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Abstract 

Reference control points (RCPs) used in establishing the regression model in the 

registration or geometric correction of remote sensing images are generally assumed to be 

“perfect”.  That is, the RCPs, as explanatory variables in the regression equation, are 

accurate and the coordinates of their locations have no errors. Thus ordinary least squares 

(OLS) estimator has been applied extensively to the registration or geometric correction 

of remotely sensed data. However, this assumption is often invalid in practice because 

RCPs always contain errors. Moreover, the errors are actually one of the main sources 

which lower the accuracy of geometric correction of an uncorrected image. Under this 

situation, the OLS estimator is biased. It cannot handle explanatory variables with errors 

and cannot propagate appropriately errors from the RCPs to the corrected image. 

Therefore, it is essential to develop new feasible methods to overcome such a problem.  

In this paper, we introduce the consistent adjusted least squares (CALS) estimator 

and propose a relaxed consistent adjusted least squares (RCALS) method, with the latter 

being more general and flexible, for geometric correction or registration. These 

estimators have good capability in correcting errors contained in the RCPs, and in 

propagating appropriately errors of the RCPs to the corrected image with and without 

prior information. The objective of the CALS and our proposed RCALS estimators is to 

improve the accuracy of measurement value by weakening the measurement errors. The 

validity of the CALS and RCALS estimators are first demonstrated by applying them to 

perform geometric corrections of controlled simulated images.  The conceptual 

arguments are further substantiated by a real- life example. Compared to the OLS 

estimator, the CALS and RCALS estimators give  a superior overall performances in 

estimating the regression coefficients and variance of measurement errors. 

 

Keywords: error propagation, geometric correction, ordinary least squares, registration, 

relaxed consistent adjusted least squares, remote sensing images. 
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1       Introduction 

Remote Sensing technologies have been widely applied to monitor natural and 

man-made phenomena such as desertification, land cover changes, coastal environments 

and environmental pollutions (Chen and Tong, 1998). However, remote sensing devices 

have limitations such as the restrictions on spatial, spectral, temporal, and radiometric 

resolutions. Furthermore, the data acquisition process is affected by factors such as 

rotation of the earth, finite scan rate of some sensors, curvature of the earth, non- ideal 

sensor, variation in platform altitude, attitude, velocity and etc. (Richards and Jia, 1999). 

Errors corrupting the data acquisition process may be associated with both the attribute 

value and locations of the attribute values. Therefore, it is necessary to remove as least 

some of these errors prior to analysis (Jensen, 1996; Richards and Jia, 1999; Townshend, 

et al., 1992). One important preprocessing is geometric correction (image to map) or 

registration (image to image) of remotely sensed data. 

The purpose of geometric correction or registration is to explicitly determine the 

mapping polynomials by the use of reference control points (RCPs) and then determine 

the pixel brightness value in the image (Jensen, 1996, Richards and Jia, 1999). The 

method of ordinary least squares (OLS) is most frequently used in this preprocessing. If 

accurate registration between images is not achieved, then spurious differences will be 

detected (Townshend, et al., 1992). That is, instead of comparing properties of the same 

location in different images, we might mistakenly compare properties of different 

locations instead. Accuracy of the corrected image, of course, will have direct impact on 
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the results of classification, change detection and data fusion. 

In registration or geometric correction, the main uncertainties affecting their 

accuracy include  (1) quality of the uncorrected or corrupted image; (2) size and 

arrangement of RCPs; (3) proficiency of the operator; (4) error from the model of 

geometric correction and (5) error from the RCPs. The effects of the first four factors on 

image classification and change detection have been studied in the literature (Congalton 

and Green, 1999; Janssen and Van der Wel, 1994; Dai and Khorram, 1998; Flusser and 

Suk, 1994; Moreno and Melia, 1993; Shin, 1997). Though error of the RCPs,  i.e. factor 5, 

is one of the main sources affecting the accuracy of geometric correction for uncorrected 

image (as depicted in Figure 4), it has seldom been studied (Congalton and Green, 1999; 

Townshend et al., 1992; Carmel et al, 2001; Dai and Khorram, 1998).  Since RCPs mainly 

come from GIS and remote sensing images, errors in the RCPs are essentially due to 

errors in data processing and data ana lysis (Lunetta, et al., 1991). Such errors will then be 

propagated to the corrected image during the process of registration or geometric 

correction. 

Though the most effective way to improve the accuracy of geometric correction is 

through ground survey with differential GPS, it is generally too costly for implementation. 

Statistical procedures, such as regression are usually employed as a surrogate. In this 

context, common questions for registration or geometric correction are: (1) When the 

reference control points contain errors, how would these errors affect the regression 

coefficients and the accuracy of registration? (2) How large an error in the explanatory 
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variables is negligible? (3) How to correct the errors contianed in the explanatory 

variables in order to improve the accuracy of registration? (4) Most importantly, how to 

propagate errors in the RCPs to the corrected image and measure it accordingly? Since 

the OLS estimator of the regression coefficients is biased when the explanatory variables 

have errors (see section 2.2 for details), registration based on OLS does not appropriately 

propagate errors from the RCPs to the corrected image. Though researchers such as 

Buiten (1988, 1993) employed a variance-ratio and data-snooping test for the residuals  

calculated in the registration, error propagation and compensation of errors in the RCPs 

have not been discussed. It is well known that error propagation plays a crucial role in the 

uncertainty about remotely sensed images and the RCPs, as explanatory variables in the 

regression equation, always contain errors. Therefore, it is essential to develop new 

feasible methods to handle such a problem. 

In this paper, we only concentrate on error analysis in image-to-image registration. 

We introduce the consistent adjusted least squares (CALS) estimator and propose a 

relaxed consistent adjusted least squares (RCALS) method for registration. These 

estimators have good capability in correcting errors contained in the RCPs, and to 

propagate correctly errors of the RCPs to the corrected image with and without prior 

information. The objective of the CALS and our proposed RCALS estimators is to 

improve the accuracy of measurement value by weakening the measurement errors. 

       We first introduce OLS and CALS in Section 2 and then propose RCALS for better 

performance. In section 3, we employ the CALS and RCALS estimators to perform the 
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registration of simulated images, and compare the results with OLS. A real- life example 

is then used to further substantiate the conceptual arguments in section 4. We then 

conclude our paper with a summary and viewpoint in section 5.  

2  The Regression Model and Estimation Methods  

In this section, we first introduce a multiple linear measurement error (ME) model, 

also called errors-in-variables model in statistics, in which both the response variable and 

explanatory variables contain measurement errors. Limitations of the classical estimation 

method, i.e. the OLS method, are identified. Then, a flexible approach, the CALS, is 

introduced as a more appropriate method to handle errors in variables. The RCALS, 

which can overcome the shortcomings of CALS, is then proposed for more flexible 

applications. Finally, we examine the issue of error propagation and give a significance 

test. 

2.1 Multiple Linear ME Model  

In statistics, the standard multiple linear ME model assumes that the “true” response η  

and “true” explanatory vector ? are related by  

                                                ß?  T
0 += βη .                                                      (1) 

Due to measurement errors, we can only observe variables y and x . That is,  

                                                
,
,

d?x +=
+= εηy

                                                         (2) 

where the observed variables are x  and y ; the unobserved true variables are ?  and η , 
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and the measurement errors are d  and ε . 

 As always been done, with ß? ˆ ˆ T
0 −=ηβ , equation (1) becomes ß?? ˆ )(ˆ T−=−ηη . 

To facilitate our discussion, we assume in this paper that all data are centered. Thus, for a 

sample of size n , equations (1) and (2) become 

                                         
.

,  
D?X

eß?Y
+=

+=
                                       (3) 
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where p
i R∈x , T

1 ),,( pββ L=ß , i?  and id  are p-dimensional vectors, while iη , iy , and 

iε  are scalars. The measurement errors ) ,( T
ii εd are independent identically distributed 

(i.i.d.) random vectors, which are independent of the true values i? .  

2.2      OLS Estimator  

If we ignore the measurement error when regressing Y on X, the OLS estimators of ß  

and 2
εσ  are respectively 

  YXXXß T1T )(ˆ −=OLS ,                                              (4) 

                                        YXXXXIY  ])([)ˆ( T1TT12 −
− −= npnOLSεσ .                               (5) 

It should be noted that the above two expressions are no longer consistent estimators of ß  

and 2
εσ (Wansbeek and Meijer, 2000). In fact,  

           eXßeß?Y ~  +=+= ,      where  Dßee −=~ .                             (6)  

e~  shares a stochastic term D with the regressor matrix X (see (3)). It implies that e~  is 
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correlated with X and hence ≠)|~( XeE 0. This lack of orthogonality means that a crucial 

assumption underlying the use of OLS is violated. 

2.3 CALS Estimator 

          We consider the case that there is a sufficient number of restrictions on the 

parameters for model identification. These restrictions can be combined with the statistics 

from OLS to yield a consistent estimator of the model parameters. This estimation 

method is called consistent adjusted least squares (CALS) (Kapteyn and Wansbeek, 1984; 

Wansbeek and Meijer, 2000).   

       We now consider equation (3). Assume that rows of D are i.i.d. with zero expectation 

and covariance matrix DS , and are uncorrelated with ?  and e , i.e., 0?D =)|(E  and 

0De =)|(E . Let ΞΞ →≡ S??S P
n

T1 , then X
P

nX SXXS →≡ T1 . It can be shown 

(Wansbeek and Meijer, 2000) that  

  ßSSIßSSßYXXXß  ) (     )(ˆ
 

1
 

1T1T
DXDX

P
OLS

−−− −=−→= .                       (7) 

The bias of the OLS estimator of ß  is 

ßSS   1
Dx

−−≡ω .                                                      (8) 

When there is no measurement error, 0S =D , it implies that 0=ω  and OLS is consistent.   

In addition, 

           2
 

1T2T1TT12       ])([)ˆ( εεε σσσ ≥+→−= Ξ
−−

− ßSSSßYXXXXIY XD
P

npnOLS              (9) 

can be obtained. 

® Prior Information Known 
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      If DS  were known we can obtain a least squares estimator that is adjusted to attain 

consistency, denoted by CALS1 (Here CALS1 is used to distinguish it from the CALS 

estimator without prior information, which is denoted by CALS2) 

ßßSSIß  ˆ ) (ˆ 11
1 →−= −− P

OLSDXCALS     (from (7))                        (10) 

or 

ßSSSß  )(ˆ 1
1 →−= − P

XYDXCALS ,                                      (11) 

where YXS T1
nXY ≡ . Thus, the CALS estimator 1

ˆ CALSß can obtain better regression 

results than OLS when there are measurement errors in variables. 

® Prior Information Unknown 

In practice, DS  is rarely known. We adopt the following equation to estimate the 

regression coefficients, denoted by CALS2.  

                                  OLSXCALS ßSIß ˆ )̂(ˆ 11
2

−−−= λ ,                       (12) 

if IS 2
εσ=D , where λ̂ is the minimum eigenvalue of S, i.e. the minimum solution of 

0  - =IS λ  and S is defined as  

                                       
  

   
TT

TT











≡

X X  YX

XY  YY
S .                  (13)  

As an illustration, we simulate one set of data (listed in Table 1) to compare the 

performances of equations (4), (10) and (12). In this experiment, we give the true value of 

regression coefficients TT
210 ) 3  ,2  ,1()  ,  , ( == ßßßß and the true value of 








=

1.0   0.5
0.5   0.1

DS . 

The objective of this experiment is to investigate the performances of OLS, CALS1, 

CALS2. 2 ,1 ,0,ˆ =iiβ are the estimators of regression coefficients. 
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From Table 2, we can observe that the estimator of CALS2 obviously outperforms 

the others. However, equation (12) is obtained under the assumption that IS 2
εσ=D . This 

assumption is restrictive in many practical applications. In order to overcome this 

disadvantage, a new estimator, called the relaxed CALS (denoted as RCALS), is 

proposed in the following subsection.  

2.4 The Relaxed CALS (RCALS) Estimator 

We relax the assumption IS 2
εσ=D  into a more general relationship: IS  tD = , where 

0>t  is scalar. That is, 2
εσ and t are not necessary equal to each other. According to the 

definition of DS , IS  tD =  implies that all errors in the explanatory variables are 

independent and have the same variance t . It should be noted that the CALS estimator of 

ß is  

                           

     .) (        

)() (       

ˆ)(       

ˆ)(ˆ

1

11

11

XYX

XYXXX

OLSDX

CALS

t

t

t

SIS

SSSIS

ßOSI

ßß

−

−−

−−

−=

−=

−=

=

                                             (14) 

When t is very small, (14) can be expressed approximatively as 

                                     XYX tt SISß  ) (   )(ˆ 1 += − .                                                 (15) 

According to the idea of orthogonal regression, we can establish the objective 

function )(tf  as follows:  

                    
)(̂)(ˆ1

))(ˆ())(̂(
 )( T

T

tt
t-t-

tf
ßß

ßXYßXY
+

= .                        (16) 

We thus select t , as the estimator of variance 2
δσ  of all explanatory variables, such 
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that )(tf  is minimized. The optimization problem reduces to the solution of the 

following quadratic equation  

                                     0    2
210 =++ tt ααα ,                                                  (17) 

where 

                     

, 

 ,ˆ
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, 22

, 2

T
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                                               (18) 
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It can be shown that a solution to equation (17) is positive and the other is negative. 

Only the positive solution t̂ can be selected as the estimator of 2
δσ . Thus we have 

              


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

−=

−−−−=

=
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              ,  ˆˆ  

11

11T12

2

OLSX
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T
LSOLSOLSn
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ßSIß

ßSIßßXYßXYε

δ
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                      (19)  

2.5 The Error Propagation Model 

One of the great advantages of the CALS and the proposed RCALS estimators over 

OLS is that they can propagate errors. Having an error propagation mechanism is crucial 

to the analysis of remotely sensed data. Now we can rewrite the variance estimators of 

measurement errors of the explanatory variables and response variables for these 

estimators as follows: 

OLS:   YXXXXIY  ])([ˆ T1TT12 −
− −= npnεσ .                                                (20) 
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CALS:  



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==
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From equations (21) and (22), we can know tha t CALS and RCALS estimators can 

obtain the variance estimators of measurement errors and propagate the errors in the 

explanatory variables to the response variable according to the law of error propagation 

from equations (1) and (2). OLS, on the other hand, does not have such a capability.  

Subsequently, we can obtain the estimator of variance of the response variable as follows: 

                               
,            

   
2

D
TT

2T2

ε

ε

σ

σσ

+−=

+= Ξ

ßSßßSß

ßSß

X

y
                                                 (23) 

where XS  is the variance matrix of the measurement vector of X. 

 Here, we have two situations:  

(a) When ?  is a deterministic variable, we can obtain the variance estimator of the 

response variable as 

                                              22 ˆ ˆ εσσ =y .                                                                (24)  

(b) When ?  is a random variable, the variance estimator of the response variable is 

obtained as  

                                         22 ˆˆ )ˆ(ˆˆ εσσ +−= ßSSß DX
T

y .                                         (25)  

2.6 The Significance Test 

We answer here the question on how small an error in the explanatory variables can 
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we ignore. In other words, we need to have a significance test on the variances of the 

measurement errors. 

 Under the assumptions: IS 2
εσ=D  and 222 σσσ εδ == , it can be proved that the 

approximate relationship )2,(~ˆ 422 σσσ ε N  holds (Kapteyn and Wansbeek, 1984). In 

order to test whether 2σ  differs significantly from zero, we first specify a sufficiently 

small positive 02
0 >σ . The one-side significance test is structured as follows: 

2
0

2
0    : σσ ≤H     →←    2

0
2

1    : σσ >H  

 When the inequality 2
0

2 )21(ˆ σσ αε U+≥  holds (where αU  is the α upper quantile of 

the standard normal distribution), 0H  is rejected at the significance level α .  We can say 

that there are significant measurement errors in the regression variables under the 

assumption IS 2
εσ=D . 

3 Empirical Analysis in the Registration of Simulated Images  

In the remaining part of this paper, we discuss how to apply CALS and RCALS 

estimators to improve the accuracy in registering simulated images and remotely sensed 

data. For validating the CALS and RCALS estimator, we first employ some simulation 

studies to examine the characteristics and effects of RCPs with errors on the accuracy of 

registration in this section. We then apply the method to a real- life remotely sensed image 

in the next section. 

Registration generally includes two procedures: (a) a registration being a geometric 

rearrangement of the pixels; (b) a resampling of the pixel values on the basis of the new 
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pixel arrangement (Buiten and Clevers, 1993). Procedure (a) mainly consists of two 

methods: interpolation and trend function. Interpolation is a mathematical treatment of 

the transformation and is totally dependent on the control points. Trend function is more 

or less a statistical approach to the adjustment of the residuals of the control points by 

OLS.   

After the geometric rearrangement of two “images” has been performed in procedure 

(a), a resampling of the pixel values will be made on the basis of the new pixel 

arrangement. Procedure (b) mainly consists of nearest neighbour resampling, bilinear 

interpolation or cubic convolution. In this paper, we adopt the interpolation method and 

neighbour resampling. 

3.1 Mapping registration into Polynomials   

        It is assumed that a map (or an image) corresponding to the concerned image is of 

higher level of accuracy geometrically. Location of a point on the map is defined by 

coordinates ),( yx gg and that of the image is defined by coordinates ),( yx mm . Suppose 

that the two coordinate systems can be related via a pair of mapping functions f  and h so 

that 

                                                 




=
=

.  ),( 
, ),( 

yxy

yxx

gghm
ggfm

                                                   (26) 

Though explicit forms for the mapping functions in equation (26) are not known, they are 

generally chosen as simple polynomials of first, second or third degree. For example, in 

the case of first order polynomial, the pair functions are expressed as  
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Let T)  ,( yx gg=? and T
21)( )  ,( iii ββ=ß , 2  ,1=i . Then equation (27) can be written 

as 
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For the case of second order polynomial, the pair functions are  

         




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+++++==
+++++==

.  z  
, z

2
52

2
42322212022

2
51

2
41312111011
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yxyxyxx

ggggggm
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                 (29) 

If we let T22
y )  ,  ,  ,  ,( yxxyx gggggg=?  and T

521)( ) ..., ,  ,( iiii βββ=ß , 2  ,1=i , then the 

above equations can still be expressed into (28). 

Thus, based on the OLS, CALS, RCALS estimators discussed above, we can obtain 

the corresponding estimators of the regression coefficients and variance estimators of the 

measurement errors.  

3.2 Simulation Study 

The approach taken in this paper combines formal mathematical modeling with 

simulation and is based on an error with specified properties (Arbia, et al., 1999). The 

simulation study uses artificially generated images with specified image properties. The 

purpose of using images and errors with simple but well defined properties is to better 

understand the characteristics and effects of CALS and RCALS estimators on the 

improvement of accuracy of geometry correction in a controlled environment. The 

problem with using real images (rather than artificially generated images) is that real 
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images usually have complex structures and real errors are usually not known. Thus it 

becomes difficult to evaluate the effectiveness of using CALS and RCALS in image 

registration.  

3.2.1 Simulated data 

® Simulated ideal image 

To reduce matching error during the process of collecting pairs of control points, we 

simulate one black and white image. The simulated ideal image is also called the master 

image. We used the Arc/Info Grid module, Arc Macro language and IDL programming 

language for this simulation. A 512-by-512 thematic raster simulated image was 

constructed, with one of the K classes assigned randomly to each pixel, according to 

predetermined class proportions. Here, we define k =2, that is, two classes, and the class 

proportion is 1:1. Pixels of the first class were given 50 in gray value and the left were 

given 240 in gray value in order to enhance the contrast (Figure 1). 

® Corrupted Simulated Image 

Corrupted Simulated Image is also called slave image or uncorrected image.  The 

goal to simulate the error and add the error in the ideal image is to validate the CALS and 

RCALS estimators. The corrupting process can include different types of transformations, 

such as translation, scale, rotation, skewing and random position error. Mathematically, 

the transformation can be simulated via equation (29).  

To avoid the effect of resampling and interpolation on image registration (Dai and 
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Khorram, 1998) and to facilitate our comparing the corrected result and the simulated 

ideal image, we artificially create the corrupted image from the simulated ideal image. 

First, we translate the simulated ideal image in the x and y directions by 2 pixels 

respectively. Second, we add random positional error with 2-pixels variance into that 

image to obtain the corrupted image. Though the simulated corrupted image is not as 

complicated as the real corrupted image, this simplification, without loss of generality, 

does not affect our analysis. It should be noted that the error of each pixel is introduced 

through the same mechanism with a 2-pixels variance, so all pixels in the corrupted image 

are with variance 2 (Figure 2).  

3.2.2 Matching Images 

As mentioned above, registration includes two procedures, namely interpolation and 

neighbour resampling. Here we mainly discuss the interpolation method, i.e. the 

regression model.  

® Collecting Control Points 

The first step to registration is to collect control points in a map or a reference image. 

This is a very important process to improve the accuracy of registration. Accurate 

identification of control points is a prerequisite for obtaining an accurate registration 

(Janssen and Van der Wel, 1994). A sufficient number of well defined control-point pairs 

must be chosen to rectify an image to ensure that accurate mapping polynomials can be 

generated. However, attention must also be given to the locations of the points. A general 



Study on Registration of Remote Sensing Image with Measurement Errors and Error Propagation 

 18

rule is that there should be a distribution of control points around the edges of  the image 

to be corrected with a scattering of points over the body of the image. This is to ensure 

that the mapping polynomials are well-behaved over the image (Richards and Jia, 1999). 

The sample of control points is subjected to uniform distribution, so the regression model 

belongs to structure regression model (Wansbeek and Meijer, 2000). In this simulation 

study, matching error of the locations of the points is controlled within 0.1 pixels. Figure 

3 shows the distribution of control points in the simulated ideal image. Table 3 shows the  

control points in the simulated ideal image. 

® Adding Random Error into Reference Control Points  

In collecting the control points, we limit the matching e rror of their locations within a 

very small neighborhood so that the impact of matching error on the accuracy of the 

registration can be ignored. These control points are then taken as the ideal reference 

control points, i.e. error free. When the RCPs are error free, the regression coefficients of 

the CALS and RCALS are same as that of the OLS (see section 2 for details). In order to 

test the ability of the CALS and RCALS in rectifying a deviation, we artificially add 

random errors into the RCPs. The range of the variance of errors is from 0.1 to 4.0. In this 

way, we can observe systematically and quantitatively the impact of errors in the RCPs 

on the accuracy of the registration. We performed 20 simulated experiments and averaged 

the 20 realizations to form the relationship between error in the control points and  

accuracy of the regression coefficients (Figure 4). When we add just a 0.5-pixel variance 

to the RCPs, the corrected image obtained by the OLS estimator differs significantly from 
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the simulated ideal image (Figure 5). That is, the registered quality is greatly lowered 

under small errors in the RCPs.  

® Registration 

Before calculating the regression coefficients using the CALS and RCALS 

estimators, control points from the master image and slave image should be centralized 

as:   

                                               




−=
−=

yyy
xxx

center

center ,                                                    (30)  

We then put centerx and   centery  into the CALS, RCALS and OLS estimators respectively. 

To avoid the impact of resampling and interpolation on the registration, the slave image 

is produced by one order deformation. So, we select the first order polynomial as the  

regression function.   

In the next section, we analyze the results of the registration based on the CALS, 

RCALS and OLS estimators. 

3.3 Analysis Results and Interpretation  

3.3.1 The Comparision of Estimators 

In this paper, we adopt two methods to compare the performances of the estimators: 

namely the mean square error (MSE), commonly used in regression analysis, and the 

difference between the reference and corrected images. Here we use the difference image 

to analyze the effect of CALS, RCALS and OLS estimators. Accordingly, we make use of 
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the mean and standard deviation of the difference images to depict the difference between 

the results obtained by the CALS, RCALS and OLS methods.   

® The comparision of regression coefficients 

Here, we adopt the MSE of the regression coefficient estimators to analyze their effects 

on the accuracy of image registration. The method is detailed as follows: 

Let 

                                    )ˆ()ˆ()̂(MSE T ßßßßß −−== ER .                                   (31) 

The estimator of MSE is  

                                   ∑
=

−−=
k

1  i

)(T)( )ˆ()ˆ(1ˆ ßßßß kk

k
R ,                                          (32) 

where k  is the number of samples, )(ˆ kß  is the estimator corresponding to the kth sample 

and ß  is the mean of )(ˆ kß , ki  ..., ,1= . 

We tested the 20 simulation experiments for different 2
δσ  and the same 22 =εσ  and 

tabulate three of these experiments as representatives in Table 4, i.e. 2
δσ = 1, 2 and 2.5; 

22 =εσ ; TT
211101

TT
)1(01)1( )1 ,0 ,2(),,(),(~ === ββββ ßß , TT

221202
TT

)2(02)2( )0 ,1 ,2(),,(),(~ === ββββ ßß  in (27) 

and IS  2
δσ=D . We also calculate the R̂  value under different values of 2

δσ , and find that 

CALS2 have better performance than the others. 

We can make several observations from Table 4. First, CALS2 sometimes give good 

estimation of the regression coefficients. For example, the R̂ value is the smallest when 

2
δσ = 2 and 2.5, but it is the largest when 2

δσ = 1. The reason is that CALS2 is effective for 

large samples from the statistics point of view. However, it is well known that collecting 

sample points is time-consuming and expensive. So, the sample size must be kept to a 
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minimum (Lunetta, 1991). That is, the sample size may not always meet the qualification 

of large samples. Consequently, the experimental results obtained by CALS2 are not 

always consistent with the theoretical result. Second, CALS and RCALS estimators give 

superior overall performances in estimating the regression coefficients and variance of 

measurement error. Third, we can observe that the variance estimators of the 

measurement error of the output variable of CALS2 are the smallest among these 

variance estimators. The reason is that CALS2 utilizes more information than the others 

(see Equation (21)). 

® Image Difference 

After a corrupted simulated image is corrected, the difference between the corrected 

image and the ideal image is small. So, under this condition, image difference is an 

effective and simple method to analyze the effect on registration based on CALS, RCALS 

and OLS estimators. 

Image differencing generally involves the subtraction of different images. The 

subtraction results in positive and negative values in areas of change and zero values in 

areas of no change (Jensen, 1996). Since the simulated image is an 8-bit image, pixel 

values range from 0 to 255 and the potential range is from –255 to 255. The results are 

normally transformed into positive values by adding a constant, c. The operation is 

expressed mathematically as  

                                        cRICIs ijkijkijk +−=∆ )2()1(                                               (33) 

where ijks∆ = change in pixel value, )1(ijkCI = brightness value at time 1, )2(ijkRI = 
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brightness value at time 2, c = constant. ,....,1=i  number of lines, ,....,1=j number of 

columns, =k  band k. 

      When obtaining the difference image, we use the mean and standard deviation to 

compare the results of CALS2 and OLS. In PCI software, we use histogram analysis to 

obtain the mean and standard deviation of the difference images. The mean and standard 

deviation obtained by CALS2 are 9.529 and 46.86 respectively, and that of OLS are 9.690 

and 47.23 respectively. Figures 6-9 depict the result of the registration. Table 5 shows that 

CALS2 has better performance than OLS. 

3.3.2 The Error Propagation of Remotely Sensed Data 

 Basic statistics about an original include the mean, standard deviation and degree of 

autocorrelation. It is essential to know how these statistics will change in the corrected 

image and how the errors of the control points will propagate. We have produced in 

subsection 3.2.1 a simulated ideal image free of errors. The corrupted image is produced 

by translating the simulated ideal image in the x and y directions by 2 pixels and by 

adding random positional error with a 2-pixel variance. We can regard the corrupted 

simulated image as the original image that was obtained with kinds of system errors and 

random errors by remote sensors. After the corrupted image has been registered, called 

the rectified image or corrected image, we have a corresponding change in uncertainty. 

Through equations (21) and (22), we can obtain the variance estimator of the 

measurement errors 2
εσ  and 2

δσ . From equation (24), we can derive the variance of each 
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pixel of the rectified image after registration 22 ˆ ˆ εσσ =y . It should be noted that the true 

values of RCPs are deterministic variables, not random variables. In Table 4, we can find 

the estimators of CALS2�CALS1 and RCALS. Therefore, we need to perform statistical 

test to see if the errors are significant.  

3.3.3 The Significance Test 

A common belief is that when errors in variables are small at some significance level 

they can be ignored. We consider the following null and alternative hypotheses: 

2
0

2
0    : σσ ≤H     →←    2

0
2

1    : σσ >H  

Choose 2
0σ = 0.1 and α = 0.05, we then obtain  

                                        2
0

2 )21(ˆ σσ αε U+≥  = 0.33.  (as αU = 1.645) 

For the first group of data in Table 4, we find 2
ε̂σ  = 0.60237374 and 0.44582912 

respectively. Thus we reject 0H . That is, 2σ  is more than 2
0σ  at 0.05 level of 

significance.     

3.3.4 Evaluation and comparison of Estimators  

Basing on the analysis and discussion in the above sections, we summarize the 

characteristics of CALS and RCALS when applied to image registration as follows: the 

models have good ability to (1) correct the error contained in RCPs (as detailed in section 

2); (2) estimate correctly the error of RCPs to uncorrected image with and without prior 

information (as detailed in sub sections 3.1-3.3); (3) compensate the model errors, 

specifically improving the accuracy of ß̂ , and consequently the accuracy of the model; (4) 
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estimate the propagated error in the rectified image (as detailed in sub sections 3.1-3.3).  

  The above are the common properties of CALS and RCALS. There are however some 

differences between CALS and RCALS. As aforementioned, CALS is implemented 

under the assumption that IS 2
εσ=D , i.e. 2

εσ = 2
δσ . This assumption is too restrictive in 

many practical applications. To overcome this disadvantage, RCALS is formulated by 

relaxing the assumption IS 2
εσ=D  into a more general relationship: IS 2

εσ=D . That is, 

2
εσ and 2

δσ  are not necessarily equal to each other. And, it has been argued that RCALS 

can better estimate the variance of the measurement errors. 

Though CALS and RCALS possess the above advantages when errors exist in the 

variables, there are some problems that need to be further examined:  

(1) From the point of view of statistics, the models are effective under large sample 

theory.  For small sample, though the result of regression is sometimes not very good, 

better result should be obtained if the methods can be used in the whole process of the 

registration or other relevant processes in handling remotely sensed data. 

(2) The models can be made more perfect when the order of regression is high. It is 

because the models have good compensation ability to linear regression.   

(3) The arrangement of control points can affect the result of regression based on 

CALS and RCALS. The variation in the accuracy of registration should be investigated 

with reference to the variation of control-point arrangement. 
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4 The Registration of Remotely Sensed Data 

To illustrate the applicability of the proposed estimator, we applied our methods to 

the study of a real- life SPOT multispectral image acquired over Xinjiang, China on 

August 30, 1986. The size of the data set is 3000-by-3000 pixels with three channels. A 

800-by-818 subset of the source image is used in this experiment (Figure 10). The RCPs 

are obtained from ETM multispectral image acquired on September 30, 2000. The 

matching error of the locations of the points should be controlled within 0.1 pixels, so that 

the impact of matching error on the accuracy of the registration can be ignored. 

      In this example, we do not have any prior information, i.e. 2
εσ  and 2

δσ  are unknown. 

What we have done is to use the ME models to estimate the variance of the measurement 

errors of the explanatory variables and response variables from the sample data. For 

CALS estimator, the prerequisite for estimating the variance of the measurement errors is 

2
εσ = 2

δσ  when prior information is unknown. However, it is not practical in the registration 

of remotely sensed data. General speaking, the value of 2
εσ  is much larger than that of 2

δσ .  

So under this condition, RCALS estimator is suitable. 

 Before the registration of a remote sensing image, some preprocessings need be done. 

For efficient computation, we first convert the Geodetic Coordinates of RCPs 

RG ( T)  ( yx RGRGRG = ) into the corresponding image coordinates RI ( T)  ( yx RIRIRI = ). 

The RCPs are shown in Table 6. RI ( T
yx RGRGRG )  ( minminmin = ) means the minimum 

vector in the x direction and y direction. 
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                                                  (34) 

And then these control points are put into the OLS and RCALS estimators. Table 7 

and Figure 11-12 show the result of the registration. At the same time, we can obtain 

variances of the measurement errors. We can observe from Table 7 that in a noisy 

environment the RCALS estimator has an overall superior performance compared to 

OLS.  

5 Conclusion 

We have discussed some basic issue of error analysis in image-to- image registration, 

and have proposed an errors- in-variables model, called RCALS, for registration. It has 

been demonstrated that the OLS model is incapable of handling problems in which errors 

exist in the response and explanatory variables. While CALS is a suitable model to 

perform the task, it is too restrictive in its assumption. By introducing a more general 

relationship, the proposed RCALS model is more flexible in analyzing errors in 

registration. It also renders significance test and error propagation mechanism. The 

conceptual arguments have been substantiated by some simulated and real- life 

experiments.  

While the proposed RCALS model has a reasonably good performance, there are 

issues that need further investigations. In this paper, we have discussed the registration of 

corrupted image with the same error variance. For better application, we need to examine 

the registration of corrupted image with different error variance and with certain degree 
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of autocorrelation in further studies. To be more comprehensive, detailed analysis should 

be made on the impact of RCPs with error on the accuracy of change detection and data 

fusion of multi-spectral and multi-temporal remotely sensed data. Based on the proposed 

error propagation method, we should also discuss the impact of RCPs on the accuracy of 

classification of remotely sensed data. Furthermore, the error propagation of radiometric 

correction and its impact on the accuracy of classification should also be carried out in the 

future. 

 

Reference 

[1] Arbia, G.; Griffith, D.; Haining, R., 1999, error propagation modeling in raster GIS: 

adding and ratioing operations, Cartography and Geographic Information Science, 

Vol. 26(4), pp.297-315. 

[2] Boggs, P.T.; Donaldson, J.R.; Schnabel, R.B. and Spiegelman, C.H., 1988, A 

computational examination of orthogonal distance regression. Journal of 

Econometrics, Vol. 38, pp.169-201. 

[3] Buiten, H. J., 1988, Matching and mapping of remote sensing images: aspects of 

methodology and quality. Proceedings of 16th ISPRS congress, Kyoto, Japan, 

27-B10 (III), pp. 321-330. 

[4] Buiten, H. J.; Clevers, J. G. P. W., 1993, Land observation by remote sensing: theory 

and applications, Gordon and Breach Science Publisher, USA. 

[5] Carmel, Y.; Dean, D. J.; Flather, C. H., 2001, Combing location and classification 

error sources for estimating multi-temporal database accuracy, Photogrammetic 

Engineering and Remote Sensing, Vol. 67(7), pp. 865-872.  

[6] Chen, S. P.; Tong, Q. X., 1998, The mechanism research of Remote Sensing 

Information, China: Science Press. 



Study on Registration of Remote Sensing Image with Measurement Errors and Error Propagation 

 28

[7] Congalton, R. G.; Green, K., 1999, Assessing the Accuracy of Remotely Sensed 

Data: Principle and Practices, Lewis Publishers. 

[8] Dai, X. L.; Khorram, S., 1998, The effects of image misregistration on the accuracy 

of remotely sensed change detection. IEEE Transactions on Geoscience and Remote 

Sensing, Vol. 36(5), pp.1566-1577. 

[9] Flusser, J.; Suk, T., 1994, A moment-based approach to registration of images with 

affine geometric distortion, IEEE Transactions on Geoscience and Remote Sensing, 

Vol. 32(2), pp.382 –387. 

[10] Heuvelink, G. B. M., 1998, Error propagation in environmental modelling with GIS, 

London; Bristol, PA: Taylor & Francis. 

[11] Itten, K. I.; Meyer, P., 1993, Geometric and radiometric correction of TM data of 

mountainous forested areas, IEEE Transactions on Geoscience and Remote Sensing, 

Vol. 31(4), pp.764 –770. 

[12] Janssen, L. L. F.; Van der Wel, F. J. M., 1994, Accuracy Assessment of Satellite 

Derived Land-Cover Data: A Review, Photogrammetic Engineering and Remote 

Sensing, Vol. 60(4), pp.419-426. 

[13] Jensen, J. R., 1996, Introductory digital image processing: a remote sensing 

perspective, Upper Saddle River, N.J.: Prentice Hall. 

[14] Kapteyn, A.; Wansbeek, T.J., 1984, Errors in variables: Consistent Adjusted Least 

Squares (CALS) estimator. Communication in Statistics ----Theory and Methods, 

13, 1811-1837. 

[15] Lunetta, R. S.; Congalton, R. G.; Fenstermaker, L. K., et al., 1991, Remote Sensing 

and Geographic Information System Data Integration: Error Sources and Research 

Issues, Photogrammetic Engineering and Remote Sensing, 57(6): 677-687. 

[16] Moreno, J. F.; Melia, J., 1993, A method for accurate geometric correction of 

NOAA AVHRR HRPT data, IEEE Transactions on Geoscience and Remote 

Sensing, Vol. 31(1), pp.204 –226. 

[17] Nyquist, H., 1988, Least orthogonal absolute deviations. Computational Statistics 



Study on Registration of Remote Sensing Image with Measurement Errors and Error Propagation 

 29

& Data Analysis, Vol. 6(4), pp. 361-367. 

[18] Pal, M., 1980, Consistent moment estimators of regression coefficients in the 

presence of errors in variables. Journal of Econometrics, Vol. 14(2), 349-364. 

[19] Richards, J. A.; Jia, X. P., 1999, Remote sensing digital image analysis: an 

introduction, Berlin; New York: Springer-Verlag, 3rd ed. 

[20] Seto, Y.; Homma, K.; Komura, F., 1991, Geometric correction algorithms for 

satellite imagery using a bi-directional scanning sensor,  IEEE Transactions on 

Geoscience and Remote Sensing, Vol. 29(2), pp.292 –299. 

[21] Shin, D.; Pollard, J.K.; Muller, J. P., 1997, Accurate geometric correction of ATSR 

images, IEEE Transactions on Geoscience and Remote Sensing, Vol. 35(4), 

pp.997-1006. 

[22] Townshend, J. R.; Justice, C. O., 1992, The Impact of Misregistration on Change 

Detection, IEEE Transactions on Geoscience and remote sensing, Vol. 30(5), 

pp.1054-1060. 

[23] Wansbeek, T.; Meijer, E., 2000, Measurement error and latent variables in 

econometrics, Amsterdam; New York: Elsevier. 

 

 

 

 

 

 

 

 

 

 

 

 



Study on Registration of Remote Sensing Image with Measurement Errors and Error Propagation 

 30

 

Figures:  

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1  A Simulated Ideal Image. The size is 
512-by-512  

Fig. 2 The Corrupted Simulated Image 



Study on Registration of Remote Sensing Image with Measurement Errors and Error Propagation 

 31

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 The Effect of Reference Control Points (RCP) with 
Errors on Registration 
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Fig. 3 The Distribution of Control Points in the 

Simulated Ideal Image 
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Fig. 6 Corrected Image by CALS2  

Fig. 5 The Difference Image between the Corrected Image 
and the Simulated Ideal Image 

(RCP with 0.5-pixel variance; the corrected image is 
obtained by the OLS. The size of this image is 128-by-128)
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Fig.7 Corrected Image by OLS  

Fig. 8 Difference Image between the Corrected Image 
by CALS2 and the Simulated Ideal image 
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Fig. 9 Difference Image between the Corrected Image 
by OLS and the Simulated Ideal image 

Fig. 10 SPOT Multispectral image acquired over 
Xinjiang on August 30, 1986 
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Fig. 11 Corrected Image by RCALS 

Fig. 12 Corrected Image by OLS 



Study on Registration of Remote Sensing Image with Measurement Errors and Error Propagation 

 36

 

Tables:  
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

XI YI XO XI YI XO XI YI XO 

-1.09 -1.89 -4.7 4.13 0.05 12.79 2.78 1.1 2.42 
-0.25 1.2 4.78 2.46 4 17.67 -0.1 1.84 6.62 
-1.06 -2.46 -7.36 2.87 1.19 5.78 -1.74 -2.35 -11.76 
1.24 -2.94 0.64 2.04 0.85 0.63 -1.34 -0.01 2.14 

-1 -2.76 -8.13 1.44 0.72 5.21 -0.81 -1.86 -9.67 
-4.37 -0.28 -9.34 2.27 0.6 7.15 1.21 1.58 7.39 
-2.47 -2.98 -5.56 -6.53 -2.51 -16.83 2.59 3.68 15.88 
-0.51 0.5 7.95 -0.21 1.98 2.26 0.18 0.51 2.97 
-0.64 0.77 -3.55 -2.21 -0.91 -2.56 1.08 3.64 12.32 
1.55 -0.71 0.72 -2.15 -0.44 -3.45 -3.15 -2.94 -10.63 

-0.57 1.38 3.24 3.74 2.41 17.96 2.26 4.52 14.36 
-1.19 -1.08 -2.81 -1.78 -0.54 0.27    

 
0̂β  

1̂β  
2̂β  

True 1 2 3 
OLS 1.247       1.806       2.313 
CALS1 1.128 1.717      3.006     
CALS2 1.119       2.042       3.132 

Table 1  A simulated data set of size 35 (XI, YI are the explanatory 

variables; XO is the response variable) 

Table 2  The estimation results 
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xg  yg  xm   ym  xg  yg  xm   ym  

95.99609 426.0039 93.99609 426.0039 266.0039 199.0039 264.0039 198.9961 
188.9961 410.0039 186.9961 410.0039 281.9961 90.00391 280.0039 90.00391 
204.9961 312.9961 202.9961 312.9961 465.0039 97.00391 463.0039 97.00391 
331.9961 250.0039 329.9961 250.0039 60.00391 206.0039 58.00391 206.0039 
384.9961 152.0039 383.0039 152.0039 41.99609 133.9961 39.00391 133.9961 
408.9946 39.00391 407.0039 39.00391 190.9844 54.98438 188.0039 55.00391 
364.9972 337.0039 362.9961 337.0039 88.00391 34.99609 84.99609 34.99609 
314.0039 420.0039 312.0039 420.0039 306.9961 325.0039 305.0039 325.0039 
446.0039 254.0039 444.0039 254.0039 481.9961 192.0039 479.9961 192.0039 
95.99219 294.0078 93.99609 294.0039 234.0039 458.0039 232.0039 458.0039 
47.00391 334.0039 45.00391 334.0039 347.0039 474.0039 345.0039 474.0039 
152.9961 166.0039 151.0039 165.9961 351.9961 29.00391 350.0039 29.00391 

Table 3  A sample of simulated data with size 24  

( xg , yg are explanatory variables; xm , ym are response variables.) 
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TRUE Methods 
i0̂β  

i1̂β  
i2β̂  2

ε̂σ  2
δ̂σ  R̂  

2.1020844   4.1112e-007      0.99985776 1.0346276      0.17000723      RCALS  
1.6417400       1.0002787    0.00012789653 0.77747503 0.11437380 

0.37252052 

2.0918853   -4.6593e-006 0.99990336 0.31434077   1       CALS2  
1.6303770       1.0003250    0.00012249023 0.027603082 1 

0.38087295 

2.0967715  -2.2301e-006 0.99988151 0.60237374      0.60237374      CALS1  
1.6374874       1.0002961    0.00012587328 0.44582912 0.44582912 

0.37520691 

2.1041733   1.4496e-006      0.99984843 1.3140926       

2
εσ =2; 
2

δσ =1 

T
)2(

T
)1(

)0,1,2(~
)1,0,2(~

=

=

ß

ß

 OLS 
1.6432074       1.0002728    0.00012859465 0.97299483  

0.37168957 

2.6537296     0.001143149      0.99665739 1.0090178        0.16381646 RCALS 
2.3505358      1.0003343    -0.0012377029 2.2830002 0.33580188 

0.741790 

2.6313630     0.001132091      0.99675731 0.70857441      2 CALS2  
2.3292396 1.0004213   -0.0012479744 0.85563459 2 

0.712061 

2.6485651     0.001140596     0.99668046 0.58782690       0.58782690 CALS1  
2.3380819       1.0003852  0.0012437094 1.3090501 1.3090501 

0.731403 

2.6557249     0.001144135     0.99664848 1.2782615        

2
εσ =2; 
2

δσ =2 

T
)2(

T
)1(

)0,1,2(~
)1,0,2(~

=

=

ß

ß

 OLS 
2.3548326       1.0003168    -0.0012356308 2.8571141  

0.745584 

1.4577786 0.000206181  1.0016535 2.5736210       0.42452286      RCALS 
3.5339340   0.99776894   -0.0033031654 2.4216008 0.35231270 

1.626953 

1.4321678    0.000193157      1.0017682 0.76372139      2.5        CALS2  
3.5068180      0.99788040   -0.0033170057 0.53525467 2.5 

1.610265 

1.4445419    0.00019945       1.0017128 1.4972648       1.4972648       CALS1  
3.5208429 0.99782275   -0.0033098468 1.3892341 1.3892341 

1.619109 

2
εσ =2;  
2

δσ =2.5 

T
)2(

T
)1(

)0,1,2(~
)1,0,2(~

=

=

ß

ß

 OLS 1.4630165    0.00020884       1.0016300 3.2722243        1.629413 

Table 4 The Comparision of Regression Coefficients 

( R̂  is the estimator of MSE; T
210)( ),,(~
iiii βββ=ß , 2  ,1=i ,

kiβ̂ (k = 0, 1, 2) is the estimator of regression 

coefficients; 2
ε̂σ  and 2

δ̂σ  are the estimators of measurement errors of response variable and 

explanatory variables  respectively.) 
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True Methods 
i0̂β  

i1̂β  
i2β̂  R̂  Mean Standard 

Deviation 
3.3501924 -0.0048645 0.99895008 CALS2  
3.9464883 0.9955764 -0.00231508 

2.3689419 9.529 46.86 

3.4107636 -0.0048309 0.99867598 

2
εσ =2; 

2
δσ =3 

 
 

OLS 

4.0090204 0.9953184 -0.00228226 

2.4548868 9.690 47.23 

UI (X) UI (Y) RI (X) RI (Y) UI (X) UI (Y) RI (X) RI (Y) 
286.0625 711.8125 387911.2545 4546732.804 665.9688 503.9688 396411.5670 4549062.491 
223.8125 789.9375 386272.5046 4545495.304 336.1875 615.0625 389396.2546 4548375.304 
197.9375 254.9375 388668.7546 4555901.554 331.9688 811.9062 388253.4421 4544590.616 
672.0625 572.9375 396146.2545 4547711.554 321.0625 647.4375 388938.7546 4547797.804 
616.0625 392.0625 396030.0045 4551454.054 273.0625 797.0625 387202.5045 4545131.554 
538.8750 231.8750 395407.5045 4554866.554 651.9375 600.9375 395602.5046 4547257.804 
507.0312 626.0312 392665.3170 4547410.616 158.9094 451.4419 386864.7046 4552304.317 
452.0625 698.0625 391196.2546 4546271.554 174.9961 120.0039 388964.7827 4558604.552 
392.0625 269.4375 392368.1295 4554778.429 683.9961 78.0117 399064.7046 4557184.317 
416.9688 404.0312 392125.3170 4552088.741 169.0039 700.0039 385704.7046 4547464.473 
563.8125 688.8125 393416.2545 4545945.304 754.0039 768.0039 396684.7046 4543604.317 
622.0625 638.9375 394822.5045 4546661.554 665.9688 503.9688 396411.5670 4549062.491 

Methods 
i0̂β  

i1̂β  
i2β̂  2

ε̂σ  2
δ̂σ  

47.881707     0.27295907      0.96943027 0.022603986     0.55769935      RCALS 
-170.90637 0.97551516      0.22110812 0.012265135 0.54363945 
47.881935     0.27295885      0.96942965 0.63592436        OLS 
-170.90626 0.97551490      0.22110810 0.60885484  

Table 5   The Comparision of Difference Image  

Table 6  A sample of remotely sensed data with size 24; UI(X), UI(Y) are 
explanatory variables; RI(X), RI(Y) are output variables. UI means 
Uncorrected Image; RI means Reference Image 

 

Table 7  The Comparision of RCALS and OLS 


