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Abstract 

This study presents a theoretical model of the role of externalities across a three 

dimensional regional economy. Two decades ago Krugman (1981) developed a two 

region model of uneven regional development. He showed that initial discrepancy in 

capital-labour ratios of the two adjacent, competing regions will cumulate over time, 

and will inevitably lead to the division into the capital-rich and capital-poor regions. 

Kubo (1995) presented an extension to Krugman’s model by incorporating not only 

scale economies within the regions but also regional externalities across regions. His 

model provided an explanation for different regional development patterns: uneven, 

joint and the mix of these two. In this study Kubo’s analysis is extended to study the 

dynamic properties of the development of the three regions instead of two regions.  

We characterise dynamics and the stability of steady states in the three-region 

model. In particular, we show under what conditions steady state is unique, and if there 

can be multiple steady states. We show that the condition for even regional 

development in Kubo’s model, i.e. that regional externalities are stronger than scale 

economies in each region, is a necessary, but not a sufficient condition for even regional 

development in a case of three regions. 

Our three region model offers a potentially interesting framework to analyse 

different regional development patterns and provides some new interesting results about 

the role of inter-regional externalities on regional development. Our model can be used 

to analyse, how the domination of the core region affects the growth of peripheral 

regions and what kind of regional policy should be implemented to promote economic 

growth in the periphery. 

Keywords: scale economies, regional externalities, regional development 

JEL classification: C61, R12 
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1. Introduction 

The questions of the existence, the extent, and the nature of external economies of scale 

have been widely investigated in the literature of economic geography and growth. In 

location theory, external economies of scale (externalities) within the region have 

traditionally been used to explain why firms want to be located close to each other, i.e. 

to agglomerate. In growth theory, external scale economies are an engine of endogenous 

growth. However, the most important point of view concerning this research is that the 

introduction of external economies of scale has also made it possible to develop 

theoretical models of unequal economic development.   

Krugman (1981) developed a model of uneven regional development, where he 

showed that initial discrepancy in capital-labour ratios of the two adjacent, competing 

regions will cumulate over time, and will inevitably lead to the division into the capital-

rich and capital-poor countries/regions, i.e. uneven regional development.  An important 

assumption in his analysis was that the presence of external economies of the industrial 

sector. Kubo (1995) extended Krugman’s model by incorporating not only scale 

economies within the regions but also regional externalities across regions. An 

important novelty in his model was to provide an explanation for different regional 

development patterns: uneven, joint and the mix of these two, within the same 

framework.  

With Kubo’s model, we can broaden our concept of inter-regional development 

and analyse how one region’s growth through externalities across the barriers of 

regional economies can enhance other region’s economic development. However, if we 

want to analyse more precisely how, for instance, increased networking (i.e. increased 

inter-regional externalities between many regions) will affect regional development, it is 

necessary to extend the analysis beyond the two-region case. Therefore, we will 

formulate the most obvious generalisation of the two-region case − the three-region 

model. 

In this study Kubo’s analysis is extended to analyse the dynamic properties of the 

development of the three regions. This extension provides us a framework to analyse 

such geographical issues e.g. the increased regional networking which cannot be dealt 

with a two region analysis. On the other hand, it is interesting to find out whether the 

results of Kubo’s two-region model will remain in the three region model.  

The study might also shed light on the regional development in Northern Finland. 

A few years ago the idea of the regional network of Northern Finland was launched by 
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the Northern Finland Working Group. That idea was meant to spread the economic 

growth of the city of Oulu – technologically advanced core region - to smaller 

peripheral areas. This study offer potentially interesting frameworks to analyse different 

regional development patterns in Northern Finland.  

The structure of this study is the following. Section 2 presents the basic structure 

of the model. In particular, we show under what conditions the steady state is unique, 

and when there are multiple steady states. In section 3 we study the dynamic properties 

of the model. In sections 4 and 5 we examine different regional development patterns 

both in cases of symmetric and asymmetric inter-regional externalities. A concluding 

discussion is provided in section 6.  

2. The model            

The economy has three regions denoted by A, B and C (See Figure 1). Each 

region has an equal amount of labour Li = L , ∀  (i = A, B,C) that will not grow over 

time and is immobile between the regions, i.e. LLLL CBA === . Every region has 

only two sectors, manufacturing and agriculture. The manufacturing sector uses both 

labour and capital in producing good M, whereas the agricultural sector uses labour 

alone. Both commodities, manufacturing and agriculture, are freely traded. The 

manufacturing sector uses now fixed-coefficient, Leontief technology, but there are 

increasing returns to scale in production – the accumulation of capital causes reduction 

of capital and labour coefficients. The assumption of regional externalities implies that 

not only capital accumulation within the region, but also in other regions, has an effect 

on production efficiency.  

The Leontief type of production function of the manufacturing sector (Mi) in 

region i is, 

( ) .,min, 





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Analogous to Kubo (1995), capital (ki) and labour ( l i) coefficients are determined 

as follows; 
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where; 

α   is the degree of (regional) scale economies in region A  

β   is the degree of (regional) scale economies in region B 

γ   is the degree of (regional) scale economies in region C 

µA   is the degree of external effect from region A to region B 

µB    is the degree of external effect from region B to region A 

δA is the degree of external effect from region A to region C 

δC    is the degree of external effect from region C to region A 

λB      is the degree of external effect from region B to region C  

λC     is the degree of external effect from region C to region B. 

 
Figure 1. Scale economies and regional externalities in the case of three regions. 

 

We assume that 0< α, β, γ <1 , 0 <  µi, δi, λ i < 1 ∀  (i = A, B,C) and  a, b > 0. 

Neutrality in the scale economies and regional externalities together with the 

assumption that both regions use the same basic technology means that in each region; 

ki / l i = a / b = constant. So the technologies in all regions are assumed to be the same, 

but the differences in the strength of scale economies and regional economies are 

possible. 

Production functions in the manufacturing and agricultural sectors are; 1 
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When we differentiate e.g. manufacturing production of region A with respect to 

KA ,KB or KC, we note that we have increasing returns to scale within the region and 

positive externalities across the regions. The wage rate is unity (w = 1) and the price of 

manufactured good is PM.2 Both are expressed in terms of the agricultural good. 

Furthermore, we assume that a constant fraction τ of the wage income in each region is 

spent on the manufacturing goods and the rest on the agricultural goods. Assuming free 

and balanced trade, the price of the manufactured good in equilibrium is determined as,  

( ) LMMMP CBAM τ3=++                               (4) 

BACACB
CABCABCBACBA

M
KKKKKKKKK

La

MMM

L
P λδγλµβδµα

ττ
+++ ++

=
++

=⇒
111

3
 

3
. 

Now the rate of profit in a region i is given by, 

a

b
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iiiM
i −=−= lρ .                               (5) 

Assuming that profit incomes are saved and reinvested in the respective 

manufacturing sector to increase capital stock, regional capital stocks evolve over time 

as a function of all regions’ capital according to 
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The dynamic properties of the development of three regions are described by this 

differential equation system. Next we will determine the number of the long-run 

equilibria, i.e. the steady states of the economy. 

Steady state equilibrium 
 

The steady state of the economy is an allocation such that, 

0===
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The relation between KA, KB and KC at the steady state(s) can be expressed as3 

φθ
ACAB KKKK ==       and ,                               (8) 

where θ and φ denote;      

( )( ) ( )( )
( )( ) ( )( )CCBCB

AACCCA

δλλβλγµβ
µδδλλγµαθ

−−+−−
−−+−−

=   and  
( )( ) ( )( )
( )( ) ( )( )CCBCB
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δλλβλγµβ
δµµβλβµαφ

−−+−−
−−+−−

= .  (9) 

Substituting  θ
AB KK = and  φ

AC KK =  into the equation 0=AA KK& and 

rearranging, we get, 

( )
b

aL
KKKKZ AAAA

τφθ 3=++≡ .                                                                       (10) 

Level of KA at the steady state(s) is determined from (10). Next we study how many 

solutions there are for (10).  

We first assume that both parameters θ and φ are positive and study the limit of 

Z(KA) as KA approaches zero and infinity. When both parameters are positive Z(KA) is 

an increasing function of KA and it can be seen that 0)Z(Klim A
0 

=
→AK

and ∞=
∞→

)Z(Klim A
 AK

. 

Now there is a unique KA that satisfies eq. (10).  

The steady state of our model, however, is not necessarily unique. We first 

consider the case where both parameters in equation (10) are negative. Now we can 

rewrite function Z(KA) to the form, 

( ) φθ
AA

AA KK
KKZ

11 ++= .                             (11) 

It is easy to see that ∞=
→

)Z(Klim A
0 AK

 and ∞=
∞→

)Z(Klim A
 AK

, which means that function 

Z(KA)  has at least one minimum. Differentiating Z(KA) (and setting it equal to zero) we 

get, 

( ) φθφθ φθφθ ++++ =−⇔=−−=
1111

11
10

11
1'

AAAA
A KKKK

KZ .                       (12) 

From (12) we see that if there is a solution such that Z’(KA) = 0, there must be 

only one such solution. The left hand side (LHS) of last expression in (12) is an 

increasing function of KA (approaches - ∞ when KA approaches 0, and 1 when KA 

approaches ∞). The right hand side (RHS) of last expression in equation (12) is in turn 

decreasing function KA (approaches ∞ when KA approaches 0, and 0 when KA 

approaches ∞). Thus if both exponents in Z(KA) are negative, it is actually a u-shaped 
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function, which has only one minimum where Z’(KA) = 0. This means that (11) may 

have 0, 1 or 2 solutions, i.e. values of KA where the economy is in steady state.  

When one of the exponents in Z(KA) is negative (-θ) and the other is positive (φ), 

we have three cases. The function Z(KA) can be written in a form, 

( ) φ
θ A
A

AA K
K

KKZ ++= 1
.                             (13)  

The function Z(KA) approaches again ∞ when KA approaches 0 or ∞. Differentiating 

(13) with respect to KA and by setting it equal to zero we get, 

( ) 0
1

1' 1
1

=+−= −
+

φ
θ φθ A

A
A K

K
KZ .                             (14) 

We first assume that φ > 1. Setting the Z’(KA) = 0, we get 

θ
φ θφ +

− =+
1

1 1
1

A
A K

K .                              (15) 

The LHS of (15) approaches 1 when KA approaches 0, and ∞ when KA approaches ∞. 

RHS approaches again ∞ when KA approaches 0, and 0 when KA approaches ∞. This 

means that function Z(KA)  has again only one minimum and thereby we can have 0,1 

or 2 steady states in the economy.  

In the case where φ < 1, Z’(KA) = 0 can be written, 

θφ θφ
+− =+ 11

1
1

AA KK
.                             (16) 

Both LHS and RHS of (16) approach ∞ when KA approaches 0, and 0 when KA 

approaches ∞. To study behaviour of Z’(KA) we define LHS of (16) as G(KA) and RHS 

as H(KA). Differentiating we obtain,  

( ) ( ) ( )
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KKG                             (17) 

( ) ( )( ) ( )( )
  0     

21
21''

3
3 >−−=−−= −

−
φ

φ φφφφφφ
A

AA K
KKG                               (18) 

( ) ( ) ( )
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A
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KKH                             (19) 

( ) ( )( ) ( )( )
  0     
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3
3 >++=−−−−= +

−−
θ

θ θθθθθθ
A

AA K
KKH                                     (20) 

Signs of the first and second derivatives show that both functions G(KA) and H(KA) are 

downward sloping and strictly convex. Figure 2 describes curves G(KA) and H(KA). 

H(KA) (or G(KA) respectively) can have three different shapes. This means that there 
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can be 0,1 or 2 solutions for equation (16) depending on the relative convexity of 

functions G(KA) and H(KA). In figure 2 we have described the case for a fixed G(KA). 

 
Figure 2. Number of solutions for equation (16).  

Thereby we have proved that when one of the parameters of (10) is positive and < 1 and 

the other is negative, there is possibility for maximum two points of Z’(KA) = 0.4 

 In the case where φ =1, Z’(KA) = 0 can be written, 

θθ +=
1

1
2

AK
                              (21) 

Now RHS of (21) approaches ∞ when KA approaches 0, and 0 when KA 

approaches ∞. The LHS is a horizontal line and hence there is only one point where 

function Z’(KA)=0. So Z(KA) is a u-shaped function and we may again have 0,1 or 2 

steady states in the economy. Table 1 summarises our analysis concerning the number 

of steady states of the economy. 

Table 1. Signs of the parameters in the function of Z(KA) and the number of steady states of the 
economy 

Signs of the parameters of 
function Z(KA) 

lim Z(KA) 
KA→ 0 

lim Z(KA) 
KA→ ∞ 

Number of  
steady states 

Both positive 0 ∞ 1 (unique) 

Both negative ∞ ∞ 0 ,1 or 2 

One negative and 
a) One positive and > 1 
b) One positive and < 1  
c)    One positive and = 1 

 
∞ 
∞ 
∞ 

 
∞ 
∞ 
∞ 

 
0 ,1 or 2 
0 ,1 or 2 
0 ,1 or 2 
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3. Stability of the steady states 

To study formally the stability properties of dynamical equilibrium, we form the 

Jacobian matrix of nonlinear system (6a-6c).  
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
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&&&
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                                  (22) 

We evaluate the Jacobian at the steady state, i.e. we substitute    , θ
ABA KKK =  and 

φ
AK=CK , and φθτ AAA KKKLab ++= 3  into the Jacobian matrix. After some 

manipulation we get,5 
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where, 

( ) ( ) φθ αδαµ ***1 AAAAA KKKA −+−+=   

( ) ( ) ****1A2 AAABBAB KKKK θφµλµβ −−+−+=  

( ) ( ) ****13 AAACCAC KKKKA φθδλδγ −−+−+=  

( ) ( ) θφθ µδµα *1***11 AAAAAAA KKKKB −−+−+=                                                  (24) 

( ) ( ) φθ βλβµ ***2 ABABA KKKB −+−+=  

( ) ( ) θφθ λδλγ ***13 AAACCAC KKKKB −−+−+=  

( ) ( ) φθφ δµδα *1***11 AAAAAAA KKKKC −−+−+=  

( ) ( ) φθφ µλλβ ****1C2 AAABBAB KKKK −−+−+=  

( ) ( ) θφ γλγδ ***3 ACACA KKKC −+−+=  

 **** ≡++=Κ φθ
AAA KKK The sum of regional capital stocks at the steady state. 

To study the stability of the steady state(s) we utilise Routh-Hurwitz theorem.6 

First we form the characteristic matrix of the Jacobian determinant (D). The linear 

homogenous system has (according to a well-known theorem of elementary algebra) 

non-trivial solutions (in addition to the trivial one) if and only if its determinant is zero. 

In our case this means that the determinant of the characteristic matrix of D must 

vanish, i.e. characteristic matrix of D is required to be singular.7 The determinant of 
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characteristic matrix of the Jacobian determinant will yield 3rd–degree polynomial in r, 

i.e. 3rd–degree polynomial equation with real coefficients. 

( )0a          0 032
2

1
3

0 >=+++ ararara                                                           (25) 

The Routh-Hurwitz theorem states that necessary and sufficient stability 

conditions to have a stable root are given by the following inequalities; 8 

0   ,0   ,0    ,0 3021321 >−>>> aaaaaaa ,                                (26) 

where; 
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.  

1
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FFFFFFFFFFFFFFFFFFa

FFFFFFFFFFFFa
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−−−++=

−−−++=

++−=

=

 

 
Next we will examine different regional development patterns both in cases of 

symmetric and asymmetric inter-regional externalities. 

 

4. Regional development with symmetric regional externalities  

First we study the case, where each regions’ externalities are symmetric, i.e. µA= 

δA, µB = λB, λC = δC, and they are stronger than scale economies within the regions.9 

This assumption means that θ and φ  parameters in equations (10) can be written as;    

( )
( )B

A

µβ
µαθ

−
−

=    and   
( )( )
( )( )

( )
( ) .  and   when     ,        B AAB

C

A

CB

BA δµλµ
λγ
δα

λγµβ
λβµαφ ==

−
−

=
−−
−−

=   (27) 

With these assumptions both parameters θ and φ are positive, which in turn 

implies that we have a unique equilibrium. Furthermore, it is easy to show that if 

symmetric regional externalities are stronger than scale economies in each region, the 

unique steady state of the economy is always stable. Inequalities (26) under the 

assumption of the symmetric externalities are presented in appendix 1. The result is in 

the line with Kubo’s two region model. This yields, 

Proposition 1. When symmetric regional externalities are stronger than scale economies 

for each three regions, there is unique steady state, which is stable. 

The allocation of manufacturing production among the three regions can be presented as 

a point of an equilateral simplex triangle, where each point in a triangle presents the 

relative sizes of regional capital stocks in two dimensions (figure 3).10 In the corners of 

the triangle, the manufacturing industry is totally concentrated into one region and other  



 

 

 

11

 
Figure 3. The stable regional development 

two regions are de-industrialised. Figure 3 presents the totally symmetric, unique stable 

steady state case where parameters of the scale economies and externalities are equal in 

each three regions. From any point of the simplex, system will converge towards the 

unique (ergodic and predictable) outcome (Arthur 1994). As in Kubo’s model, the 

relative size of the regions in steady state depends on the relative magnitudes of their 

net externalities. The larger the net externalities of region compared to other region’s 

net externalities, the larger will be the relative size of that region at the steady state. 

Next we assume that scale economies are stronger than regional externalities in 

each region. It is easy to see that parameters θ and φ in (10) are again positive, and we 

have a unique steady state. Whether this steady state is stable or unstable is not so 

straightforward to answer. However we note that;  

( ) **
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






Κ
+Κ−<>+Κ+Κ

Κ
=− A

B
ABA

L
aaaa

*

τ . 

Combining the inequality conditions in (28) we see that all terms a1, a2, a3 and 

a1a2-a3 a0 are now positive if and only if term A (= the sum of net regional externalities 

weighted by the capital stock of “target regions” at the steady state) denoted in (A2) in 

appendix 1 is positive. This means that if symmetric regional externalities are smaller 

than scale economies for each region (i.e. A < 0), the unique steady state is always 
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unstable. In addition to the unstable interior equilibrium, we have also three unstable 

equilibria, where manufacturing industry is equally divided between two regions. In that 

case analysis is similar to uneven regional development in Kubo’s model. If we are not 

exactly on that “saddle path” which leads to the steady state where both regions have a 

certain share of manufacturing, manufacturing sector always ends up concentrated in the 

region with the largest capital stock initially (Figure 4).11  

The assumption is that an increase in a capital stock increases production efficiency and 

reduces production costs. This in turn increases profits and the rate of capital 

accumulation in this region. In the case of unbounded agglomeration, the outcome of 

the locational process will be the monopoly of one location - “Silicon Valley outcome” 

(Arthur 1994).12 This result is again in line with Kubo’s model. This completes the 

proof of Proposition 2.  

Proposition 2. When scale economies are stronger than symmetric regional externalities 

in each three regions, there is unique steady state, which is unstable. 

 
Figure 4. The uneven regional development 

In other words, the simplex is divided into three basis of attraction, each of which 

drains to one of the corners. However, if reservoir of labour or some other factors of 

production are exhausted in “the leading region” before the upper limit of the regional 

capital stock has achieved, the manufacturing industry may spread to other regions also. 

Now the region which will share the manufacturing industry (maybe become partially 

industrialised) with the leading region is determined by the historical choice of order. If 

there are upper limits of positive agglomeration effects in each of the regions, it is 

possible that the manufacturing industry is dispersed to all the regions (Arthur, 1994). 

This kind of regional development was briefly described in Krugman (1981). 13, 14 
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5. Regional development with asymmetric regional externalities 

Next we drop the assumption about the symmetric regional externalities. This 

means that externalities from each region to other two regions are no longer equal (i.e. 

µA≠ δA, µB ≠λB , λC ≠ δC). This reflects indirectly regions’ capability to adopt 

externalities from other regions and possible “preference co-operation relationship” 

between the regions. The stability conditions (26) under the assumption of asymmetric 

externalities are presented in appendix 2.  

In Kubo’s two-region model the assumption that externalities are larger than scale 

economies for each region (i.e. term in parenthesis of equation a1 in (A3) > 0), implied a 

unique, stable steady state in the economy. Even regional development was guaranteed, 

if externalities are stronger than scale economies in each region. But is it a sufficient 

condition for a unique, stable equilibrium in the three region case also? 

Next we assume that externalities from region A to region C are stronger than to 

region B (δA>µA), and externalities from region C to region A are stronger than to 

region B (δC>λC), respectively. Thus, there is a strong mutual co-operation relationship 

between regions A and C. For simplicity, we assume that externalities from region B are 

symmetric (i.e. µB = λB) and regional scale economies are equal in all three regions (i.e. 

α = β = γ ).  The aim is to study, how preference co-operation relationship between the 

two regions of three affects to the nature of steady state(s) of the economy and thereby 

development of the “regional network” (Figure 5). 

 
Figure 5. From the symmetric externalities to the asymmetric externalities 

The condition for the unique steady state in (10) is that both term θ and φ are 

positive. According to our assumptions, φ is now always positive. Respectively θ is 

positive, if                           

( )( ) ( )( )  AACCCA µδλδλγµα −−>−− ⇔ ( )( ) ( ) ( )[ ] ( ) ( )[ ]AACCCA δαµαδγλγλγµα −−−−−−>−− . (29)   
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Thus a unique steady state condition requires that the net external effects from 

regions A and C to region B are strong and the externalities of regions A and C are 

relatively small for each other compared to their external effects to region B. In other 

words, the unique steady state is possible, if the co-operation between regions A and C 

is not too strong compared to their co-operation with region B.  

Our assumptions imply that “the asymmetric” term C in (A3) is negative if, 

( ) ( )[ ]( ){ } ( ) ( )[ ]( ){ } ( )( ) θφ µδλδλδαδβλµδγδβµ ***
AAACCACCABAAACB KKK −−<−−−−+−−−−       (30) 

⇔  
( ) ( )

( )
( ) ( )

( )
θφ

µδ
αδβλ

λδ
γδβµ ***

AA
AA

AB
A

CC

CB KKK <







−

−−−
+








−

−−−
. 

This implies that if the co-operation between the regions A and C increases 

sufficiently, and if at the same time the relative size of the regions B at the steady state 

is large enough (and the relative size of regions A and C together is small, respectively), 

the term C can be negative. This, in turn, implies that a stability condition in Kubo’s 

model, i.e. externalities are stronger than scale economies in each region may no longer 

guarantee stable regional development in our three region model.15 This is an interesting 

question because in Kubo’s model the steady state was always unique, when symmetric 

externalities were stronger than scale economies for each region. Furthermore, Kubo 

(1995) argued that if the regional externalities are stronger than scale economies in both 

two regions, we have inevitable the unique, stable steady state.  

As a matter of fact, it is easy to show that as the asymmetry of the externalities 

increases, the interior steady state is not necessarily unique and stable. However, as long 

as the externalities of regions to their neighbouring regions remains enough symmetric, 

we will have a unique, stable steady state and thus stable regional development. When 

asymmetry increases, (the preference co-operation between regions A and C becomes 

stronger than externalities of region B from regions A and C) the stable, unique steady 

state breaks down. The preference co-operation between two regions (A and C) will 

cause that one region (B) will not keep up with the growth of the other regions, unless it 

relative size compared to regions A and C is very large (Figures 6a-6c).16  

As a result of the increased co-operation between two regions we will have two 

steady states, stable and unstable. In a stable steady state, the regions having the 

preference co-operation relationship are very large relative to third region. In the 

unstable steady state, in turn, the relative sizes of the co-operation regions are extremely 

small compared to the size of the third region (region B).17 The figures below show how 
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the number and the nature of steady states and the relative size of regions change as the 

co-operation between regions A and C increases (i.e. µA and δC increases), ceteris 

paribus. This leads to the Proposition 3, which constitutes one of the most important 

results of our three region model. 

Proposition 3. When regional externalities are stronger than scale economies in each 

three region, the preference co-operation links between two regions may increase 

asymmetries in regional externalities and stable, unique steady state breaks down. As a 

result we will have two steady states, stable and unstable. 

According to the Proposition 3, the assumption that regional externalities are 

stronger than scale economies in each region is not a sufficient condition for a unique, 

stable equilibrium and hence for a stable regional development. This is a fundamental 

difference to Kubo’s model.  

               
   Figure 6a. A unique steady state (µA=δA= 0.15)      Figure 6b. A unique steady state (µA=δA= 0.195) 

          
                  Figure 6c. Two steady states (µA=δA= 0.40)   

6. Conclusions  

Our model provides an interesting framework to analyse the role of intra-regional 

scale economies and inter-regional externalities in regional economic growth. Model 

sheds light on the reality and makes it possible to analyse issues that cannot be 
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examined with the two-region models, the increased regional networking, for instance. 

It provides theoretical aspects and explanations that are definitely relevant when trying 

to analyse e.g. the development of Northern Finland and the Multipolis Network. We 

have proved that much of we learned from the Kubos’s model survives a relaxation of 

the assumption that there are only two regions. Furthermore, we were also able to show 

some new interesting results provided by the three region case. 

From the perspective of the regional policy the most important result or 

implication yielded by our three region model, is the importance of inter-regional co-

operation (although it is not explicitly presented in our model). When regional 

externalities are stronger than scale economies in each region and symmetric enough, 

regional development will be even and none of the regions will contract and stagnate. If 

the case is the opposite, i.e. the scale economies within the regions are stronger than 

externalities they exert on other regions, the regional development will be uneven. The 

self-reinforcing mechanism will enhance the domination position of the largest region. 

In the case of unbounded agglomeration, i.e. there are no diseconomies of 

agglomeration or “upper limits” for growth, the location process will lock-in to “Silicon 

Valley” outcome, the monopoly of one location.  

Uneven development may be the result also in the case of regional externalities 

being stronger than scale economies in core region and weaker in other, initially smaller 

region(s). This may be the case if the relative size of these small regions is not big 

enough to capture the benefits the core-regions spread to adjacent regions. Furthermore, 

we were able to show that preference co-operation between the small regions (when 

regional externalities are stronger than scale economies in each region) may not 

promote their development, if their relative size is very small compared to the core-

region. On the other hand, our analysis showed that this kind of preference co-operation 

between the core-region and one of the peripheral regions will be detrimental for the 

development of the third region, even if it receives positive externalities from the core-

region. 

Moreover, the aim of this research was to consider potential regional development 

patterns of the Multipolis Network of Northern Finland from theoretical perspectives. 

According to our theoretical three region model, which can be thought to describe a 

simplified multi-region network, the role of the Oulu region is decisive for the whole 

future of the Multipolis Network. The models clearly imply that regional policy, in 

which only the externalities of the Oulu region to semi-peripheral and peripheral regions 
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are stimulated through various development programmes, may not guarantee the even 

regional development in Northern Finland. The growth of small regions requires that 

their own economy is sufficiently developed and technologically advanced to adopt and 

utilise the positive spread effects that the economic growth of the core region provides. 

Selected policy measures which aim the stimulation of positive inter-regional 

integration, i.e. externalities across regional economies and capital formation in the 

regions will help the poor, small regions nearby regional centres to get to the favourable 

growth path. In some cases this may require co-ordinated policy interventions to push 

the development of the Multipolis Network towards a targeted direction. 

Obviously our model of this study is fairly simple in many ways. The certain 

phenomena like leapfrogging, mobility of labour, and equalisation of factor prices 

(wages) etc., are not included in the model. These extensions would certainly bring 

more reality into the models, but also make them considerably more complex. These 

restrictive assumptions (which have been made to keep the model tractable) are good to 

keep in mind as we try to draw policy recommendations from the model.  

                                                           
Notes 
1 Agricultural sector uses residual labour in its production (CRS technology), where one unit of labour 
produces one unit of agricultural good. 
2 The assumption that wage rate is set at unity is crucial.  As the manufacturing sector increases its share 
in a region, increased competition in the local labour market does not increase wages and thereby 
production costs at the manufacturing sector. Thus one of the major shortcomings in Krugman’s and 
Kubo’s models is not corrected in this model. 
3 The equations (6a-6c) can be rewritten as, 

( ) 0
3111  

b

aL
KKKKKKKKK CAABCCBBACCBBA

CABCBACBA =−++ −+−−+−−−+−−− τλγµδλβλδλµµαδλµλαµ               

( ) 0
3111 =−++ −+−−+−−−+−

b

aL
KKKKKKK CAABCCBBAB

CABCBA

τλγµδλβλδλµµαβλ               

( ) 0
3111 =−++ −+−−+−−−+−−

b

aL
KKKKKKKK CAABCCBBACAA

CABCBACA

τλγµδλβδλλµµαγλδµ                 
4 It is interesting to note that if we have two points where Z’(KA) = 0, the other point has to be an 
inflection point. In other words the derivative does not change its sign from one side of KA=KA

* to the 
other. If it would change its sign we would necessary have at least three zero points of derivative that was 
not possible as shown in the figure 2.  
4 Now KA , KA

θ , KA
φ  in the matrix are the values of regional capital at the steady state and parameters θ 

and φ are functions of scale and externality parameters defined in (9). 
6 Takayama 1994; Gandolo 1980. 
7 Gandolfo 1980. 
8 Unfortunately as the order of the polynomial equation (25) increases, the economic interpretation of the 
stability conditions (26) becomes extremely complicated. Even in our three region model, where the order 
of the polynomial equation is only three, it is quite difficult to extract a clear economic meaning for 
stability conditions. 
9 This strong assumption about the symmetric externalities is based on an idea that externality which 
region exerts on one region is not excluded from the other regions. Secondly if externality from region A 
to region C increases, it does not reduce the amount of externality available from region A to region B. So 
we assume that externalities of regions are “pure public goods” in a sense that e.g. knowledge 
externalities from the technology advanced region are nonrival and nonexcludable. 
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10 As we move from right to left, the relative size of regional capital stock of region A increases. Similarly 
as we move upwards, the relative size of regional capital stock of region C increases. And finally, as 
move “down-right”, the relative size of regional capital stock of region B increases. See Krugman 1996 
and Fujita, Krugman & Venables 1999. 
11 This means that due to the occurrence of different historical events, the economies with identical 
fundamentals may have a completely different development path. The outcome is both non-ergodic and 
(slightly) unpredictable. A priori all steady states are attainable, but only one of them will be eventually 
selected.  (Arthur 1994). 
12 In the corners, where manufacturing industry is totally concentrated in one of the regions, the profit rate 
is the highest in that particular region. Therefore manufacturing industry is locked in that region (if it is 
once reached that point). See Arthur, 1994, Ch 4. 
13 In the symmetric case it is straightforward to show that capital stocks of regions B and C compared to 
the capital stock of region A (and to each other) at the steady state depend only on the magnitude of 
regions’ mutual net scale economies. When scale economies are stronger than regional externalities in 
each region (i.e. we have a unique unstable steady state), the increase in one region’s net scale economies 
increases the possibility of eventual expansion of that region (as in Kubo’s two-region case). There is 
stronger possibility that the whole economy will converge to direction where other two regions will de-
industrialised.  
14 Equally well we could simulate the case, where we have regions with positive net externalities and 
region(s) with positive net scale economies. For simplicity we may assume that symmetric externalities 
are stronger than symmetric scale economies for each region (i.e. α = β = γ, µA = δA= µB = λB =λC = δC 
and µA = δA> α,  µB = λB > β, λC = δC >γ). Then, say scale economies in a region C (i.e. γ) start to increase, 
ceteris paribus. This assumption means that the relative size of region C increases as γ increases. As far 
as scale economies in a region C remain smaller than its externalities, we will have a unique steady state. 
However, when γ becomes stronger than regional externalities of region C (i.e. λC = δC < γ), we have two 
steady states in the economy. Now when scale economies are stronger than regional externalities in some 
region(s) (now region C) and converse in the other regions (regions A and B), the requirement for the 
steady states to be stable, is that term A in (A2) is positive, i.e.,  

( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] 0*** >−+−+−+−+−+− φθ βλαδγλαµγδβµ ABAACAACB KKK       

( ) ( )
( ) ( )

( ) ( )
( ) ( )

***
AA

CB

BA
A

CB

CA KKK >
−+−
−+−

+
−+−

−+−
⇔ φθ

δγµβ
βλαδ

δγµβ
γλαµ .  

Respectively if the first expression in the above equation is negative, the steady state is unstable. Now 
the steady state is stable, when the relative size of region C is large enough compared to regions A and B. 
Respectively, if the size of region C is extremely small compared to regions A and B, the steady state is 
unstable. In that case it might be unable to utilise externalities from regions A and B and achieve 
industrialisation. This result is analogous with the case of mixed regional development of Kubo’s model. 
The analysis is very much the same if we assume that scale economies in region B (i.e. β) increases as 
much as scale economies in a region C, ceteris paribus. However, it is interesting to notice that when 
unique steady state breaks down, we have two unstable steady states immediately.  
15 As δA and δC increase, ceteris paribus, the numerators in multipliers of KA

*φ and KA
* decrease and the 

denominators increase in the last expression in 30. This in turn means that multipliers of KA
*φ and KA

* 

decrease quite rapidly as δA and δC increase.  
16 In figures 6a-6c we have assumed the following initial parameter values: α=β=γ=0.1, µA=µB=0.15, 
δA=δB=0.15, λA=λB=0.15, a=b=1, τ = 0.3, 10=L . Although we solve the model numerically, the results 
strongly suggest that they can be treated as analytic ones. 
17 Figure 6a presents “a completely symmetric case”, in which scale economies and regional externalities 
are the same size in all three regions. There is a unique steady state with manufacturing production 
equally divided among the regions. In Figure 6b regional externalities are no longer symmetric, but the 
unique steady state of the economy still exists. In Figure 6c, the co-operation between regions A and C 
has become strong enough to cause two steady states, the unstable and stable, to the economy. As a matter 
of fact a unique steady states breaks down already with the values of µA=δA= 0.2. For simplicity, we 
assumed that the growth of externalities from region A to region C and vice versa were the same size. 
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Appendix 1: Stability conditions in the case of symmetric externalities 

The assumption of the symmetric externalities implies that inequality conditions (26) 

can be written as; 

0   10 >=a                                                                                                                   (A1) 
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We can see that when regional externalities are stronger than scale economies, 

Routh-Hurwitz stability conditions of terms a0, a1, a2, a3 in (28) are fulfilled, i.e. they are 

positive. It is easy to show that fifth inequality a1a2-a3a0 is also positive. We denote the 

term inside the { }-parenthesis in equation a3 by B (which is now positive).  We get,
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    (A2)   

When regional externalities are stronger than scale economies in each region, terms in 

(A1) and also a2a1-a3a0 are clearly positive. Thus, the steady state of the economy is 

stable. 

Appendix 2: Stability conditions in a case of asymmetric externalities 

In a case of asymmetric externalities the stability conditions (26) can be written in a 

form; 

0   10 >=a                                    (A3)  
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