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Abstract 
 
Neural spatial interaction models represent the most recent innovation in 
the design of spatial interaction models. They are receiving increasing 
attention in recent years because of their powerful universal 
approximation properties. In essence they are devices for non-parametric 
statistical inferences, providing an elegant formalism for spatial 
interaction modelling. This contribution meets an urgent demand for 
methodological guidelines on how to develop robust applications that 
work from a statistical perspective. It introduces various components of a 
methodology for neural spatial interaction modelling that consists of a 
model specification framework to produce consistent estimators, a 
parameter estimation framework to compute parameter estimates that 
optimize an explicit fitness criterion and a framework to evaluate the 
model performance. 
 
JEL classification: C31, C45, R19 
Keywords: Spatial interaction, neural networks, non-parametric non-linear 
models, model selection, parameter estimation, model adequacy testing 
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1 INTRODUCTION 
 
Regional science is a rich discipline at the cross-roads of economics and 
geography. A closer look at the history of the discipline teaches us that 
the field of spatial interaction has a long and deep intellectual tradition1. 
That there have been relatively few papers in this field in recent years is 
merely a function of the hiatus that followed a very active period of 
theory development in the 1960s and 1970s, the heady days of Stewart 
and Warntz, Stouffer, Isard, Wilson and Alonso. The empiricism that 
emanated from their theoretical and methodological contributions filled 
regional science and geography journals. The lull came not so much 
because interest decreased, but very little theoretical progress has been 
achieved. One exception was the excitement over the work of 
Fotheringham on competing destinations in the early 1980s when several 
new models were developed and new perspectives added (Fischer and 
Getis, 1999). 

In more recent years, the major influence stems both from the 
emerging data-rich environment and from technological innovations. The 
powerful and fast computing environment now available has brought 
many scholars to spatial interaction theory once again, either by utilizing 
evolutionary computation to breed novel forms of spatial interaction 
models (see Openshaw, 1988; Turton, Openshaw and Diplock, 1997) or 
applying neural network theory to spatial interaction, first proposed by 
Fischer and Gopal (1994) and later extended by many others [including 
Fischer and Leung, 1998; Bergkvist, 2000; Reggiani and Tritapepe, 2000; 
Mozolin, Thill and Usery, 2000; Fischer and Reismann, 2002a, b; 
Fischer, 2000, 2002a, b; Fischer, Reismann and Hlavackova-Schindler, 
2003]. 

The novelty about neural spatial interaction models lies in their 
ability to model non-linear spatial interaction processes with few – if any 
– a priori assumptions about the nature of the generating process. A 

                                                 
1 It is beyond the scope of this contribution to offer a survey of this tradition. The reader 

is referred to the wealth of historical material in Carrothers (1956), Isard and Bramhall 
(1956), Olsson (1965), Wilson (1967, 1970), Batten and Boyce (1986), Fotheringham 
and O'Kelly (1989), Sen and Smith (1995), among others. 
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major weakness of neural spatial interaction modelling is the lack of 
established procedures for performing tests of statistical significance for 
the various model parameters that have been estimated. This is a serious 
disadvantage in the regional science community where there is a strong 
culture for testing not only the predictive power of a model or the 
sensitivity of the dependent variable to changes in the inputs but also the 
statistical significance of the finding at a specified level of confidence. 
This contribution meets an urgent demand for methodological guidelines 
on how to develop robust applications that work from a statistical 
perspective. 

The remainder of this chapter is structured as follows. The next 
section introduces the class of neural spatial interaction models of 
interest, and sets forth the context in which spatial interaction modelling 
will be considered. The sections that follow present constituent 
components of a methodology for neural spatial interaction modelling 
that comprises a model selection framework to produce consistent 
estimators (see Section 3), a parameter estimation framework to compute 
a set of parameter estimates that optimize an explicit fitness criterion (see 
Section 4), and a framework to evaluate the model performance (see 
Section 5). Section 6 concludes the chapter.  
 
 
2 NEURAL SPATIAL INTERACTION MODELLING AND 

ASSUMPTIONS 
 
In this contribution we will be concerned with data generated according 
to the following conditions. 
 
Assumption A: Observed data are the realization of a sequence {zu=(xu, 
yu), u=1, …, U} of independent identically distributed (iid) random 
(N+1)x1 vectors, ,N ∈  with zero mean and constant variance. 

 
The random variables yu represent bi-locational spatial interaction flows 
[=targets]; their relationship to the variables xu [such as origin-specific, 
destination-specific and separation attributes] is of primary interest. 
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When E(yu)<∞, the conditional expectation of yu given xu exists, denoted 
as g = E(yu | xu). Defining ( )u u uyε ≡ − xg we can also write 

 

( )u u uy ε= +xg  (1) 

 
The unknown function ( )uxg , called spatial interaction function, 
embodies the systematic part of the stochastic relation between yu and xu. 
The error uε  is noise, with the property E(εu | xu)=0 by construction. 
Knowledge of E(yu | xu) or of the underlying function ( )uxg is equivalent 
since E(εu | xu)=0. Neural spatial interaction models may be viewed as 
estimators of the conditional density E(yu | xu), or in other words the on 
average realization of y given x. They make no a priori assumption 
regarding the functional form of ( ).uxg  Thus, they are non-parametric 
estimators, as opposed to parametric, where a priori assumptions are 
made. 

We are interested in a methodology for the case of unconstrained 
spatial interaction. The objective of such a methodology is to construct an 
estimator of the unknown spatial interaction function ( )uxg , denoted 
Ω(x, w) where w  is a set of p free parameters and zu=(xu, yu) a finite set 
of observations. A well specified estimator will have  the following 
characteristics: 

 
•  it will provide a comfortable fit with the data, 
•  the expectation E[ε | x]=0. 
 
The task of model selection involves to choose a functional form from a 
number of possibly competing alternatives [the model specification task], 
and to estimate the parameters in a way which satisfies a fitness criterion 
[the parameter estimation task]. 

Our interest in this contribution is focused on the output functions of 
unconstrained neural spatial interaction models based upon single hidden 
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layer feedforward networks2 (see Fischer and Reismann, 2002b). These 
functions have the following properties: 
 
Assumption B: Model output is given by a function Ω : ℜ  x W→ℜ  where  
W is a compact subset of ℜ  p (p integer) such that for each w ∈  W          
Ω (., w): ℜ  N→ℜ  is (Borel) measurable. 
 
Model parameters [network weights] are here restricted to lie in a 
compact set W of finite dimension p, where p is the total number of 
parameters. This requirement for model output functions is satisfied for 
single hidden layer network models of the form  

 

00 0 1
1 1

( , ) ( ( ))
= =

= +∑ ∑
H N

H
h hn n

h n

w w w xΩ ψ ϕx w  (2) 

 
where the N-dimensional euclidean space (in practice generally, N = 3) is 
the input space and the 1-dimensional euclidean space the output space. 

1( ,..., )Nx x=x  is the input vector that represents variables which 
characterize the origin and the destination of spatial interaction as well as  
their separation.  

This class of general neural spatial interaction models is a set of 
network models which share the same architecture and whose individual 
members are continuously parameterized by the p= 1( 1)HN H ×+ + -
dimensional vector 0 1( , )H ≡w w w  where 0 00 01 0( , ,..., )Hw w w≡w  
contains the hidden to output unit weights and 1 10 1( ,..., )Hw w≡w with 

1 1 1 1( ,..., )h h hNw w≡w  the input to hidden unit weights. (.)ϕ  is a hidden 
layer transfer function, (.)ψ  an output unit transfer function, both 
continuously differentiable of order 2 on ℜ . The nested form of 
Equation (2) is the main reason that fitted spatial interaction models are 

                                                 
2 Although unconstrained neural spatial interaction models of type (2) represent a rich and 

flexible family of spatial interaction function approximators for real world applications, 
they may be of little practical value in situations where a priori information is available 
on accounting constraints on the predicted flows. For such cases Fischer, Reismann and 
Hlavackova-Schindler (2003) proposed a novel neural approach based on a modular 
product unit neural network architecture. 
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so difficult to interpret. The model (2) is explicitly indexed by the 
number, H, of hidden units in order to indicate the dependence. Without 
any loss of generality in this contribution we consider only neural spatial 
interaction models with fixed H. To simplify notation, we, thus, drop the 
superindex H hereafter. 
 
 

3 MODEL SPECIFICATION AND THE FITNESS FUNCTION 
 
An important step in the specification of the general neural spatial 
interaction model (2) is the choice of the transfer functions, ψ (.) and      
ϕ(.). These can be any non-linear functions as long as they are continuous 
and differentiable. Typically, they are sigmoidal, the hyperbolic tangent 
or a thermodynamic-like function. All these functions belong to the 
family 
 

{ }( , , , ) | ; , {0}r s t r s tΓ γ γ ℜ ℜ −= = ∈ ∈x x,  (3) 
 
where γ (.) is defined as follows 
 

1( ) (1 exp )−= + +r s tγ x x . (4) 
 
When r=s=1 and t=-1 the asymmetric sigmoid is obtained, which is the 
most commonly used function.  

The second and main step in model specification involves the choice 
of an individual member of the model class. Over the years of neural 
network development an impressive array of model specification 
procedures have been proposed. Many tackle the problem of searching 
over the specification space and parameter space simultaneously. But the 
most important one is the so-called discrimination approach where the 
individual members of the model class under consideration are evaluated 
using a fitness criterion that penalizes the in-sample performance of the 
model, as the complexity of the functional form [that is, H] increases. 
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The fitness criterion, also known as cost functional, performance or loss 
function or discrepancy criterion, is generally defined as the average 

 
1

1
( ) ( , )

U

trueU
u

λ π
=

= ∑w z w  (5) 

 
where ztrue stands for the pair (x, ytrue) and π(ztrue, w) is a pairwise 
discrepancy criterion. The superindex true emphasizes the fact that ytrue is 
different from the observed value y that is used to fit the model. The 
fitness function should be such that it increases if g(x) and Ω (x, w) are 
considered to become less similar. 

The objective of the learning process is to identify a parameter 
vector, say w , which minimizes the loss function (5). Let us assume for 
the moment that the solution to the minimization problem 
 

arg min{ ( ) with , and ( 1)}p p HN Hλ ℜ= ∈ ⊆ = + +w w w W w  (6) 
 
exists and it is unique. We term ( )λ w the discrepancy due to bias. It does 
not depend in any way on the sample size or the sample. In general, 

( )λ w decreases with the dimensionality of the parameter vector. The 
model ( , )Ω x w  is called the best approximating model for the family 

( , )Ω x w  and the loss function ( )λ w . Following Zapranis and Refenes 
(1999) we will term this the empirical loss, and will denote it as ( )Uλ w , a 
consistent estimator of ( )λ w . A common choice of empirical loss is  
 

1

1
( ) ( , )

U

U uU
u

λ π
=

= ∑w z w  (7) 

 
where zu belongs to the training sample SU={(zu, yu), u=1, ..., U}. It can 
be shown that as the size of the sample tends to infinity, ( )Uλ w  
converges to ( )λ w (see White, 1989). 

Let us assume that the solution to the following minimization 
problem 
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ˆ arg min{ ( ) with }p
Uλ ℜ= ∈ ⊆Uw w w W, w  (8) 

 
exists, then ˆUw  is called a minimum discrepancy estimator of w 3. The 
discrepancy between the best approximating neural spatial interaction 
model )( ,Ω wx  and ˆ )( , UΩ wx  is called the discrepancy due to variance. 
It expresses the magnitude of the lack of fit due to sample variation and 
does depend on the data and on the parameter estimation procedure 
utilized. Its expectation increases in general as the dimensionality of the 
parameter vector also increases. 

Neither discrepancy due to bias nor discrepancy due to estimation 
can be computed unless the underlying spatial interaction function g(x) is 
known. Since g(x) and consequently w  are unknown, the learning 
process in practice consists of minimizing Equation (8) where ( )Uλ w  is 
given from Equation (7). To calculate the empirical loss with Equation 
(7) one needs first to define a discrepancy criterion. Although there is no 
such universally acceptable criterion, the pairwise squared difference 
between g(x) and ˆ )( ,Ω wx  is most widely used discrepancy criterion4: 

 
[ ]21

2 ˆ ), ( )  ( ,trueπ Ω( ) = −w wz x xg  (9) 
 
Note that different data-generating assumptions different from 
Assumption A would lead to different criteria that result in different loss 
functions. One important example derived from Poisson processes is the 
Kullback-Leibler loss function (see Kullback and Leibler, 1951) 
 

[ ]( ) log ( , )=−KL
HE pλ w x w  (10) 

 
where pH(x, w) is the probability density function of the approximating 
neural spatial interaction model. The minimum discrepancy estimator 
associated with this loss function is the maximum likelihood estimator 
(see Fischer, 2002a). 

                                                 
3 If ˆUw is a minimum discrepancy estimator [i.e. a solution of Equation (8)] then it can be 

shown that ˆUw asymptotically converges to w  (Gallant and White, 1988). 
4 The factor 1

2  serves the purpose to simplify the formulae for the derivatives of ( ).Uλ w  
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The problem of selecting the appropriate neural spatial interaction 
model can alternatively be viewed as balancing the bias and variance 
parts of the expected squared difference between ( , )Ω x w  and g(x). An 
under-parameterized model will have a large bias and smooth out some 
of the underlying structure in the data, while one model that has too much 
flexibility in relation to the particular data set will overfit the data and 
have a large variance. The model will be very sensitive to the data and 
characteristically far from g (x). Balancing these two opposing forces is 
far from trivial in practice. Various ways to controlling complexity of a 
neural spatial interaction model are discussed in Fischer (2000). 
 
 

4 PARAMETER ESTIMATION AND PROCEDURES 
 
Given the class of neural spatial interaction models (2), parameter 
estimation simply consists of solving the minimization problem (8), 
where ( )Uλ w is given by Equation (7) and the discrepancy criterion is 
usually the [halved] squared differences between targets [yu] and model 
forecasts5. In this case the resulting empirical loss ( )Uλ w  is the ordinary 
least squares function 
 

[ ] 21
2

1
( ) ( , ) .

U

U u uU
u

yλ Ω
=

= −∑w x w  (11) 

 
As above we denote the solution to this minimization problem as ˆUw  
where the hat signifies that it is an estimator of the parameter vector w  
and the subscript U emphasizes its dependence on the sample size. Since 
the loss function ( )Uλ w  is a complex non-linear function of w, the 
problem of estimating the model parameters ˆUw  by means of optimizing 
some performance criterion does not have a well-defined closed-form 

                                                 
5 Because E[{y-g(x)}2] is simply the variance of y given x and does not depend on the 

data, it follows that by minimizing E[{y-Ω(x, w)}2] one also minimizes E[{g(x)-Ω(x, 
w)}2}] that is the mean squared error of Ω(x, w) and a natural measure of the 
performance of model Ω(x, w) as a predictor (Zapranis and Refenes, 1999). 
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solution. But iterative procedures are available for this purpose. Two 
types of iterative procedures may be distinguished: local search and 
global search procedures. 

Local search procedures characteristically use derivative information 
of λU(w) within a local iterative process in which an approximation to the 
function in a neighbourhood of the current point in parameter space is 
minimized. The general scheme of the iteration process may be 
characterized as follows (Fischer, 2001b): 
 
(i) choose an initial vector w in parameter space and set τ=1, 
(ii) determine a search direction d(τ) and a step size η(τ) so that 
 

λU(w(τ)+ η(τ) d(τ)) <  λU(w(τ)) τ =1, 2, ... (12) 
 
(iii) update the parameter vector 
 

w(τ+1)= w(τ)+η(τ) d(τ) τ =1, 2, ... (13) 
 
(iv) if ( )Uλ w /dw ≠0 then set τ=τ +1 and go to (ii), else return w(τ+1) as 

the desired minimum. 
 
Determining the next current point in the iteration process entails two 
problems. First, the search direction d(τ) has to be determined, that is, 
what direction in parameter space we want to go in the search for a new 
current point. Second, once the search direction has been found, we have 
to decide how far to go in the specified direction, that is, step size η(τ) 
has to be determined. 

To solve these problems, normally two types of operation must be 
carried out: the computation or evaluation of the derivatives of the loss 
function with respect to the model parameters, and the computation of the 
parameter η(τ) and the direction vector d(τ) based upon these derivatives. 
The evaluation of the loss function is most commonly performed by the 
backpropagation technique which provides a computationally efficient 
procedure for doing this. Gradient descent, conjugate gradient and quasi-
Newton procedures are characteristically used for the computation of the 
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parameter η(τ) and the direction vector d(τ). When ( )Uλ w /dw becomes 
perpendicular to d(τ), the algorithm has reached a minimum ˆUw . This 
can be either a global minimum or a suboptimal solution known as local 
minimum, that is the minimum in a finite neighbourhood. In both cases, 
very often the solution is not unique, meaning that there exist many 
permutations of weights and/or hidden units corresponding to the same 
empirical loss magnitude. 

Local search procedures find local minima efficiently and typically 
work best in unimodal problems. But they have difficulties when the 
surface of the parameter space is flat [i.e. gradients close to zero], when 
there is a large range of gradients, and when the surface is very rugged. 
The search may progress too slowly when the gradient is small, and may 
overshoot where the gradient is large. When the error surface is rugged, a 
local search from a random starting point converges to a local minimum 
close to the initial point and worse solution than the global minimum 
(Fischer, 2001b). 

Global search algorithms employ heuristics to be able to escape from 
local minima. These algorithms can be classified as probabilistic or 
deterministic. Of the few deterministic global minimization methods that 
exist, most apply deterministic heuristics to bring search out of a local 
minimum. Other methods, like covering methods, recursively partition 
the search space into subspaces before searching. None of these methods 
operates well or provides adequate coverage when the search space is 
large, as is usually the case in neural spatial interaction modelling. 

Probabilistic global minimization methods rely on probability to 
generate decisions. The simplest probabilistic algorithm uses restarts to 
bring search out of a local minimum when little improvement can be 
made locally. More advanced methods rely on probability to indicate 
whether a search should ascend from a local minimum: simulated 
annealing, for example, when it accepts uphill movements. Other 
probabilistic algorithms rely on probability to decide which intermediate 
points to interpolate as new trial parameter vectors: random re-
combinations or mutations in evolutionary algorithms (see, for example, 
Fischer and Leung, 1998). 



12 Manfred M. Fischer 

The success of global search procedures in finding a global minimum 
of a given function such as λ over w∈ W hinges on the balance between 
an exploration process, a guidance process and a convergence-inducing 
process. The exploration process gives the search a mechanism for 
sampling a sufficiently diverse set of parameters w in W. This exploration 
process is generally stochastic in nature. The guidance process is an 
implicit process that evaluates the relative quality of search points and 
biases the exploration process to move toward regions of high-quality 
solutions in W. The convergence-inducing process finally ensures the 
convergence of the search to find a fixed solution ŵ . The dynamic 
interaction among these three processes is responsible for giving the 
search process its global optimizing character (Hassoun, 1995). An 
example of a powerful global search procedure is Alopex, a correlation-
based method for solving the maximum likelihood problem. The reader 
interested in details of the procedure is referred to Fischer and Reismann 
(2002b). 

Global search procedures such as Alopex based search – as opposed 
to local search – have to be used in network training problems where 
reaching the global optimum is at premium. The price one pays for using 
global search procedures is increased computational requirements. The 
intrinsic slowness of such procedures is mainly due to the slow but 
crucial exploration process. This may motivate the development of a 
hybrid procedure that uses global search to identify regions of the 
parameter space containing local minima and gradient information to 
actually find them (Fischer, 2002a). 
 
 

5  MODEL ADEQUACY TESTING 
 
The discrimination approach to model selection will identify a particular 
model ˆ( , )Ω x w  as correctly specified. For a correctly specified model 
the non-parametric residuals 
 

ˆ( , ) for 1, ...,u u U uy e u UΩ− = =x w  (14) 
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are such that ( )u u u ue yε≅ = − xg . The residuals {eu} can be taken to 
perform meaningful diagnostic tests about the initial assumptions 
concerning the stochastic term in the data-generating mechanism [see 
Assumption A]. But because of the non-parametric nature of neural 
spatial interaction models, satisfying these tests is a necessary, but not 
sufficient condition for model adequacy. There is always the possibility 
that a grossly over-parameterized model will satisfy these tests. 

Thus, the selected neural spatial interaction estimator is not 
necessarily a faithful representation of the underlying spatial interaction 
function g (x). There are a number of reasons for this (Zapranis and 
Refenes 1999): 
 
•  Inadequacies of the estimation procedure: Convergence issues such 

as local minima or sensitivity to initial conditions may affect the 
replicability of the estimation process and distort the relationship 
between model complexity and estimation error. 

 
•  Incorrect functional form: In the context of neural spatial interaction 

models of type (2) this translates to the wrong number H of hidden 
units; the selected model can be biased and inconsistent, and the 
variance of the disturbance term incorrectly estimated. 

 
•  Measurement errors in the explanatory and dependent variables: 

Omitted observations, approximation errors, outliers etc. can lead to 
specification bias. 

 
•  Incorrect specification of the error term: Failure to satisfy the model 

adequacy tests might be simply due to wrong assumptions about the 
true nature of the error term, such as Assumption A. 

 
Diagnostic checking should be an integral part of model adequacy 
testing, but can not replace assessing the generalization performance of a 
model. The standard approach for assessing the generalization 
performance of a neural spatial interaction model is data splitting (see, 
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for example, Fischer and Reismann, 2002b). This method simulates 
learning and generalization by partitioning the total data set, say 
MU={(xu, yu) with u=1, ..., U}, into three separate subsets: a training [in-
sample] set MU1={(xu1, yu1) with u1=1, ..., U1}, an internal validation set 
MU2={(xu2, yu2) with u2=1, ..., U2} and a testing [out-of-sample] set 
MU3={(xu3, yu3) with u3=1, ..., U3}. MU1 is used for parameter estimation 
only, while MU2 for determining the stopping point before overfitting 
occurs and to set additional parameters sometimes called 
hyperparameters. The generalization performance of the model is 
assessed on the test set MU3 using an appropriate performance criterion 
(such as a normalized mean squared error metric in the context of least 
squares estimation). 

It is common practice to use random splits of the data. The simplicity 
of this approach is appealing. But randomness enters in two ways: in the 
splitting of the data samples on the one side and in choices about the 
parameter initialization of the estimation approach on the other. This 
leaves one question widely open. What is the variation in generalization 
performance as one varies training, validation and test sets?  

Monte Carlo simulations can provide certain limited information on 
the behaviour of the test statistics. But the limitation of Monte Carlo 
simulations is that any results obtained pertain only to the environment in 
which the simulations are carried out. In particular, the data-generating 
mechanism has to be specified a priori, and it is often difficult to know 
whether any given data-generating mechanism is to any degree 
representative for an empirical setting under study. 

To overcome the generally neglected issue of fixed data splitting and 
its implications Fischer and Reismann (2002a) suggest to combine the 
purity of splitting the data into three subsets with the power of statistical 
resampling schemes. The term resampling schemes is used to describe 
bootstrapping, jackknifing, cross-validation and their variants. These are 
procedures primarily used for non-parametric estimation of statistical 
error. They offer a way of obtaining nearly unbiased estimates of  model 
parameters and prediction performance.  

In contrast to Monte Carlo simulations bootstrapping and jackknifing 
do not require a priori specification of the data-generating mechanism, 
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and can give reasonably accurate approximations of the small-sample 
distribution properties of ˆUw when Assumption A holds. The estimates of 
bootstrap and cross-validation are asymptotically equivalent. The cross-
validation estimates can be viewed as Taylor series approximation of the 
bootstrap estimates. The main difficulty in applying resampling 
procedures is that they can be computationally very demanding. 
 
 
 
6  BOOTSTRAPPING AND BOOTSTRAP ESTIMATES 
 
Bootstrapping is a computationally intensive non-parametric approach to 
statistical inference that enables to estimate standard errors by resampling 
the data in a suitable way (see Efron and Tibshirani, 1993). This idea can 
be applied to neural spatial interaction modelling in two different ways. 
One can consider each input-output pattern as a sampling unit, and 
sample with replacement from the observed input-output pairs in an 
attempt to take into account the unknown underlying distribution that 
gave rise to the observations in the first place. This is sometimes called 
bootstrapping pairs since the input-output pairs remain intact, and are 
resampled as full patterns (Efron and Tibshirani, 1993). 

On the other hand, one can treat the model residuals as the sampling 
units, and create a bootstrap sample by adding residuals to the model fit. 
This version is termed the residuals bootstrap. Bootstrap distribution 
created in this case is conditional on the actual observations, as opposed 
to bootstrapping pairs that provides an unconditional bootstrap 
distribution and may give trustworthy estimates even if the neural spatial 
interaction model is wrong. This motivates us to briefly consider the pairs 
bootstrapping rather than the residuals bootstrap approach. 

The idea behind the pairs bootstrapping approach is to generate many 
pseudo-replicates on the training, validation and test sets, then re-
estimating the model parameters on each training bootstrap sample, 
utilizing the associated validation bootstrap sets for stopping the learning 
process, and testing the out-of-sample performance on the test bootstrap 
samples. In this bootstrap world, the errors of forecast, and the errors in 
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the parameter estimates are directly observable (Efron, 1982). The Monte 
Carlo distribution of such errors can be used to approximate the 
distribution of unobservable errors in the real parameter estimates and the 
real forecasts. This approximation is the bootstrap: it gives a measure of 
the statistical uncertainty in the parameter estimates and the forecasts. 
The approach will be described for sampling variability, bias and 
generalization performance estimation. 

Generate B independent training bootstrap samples [typically 
20<B<200], by randomly sampling U1 times, with replacement from M. 
Thus  
 

{ }* * *
1 1 1( , ) with 1 1,..., 1 and 1,..., .b b b

U u uM y u U b B= = =x  (15) 

 
Each bootstrap sample *

1
b

UM  is used to compute a parameter vector by 
minimizing6 
 

{ }1 1ˆ arg min ( ) and*b *b *b p
U U withλ= ∈ ⊆w w w W w ℜ  (16) 

 
where p is the number of parameters and 1( )*b

Uλ w  is the empirical loss 
for the bootstrap sample *

1
b

UM . For a typical neural spatial interaction 
model this is given by 
 

( )
1 2*1

1 1 12 1
1 1

( ) ,
U

*b b *b *b
U u uU

u
yλ Ω

=

 = − ∑w x w  (17) 

 
where b=1, ..., B. Note that the average bootstrap loss function *

1( )b
Uλ w  

converges to
1UFE [ *

1 1ˆ( )b
U Uλ w ] where the expectation E is taken with 

respect to the empirical distribution FU1 of the bootstrapped samples 

                                                 
6 Note that it is also necessary to generate B independent validation bootstrap samples 

denoted as { }* * *
2 2 2 with and( , 2 1,..., 2 1,...,)b b b

U u uM y u U b B= = =x for stopping the 
estimation process. Furthermore B independent test bootstrap samples denoted as 

{ }* * *
3 3 3 with and( , ) 3 1,..., 3 1,...,b b b

U u uM y u U b B= = =x  are required for testing the 
out-of-sample performance of the model. 
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*
1
b

UM . The observed distribution of the generated 1 1ˆ( )*b
U Uλ w  converges to 

the distribution of 1 1ˆ( )U Uλ w  under FU1: 
 

1 11 1 1ˆ ˆ[ ( )] [ ( )]
U UF U F U UE Eλ λ=w w  (18) 

 
which can be used as an estimate of the distribution of 1ˆ( )Uλ w  under the 
operating model F, i.e. the probability distribution of the underlying 
function g(x). 
 
Standard Error of the Model Output. Because models of form (2) are 
non-linear the small-sample multivariate distribution of the estimated 
parameter vector 1ˆUw  is asymptotically normally distributed (White, 
1989). But for arbitrarily complex functionals of the parameter vector 

1ˆUw , providing estimates for the standard error of the model output can 
be mathematically intractable. The bootstrapping technique can be used 
for this purpose. 

Let θ  be a continuous function of the model parameters, that is 
( )= hθ w , and denote the estimate of θ for the model 1ˆ( , )UΩ x w  as 

1
ˆ ( )Uhθ = w , then the standard error of the estimation as approximated by 

the sample standard error of the bootstrap replication is 
 

1
2

* * 21
1

1

ˆ ˆˆ ( (.))−
=

 = − 
 

∑
B

b
B B

b

σ θ θ  (19) 

 
with 
 

* * *1 1
1

1

ˆ ˆ ˆ(.) ( ).
B B

b b
UB B

b b=1
hθ θ

=

= =∑ ∑ w  (20) 

 
The true standard error of *

1
ˆ ˆ( )Uhθ = w  is a function of the unknown 

probability density function F of θ, that is ( )Fσ . With the bootstrap 
technique one obtains *

1ÛF  that is supposed to describe closely the 
empirical probability distribution 1ÛF , in other words 1ˆ ˆ( ).B UFσ σ≈  
Asymptotically, this means that as the sample size tends to infinity [that 
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is, U1→∞], the estimate ˆBσ  tends to ( )Fσ . But for finite sample sizes 
there will be deviations in general. 

Bias Estimation. The bootstrap schemes described above can be used 
to estimate not only the variability of θ̂  but also its bias. Bias can be 
viewed as a function of the unknown probability density function F of θ, 
that is ß=ß(F). The bootstrap estimate of bias is simply 

 
* *

1 1 1
ˆ ˆ ˆ ˆ( ) ( ) ( )B U U UF E F Fβ β θ θ = = −   (21) 

 
where E* indicates expectation with respect to bootstrap sampling and 

*
1ÛF  is the bootstrap empirical distribution. The bootstrap estimate of bias 

is 
 

*1
1

1

ˆ ˆ ˆˆ ˆ( ) ( )
B

b
B U1 UB

b
β θ θ

=

 = − ∑ w w . (22) 

 
The bias is removed by subtracting ˆ

Bβ  from the estimated ˆ.θ  
 
Generalization Performance. For any given neural spatial interaction 
model, the pairs bootstrap estimate of its generalization performance is 
given from the following expression: 
 

3
1 * * *

3 3 3 3 3 3
1 3 1

ˆ[ ( , )] (2 3 ) [ ( , )]
B U

b b b
U U U u u u

b u
E F U B yλ Ω−

= =

= −∑∑w x w  (23) 

 
 
where the expectation is taken with respect to FU3, i.e. the empirical 
distribution of the bootstrapped samples  *

3
b

UM  instead of the original 
sample U3, B is the number of bootstrap samples and *ˆ bw  is the 
parameter vector estimated for the b-th bootstrapped sample by 
minimizing Equation (8). 

The bootstrap approach is extremely useful in getting a clearer 
picture of what might be real and what is noise. But the major problem 
when applied to neural spatial interaction modelling is that the 



 Principles of Neural Spatial Interaction Modelling 19 

computational overheads associated with the approach can be quite 
considerable [see Fischer and Reismann, 2002a]. 
 
 

7  CONCLUDING REMARKS 
 
Neural spatial interaction models are a relatively recent development that 
can be seen as an example of non-parametric estimation. They are 
especially attractive in data-rich, but theory-poor spatial interaction 
contexts. But much of the application development with neural spatial 
interaction models up to now has been done on an ad hoc basis without 
due consideration of model adequacy testing in particular. In this 
contribution we have presented some major principles of a methodology 
based upon the latest most significant developments in estimation theory, 
model selection and model adequacy testing theory. It provides the 
theoretical framework and enables to efficiently utilize neural networks 
for modelling complex spatial interaction phenomena at any level of 
spatial resolution. 

Much progress has been made in the theory and methodology in 
recent years. But several important areas remain for further research. The 
design of a neural network approach  suited to deal with the doubly 
constrained case is still missing. Finding good hybrid optimization 
procedures for solving the non-convex learning problems is another 
important issue for further research even though some relevant work can 
be found in Fischer, Hlavackova-Schindler and Reismann (1999), Fischer 
and Reismann (2002a, b). 
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