 3.64 12.32
1.55 -0.71 0.72 -2.15 -0.44 -3.45 -3.15 -2.94 -10.63
-0.57 1.38 3.24 3.74 2.41 17.96 2.26 4.52 14.36
-1.19 -1.08 -2.81 -1.78 -0.54 0.27

Table2 The estimation results

b 3 3

True 1 2 3
OLS 1.247 1.806 2.313
CALS1 1.128 1.717 3.006
CALS2 1.119 2.042 3.132
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Table3 A sample of simulated data with size 24

(94, gy are explanatory variables, M, , my are response variables.)

gx gy rTlx my gx gy rnx my

95.99609 | 426.0039 [ 93.99609 426.0039 | 266.0039 | 199.0039 [ 264.0039 198.9961

188.9961 | 410.0039 | 186.9961 410.0039 281.9961 | 90.00391 | 280.0039 90.00391

204.9961 | 312.9961 | 202.9961 312.9961 | 465.0039 [ 97.00391 [ 463.0039 97.00391

331.9961 | 250.0039 [ 329.9961 250.0039 | 60.00391 | 206.0039 | 58.00391 206.0039

384.9961 | 152.0039 | 383.0039 152.0039 | 41.99609 | 133.9961 | 39.00391 133.9961

408.9946 | 39.00391 | 407.0039 39.00391 190.9844 [ 54.98438 [ 188.0039 55.00391

364.9972 | 337.0039 | 362.9961 337.0039 | 88.00391 | 34.99609 | 84.99609 34.99609

314.0039 | 420.0039 [ 312.0039 420.0039 | 306.9961 | 325.0039 [ 305.0039 325.0039

446.0039 | 254.0039 | 444.0039 254.0039 | 481.9961 | 192.0039 | 479.9961 192.0039

95.99219 | 294.0078 | 93.99609 294.0039 234.0039 | 458.0039 | 232.0039 458.0039

47.00391 | 334.0039 | 45.00391 334.0039 | 347.0039 | 474.0039 | 345.0039 474.0039

152.9961 | 166.0039 [ 151.0039 165.9961 | 351.9961 | 29.00391 | 350.0039 29.00391
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Table 4 The Comparision of Regression Coefficients

( R isthe estimator of MSE; fio) :(ba,bﬂ,bz)T, i=12,b, (k=0 1, 2 istheestimator of regressior

coefficients; §: and § dz are the estimators of measurement errors of response variable and

explanatory variables respectively.)

TRUE Methods by b;u bzi §: S"d2 R
S22 RCALS | 2.1020844 | 4.1112e-007 | 0.99985776 1.0346276 | 0.17000723 | 0.37252052
e 1.6417400 | 1.0002787 | 0.00012789653 | 0.77747503 | 0.11437380
sZ=1 CALS2 2.0918853 | -4.65936-:006 | 0.99990336 0.31434077 | 1 0.38087295
R, (200" 1.6303770 | 1.0003250 | 0.00012249023 | 0.027603082 | 1
S TR CALSL 2.0967715 | -2.2301e-006 | 0.99988151 0.60237374 | 0.60237374 | 0.37520691
B =(210) 1.6374874 | 1.0002961 | 0.00012587328 | 0.44582912 | 0.44582912
oLS 2.1041733 | 1.4496e-006 | 0.99984843 1.3140926 0.37168957
1.6432074 | 1.0002728 | 0.00012859465 | 0.97299483
S22, RCALS | 2.6537296 | 0.001143149 | 0.99665739 1.0090178 | 0.16381646 | 0.741790
e 2.3505358 | 1.0003343 | -0.0012377029 | 2.2830002 | 0.33580188
S42 CALS2 2.6313630 | 0.001132091 | 0.99675731 0.70857441 | 2 0.712061
R, (200" 2.3292396 | 1.0004213 | -0.0012479744 | 0.85563459 | 2
ST CALSL 2.6485651 | 0.001140596 | 0.99668046 0.58782690 | 0.58782690 | 0.731403
B =(210) 2.3380819 | 1.0003852 | 0.0012437094 | 1.3090501 | 1.3090501
oLS 2.6557249 | 0.001144135 | 0.99664848 1.2782615 0.745584
2.3548326 | 1.0003168 | -0.0012356308 | 2.8571141
S 7= RCALS | 1.4577786 | 0.000206181 | 1.0016535 2.5736210 | 0.42452286 | 1.626953
. 3.5339340 | 0.99776894 | -0.0033031654 | 2.4216008 | 0.35231270
S4=2.5 CALS 1.4321678 | 0.000193157 | 1.0017662 0.76372139 | 2.5 1.610265
R, =(200" 3.5068180 | 0.99788040 | -0.0033170057 | 0.53525467 | 2.5
_moe CALSL 1.4445419 | 0.00019945 | 1.0017128 1.4972648 | 1.4972648 | 1.619109
B =(210) 3.5208429 | 0.99782275 | -0.0033098468 | 1.3892341 | 1.3892341
oLS 1.4630165 | 0.00020884 | 1.0016300 3.2722243 1.629413
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Table5 The Comparision of Difference Image

True M ethods ) 5. 5. R Mean Standard
i 1 2 . .
Deviation
) CALS2 3.3501924 -0.0048645 | 0.99895008 | 2.3689419 9.529 46.86
Se =2 3.9464883 0.9955764 | -0.00231508
s d2—3 OLS 3.4107636 -0.0048309 | 0.99867598 | 2.4548868 9.690 47.23
4.0090204 0.9953184 [ -0.00228226
Table6 A sample of remotely sensed data with size 24; UI(X), UI(Y) are
explanatory variables, RI(X), RI(Y) are output variables. Ul means
Uncorrected Image; RI means Reference Image
Ul (X) Ul (Y) RI (X) RI (Y) Ul (X) Ul (Y) RI (X) RI (Y)
286.0625 | 711.8125 | 387911.2545 | 4546732.804 665.9688 503.9688 | 396411.5670 4549062.491
223.8125 | 789.9375 | 386272.5046 | 4545495.304 336.1875 615.0625 | 389396.2546 4548375.304
197.9375 | 254.9375 | 388668.7546 | 4555901.554 331.9688 811.9062 | 388253.4421 | 4544590.616
672.0625 | 572.9375 | 396146.2545 | 4547711.554 321.0625 647.4375 | 388938.7546 | 4547797.804
616.0625 | 392.0625 | 396030.0045 | 4551454.054 273.0625 797.0625 | 387202.5045 4545131.554
538.8750 | 231.8750 | 395407.5045 | 4554866.554 651.9375 600.9375 | 395602.5046 | 4547257.804
507.0312 | 626.0312 | 392665.3170 | 4547410.616 158.9094 451.4419 | 386864.7046 | 4552304.317
452.0625 | 698.0625 | 391196.2546 | 4546271.554 174.9961 120.0039 | 388964.7827 4558604.552
392.0625 | 269.4375 | 392368.1295 | 4554778.429 683.9961 78.0117 | 399064.7046 4557184.317
416.9688 | 404.0312 | 392125.3170 | 4552088.741 169.0039 700.0039 | 385704.7046 | 4547464.473
563.8125 | 688.8125 | 393416.2545 | 4545945.304 754.0039 768.0039 | 396684.7046 4543604.317
622.0625 | 638.9375 | 394822.5045 | 4546661.554 665.9688 503.9688 | 396411.5670 4549062.491
Table7 The Comparision of RCALS and OLS
Methods By by b, $ : $ dz
RCALS 47.881707 0.27295907 | 0.96943027 0.022603986 0.55769935
-170.90637 | 0.97551516 | 0.22110812 0.012265135 0.54363945
OLS 47.881935 0.27295885 | 0.96942965 0.63592436
-170.90626 | 0.97551490 | 0.22110810 0.60885484
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