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ABSTRACT 
Halton sequences have become a frequently used alternative to pseudo-random 

numbers in Monte-Carlo integration and other simulation methods. While the 

performance of standard Halton sequences is very good in low dimensions, problems 

with correlation have been observed between sequences generated from higher 

primes. This can cause serious problems in the estimation of models with high-

dimensional integrals. The most widely used solution to this problem is the scrambled 

Halton sequence, which uses special predetermined permutations of the coefficients 

used in the construction of the standard sequence. In this paper, we conduct a detailed 

analysis of the improvements that scrambled Halton sequences offer over standard 

Halton sequences for high primes. The analysis shows that although the scrambled 

sequences manage to reduce correlation, for some choices of primes, correlation 

remains at an unacceptably high level. We compare the performance of the scrambled 

sequences to that of shuffled Halton sequences, which use randomly shuffled versions 

of the one-dimensional standard Halton sequences in the construction of multi-

dimensional sequences. We show that the shuffled sequences offer significant 

computational savings and have the potential for providing better coverage than the 

corresponding scrambled sequences. Unlike the scrambling approach, the shuffling 

algorithm can, without any changes in the approach, be used for any choice of prime 

numbers, and hence for number of dimensions. 

In view of these advantages, this paper recommends that this new method should be 

preferred to the scrambling approach when dealing with high correlation between 

standard Halton sequences.  
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1. INTRODUCTION 
With the emergence of ever more powerful mathematical modelling methods, there 

has arisen a need for advanced simulation methods to estimate the resulting models. 

Indeed, many of these models are based on the use of multi-dimensional integrals that 

often do not have a closed-form expression. One example is the use of models for 

predicting choices of decision-makers; and notably discrete choice models, whose use 

in diverse areas of research (and many areas of regional science, e.g. models of 

aspects of spatial choice, such as route or location) has increased steadily over the 

past few years. A comprehensive review of existing discrete choice models with an 

emphasis on simulation-based estimation is given by Train (2003).  

The simulation methods used to estimate these models were originally based on the 

use of pseudo-random numbers, until it was noted that important gains in efficiency 

could be made through using “cleverly crafted” quasi-random number sequences. The 

aim of using such sequences is to provide better coverage of the area of integration, 

where good quality of coverage is defined as low discrepancy between the observed 

distribution of the draws and a multi-dimensional uniform distribution. The main 

improvements in performance are generally in the number of draws needed to achieve 

a certain level of accuracy in the simulation process. As an example, in a simulated 

likelihood maximization process, the aim is to retrieve the true parameters; as this will 

in general not be possible, the aim becomes to generate parameters that are 

sufficiently close to the true parameters. The nature of quasi-random number 

sequences implies that the number of such draws needed to achieve a certain degree 

of accuracy will in general be inferior to the respective number of pseudo-random 

draws required.  

2. THE STANDARD HALTON SEQUENCE 
In recent years, the most prominent type of quasi-random number sequence has been 

the Halton sequence, introduced by Halton (1960).  

The one-dimensional Halton sequence takes a prime number r, where r (≥2), and fills 

the 0-1 space evenly by using cycles of length r. There are different ways of 

quantifying this approach, the most straightforward mathematical implementation is 

possibly the one given by Bhat (2002). 

To generate a sequence of N draws, the N positive integers are rewritten in base r, 

such that integer g is expressed as: 
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with ( ) 10 −≤≤ rgbl  and 1+<≤ LL rgr . The integer g can now be expressed in 

digitised form as the r-adic integer string ( ) ( ) ( ) ( )gbgbgbgb LL 011 ...− . 

The gth Halton element is given by the radical inverse of g to the base r by reflection 

through the radical point. In base r, we get: 

  ( ) ( ) ( ) ( )gbgbgbg Lr ....0 10=ϕ      …(2) 

or, as a decimal number: 
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where ( )grϕ is the gth term in the Halton sequence generated from prime r. 

Different sequences, constructed from different primes, are used for different 

dimensions of a multi-dimensional integral. The multidimensional sequence is 

constructed by combining the one-dimensional sequences. The gth point of the s-

dimensional sequence is: 

  ( ) ( ) ( ) ( )( )gggg
srrr

s ϕϕϕϕ ,...,,
21

)( =     …(4) 

The standard Halton sequence of length N on the s-dimensional unit cube is then 

given by: 

  ( ) ( ) ( ) ( )[ ] '')(')(')(, ,...,2,1 NsssNs ϕϕϕ=Ψ    …(5) 

Transformation from the s-dimensional unit cube (which is the area of the s-

dimensional standard uniform distribution) to other domains of integration is 

straightforward, through the use of the integral transform result. One example is the 

use of multivariate standard normally distributed points, which are obtained through: 

  ( ) ( )( )NsNsX ,1, ΨΦ= −       …(6) 

with Φ being the standard cumulative normal distribution function. 

While multi-dimensional Halton sequences do in general provide better coverage than 

the corresponding pseudo-random number sequences, problems with high correlation 

can occur between sequences constructed from higher primes, thus sequences used in 

higher dimensions. This correlation leads to poor multi-dimensional coverage (even 

though one-dimensional coverage will still be very good due to the use of Halton 

sequences) and can thus cause serious problems in the estimation of models with 

high-dimensional integrals.  



 

 

These problems are illustrated in figure 1, using sequences of 100 draws. We see that 

in lower dimensions (using primes 2 and 3) coverage is clearly better than in the 

corresponding pseudo-random number sequences. Multi-dimensional Halton 

sequences generated from higher primes however show heavy correlation between the 

single dimensions, clearly leading to poorer coverage than in the corresponding 

pseudo-random number sequences (figure 1 shows the combination of primes 29 and 

31, and primes 43 and 47). 

Although the exact differences between the single sequences can only be analysed 

once we have introduced a measure for multi-dimensional coverage, the calculation of 

the correlation between the individual members of the two-dimensional sequences can 

be used as an initial appraisal of the problem. 

The correlation between the Halton sequences for primes 2 and 3 was found to be       

–0.03, the corresponding correlation measures between the sequences for primes 29 

and 31 and between the sequences for primes 43 and 47 were found to be 0.4045 and 

0.4363 respectively. The sign of the correlation is in this case of no importance, and 

the example clearly shows that the correlation between sequences generated from 

higher primes is significantly higher than that between sequences from lower primes. 

To compare this to the correlation between pseudo-random number sequences, 500 

pairs of pseudo-random number sequences were generated, and the correlation was 

calculated for each such pair. The absolute values of the results were averaged over 

the 500 runs, giving a mean absolute correlation of 0.0808 (variance of 0.0036). This 

reflects the results from figure 1, showing higher correlation (and hence poorer 

coverage) for the Halton sequences generated from higher primes when compared to 

pseudo-random number sequences. The mean absolute correlation of 0.0808 is also 

higher than that between the sequences for primes 2 and 3, again reflecting the results 

from figure 1. 

Such problems with correlation and poor coverage in high dimensions have been well 

documented in the existing literature, but little effort has been made at describing the 

reason of the problem. The reason why sequences generated from high primes are 

especially prone to the problem is however very easy to see. With high primes, the 

cycles are so long that the different sequences use only a very limited number of 

cycles in a sequence of say 100 draws. This, on its own, does not lead to correlation. 

The correlation is caused by the fact that, with high primes, the behaviour of the 

different sequences becomes very similar, especially with neighbouring primes. 



 

 

Essentially, problems with correlation and hence discrepancy occur when the ratio of 

the two prime numbers used is close to an integer value (and especially 1), when the 

length of cycles used are either very similar (when ratio close to 1) or almost exact 

multiples of each other (when close to some other integer). This directly leads to 

correlation as the good coverage quality means that cycles of similar length will use 

very similar draws. These results are further illustrated in figure 2, showing all 

possible combinations of Halton sequences generated from prime 19 to 47. These 

plots also reveal that the behaviour of the Halton sequences can already be quite 

unsatisfactory even in low dimensions (again, mainly when the ratio of the primes 

used is close to an integer value). For these choices of primes, the correlation between 

the sequences may be at an acceptable level, as may the overall coverage, but 

problems with local area coverage can be quite substantial, as shown in figure 3.  

3. THE SCRAMBLED HALTON SEQUENCE 
Scrambled Halton sequences are constructed by using permutations of the coefficients 

( )gbl  in the radical inverse function (equations (2) and (3)), such that the scrambled 

Halton sequence for prime r is given by: 
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where rσ  is the operator of permutations for the possible values of ( )gbl  in base r.  

Different methods for producing the permutations have been proposed; the most 

popular method is the one given by Braaten and Weller (1979) (hereafter referred to 

as B&W). The exact approach used by this method has been poorly documented in 

most of the relevant literature, we will thus give a brief overview of how the 

permutations are selected. 

For prime r, the possible digits are { }1,,0 −rK . B&W start by setting ( ) 00 =rσ , 

( ) 1,...,1, −= rjjrσ  are then set iteratively, choosing first ( )1rσ , then ( )2rσ , …, and 

assigning the last available digit to ( )1−rrσ . ( )jrσ  is chosen such as to minimize the 

one-dimensional discrepancy in the set 
( ) ( )
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K , where the division by r 

leads to the set being contained in the one-dimensional 0-1 space.  

Tuffin (1997) gives the formula to be used for this one-dimensional discrepancy as: 
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where N is the number of elements in the sequence, )(nX  is the nth element, and 
( ) ( ) ( )( )mnmn XXM ,max, = . 

The choice set for ( )1rσ  contains the digits { }1,,1 −rK , the choice set for ( )2rσ  is 

{ } ( )1\1,,1 rr σ−K , the choice set for ( )3rσ  is { } ( ) ( ){ }2,1\1,,1 rrr σσ−K  and the 

choice set for ( )jrσ  is { } ( ) ( ){ }1,,1\1,,1 −− jr rr σσ KK .  

B&W (1979) only provide permutations for the first sixteen primes, this is an 

illustration of the computational cost of generating the permutations. Even without the 

extra complexity of having to use some kind of decision-rule in the case of ties 

between the discrepancies in 
( ) ( )
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K  for two choices of ( )jrσ  the number 

of calculations needed is very substantial. Hess and Polak (2003) found that, to 

evaluate all the possible discrepancies needed in the generation of the permutations 

for prime permutations for prime r, ( ) ( )[ ]∑
−=

=
+−+−

2

1

2 422
rK

K
KrKrK  calculations were 

required. For high r, this number becomes very substantial indeed. Although this 

might still be a small task for modern computers, the number of ties can be expected 

to increase with the length of the sequences, and hence with r, leading to potentially 

severe problems with the approach. Indeed, it is not known what effect a certain 

approach for solving ties will have on the final discrepancy (and hence also on the 

performance of the resulting sequence). 

It should also be noted that due to use of permutations of the ( )jrσ , the scrambling of 

the one-dimensional sequences will generally result in changes to the quality of the 

one-dimensional coverage of the sequences; the points used in the scrambled 

sequences will generally be different from those used in the original sequences. Our 

analysis showed that depending on r and N, the scrambling can result in increases or 

decreases of the quality of coverage; this could be expected to have an effect on 

estimation performance.  

As mentioned above, the number of dimensions for which B&W have produced 

permutations is sixteen, most existing computer code is thus also limited to this 

number of dimensions. Although it would be possible to generate permutations for 

higher primes, little effort has gone into this process so far, as there has so far been 



 

 

little need for such sequences. However, as the dimensionality of integrals that we use 

keeps on increasing, the scrambling approach is potentially doomed as it is limited in 

its scope by the availability of permutations (which are generally included in an input 

matrix), and as it cannot easily be generalised to any number of dimensions. 

In an estimation process it is generally not desirable to use the same draws in different 

experiments; as an example, we would, in the estimation process of a discrete choice 

model use different draws for different decision-makers. One problem with scrambled 

Halton sequences is that it is generally not possible to adapt the permutations used; 

the draws produced in different runs will thus be exactly the same. Two main 

approaches have been used to deal with this problem, the first approach uses cycling 

of primes (association of different primes with different dimensions in different 

experiments), the second approach uses incremental parts of the sequence in different 

experiments. The first approach is  limited to the case where the number of 

experiments is smaller than K!, where K is the number of dimensions used. Another 

problem is that if all permutations of the dimensions are considered, some decision-

makers will have some dimensions associated with the same primes as other decision-

makers, potentially leading to problems in estimation. The second approach has no 

such limitation, but involves the added computational cost of having to generate 

longer sequences; this can impose a very significant burden when using scrambled 

sequences. The main disadvantage however could be that the different segments of 

the sequence can have (significantly) different quality of coverage, as has been 

observed for example by Bhat (1999) and Train (1999). 

There has been a distinct lack of analysis of the performance of the scrambled 

sequences in terms of coverage and correlation, most authors seem to take the results 

provided by B&W (1979) for granted. The problem is that B&W used the same 

measure of discrepancy for the analysis of the scrambled sequence as was used in the 

selection of permutations, namely the multi-dimensional version of equation (8). 

Although the two problems (discrepancy in the sequence of permutations and in the 

actual Halton sequence) can be regarded as being quite separate, the same method 

should never be used for estimation and validation. Our analysis showed that the 

discrepancy formula given in equation (8) produces, for certain choices of primes, 

very counterintuitive results. This led us to conduct a graphical analysis of the 

coverage provided by the scrambled Halton sequences. Figure 4 clearly shows that 

although the scrambling seems to improve the performance of the sequences, for 



 

 

certain choices of primes, heavy correlation and poor coverage remain in the 

scrambled sequences. It seems that the main problem is that for some choices of 

primes, the scrambling leads to grouping around one of the diagonals, due to high 

remaining correlation between the sequences, and subsequent low coverage in some 

areas lying off the diagonal line. 

4. THE SHUFFLING ALGORITHM 
The above discussion has revealed three main weaknesses of the scrambling 

approach. The performance of the scrambled sequence is very unstable, while it is 

very good for some choices of primes, there are sequences where the scrambling 

offers insufficient improvement over the original sequences and where a pseudo-

random number sequence could be guaranteed to have better performance. Another 

weakness is its inability to produce different draws in different runs, such that the 

different sequences would still exhibit the same quality of one-dimensional coverage. 

The third weakness is the problem of generalisation, without a high number of prior 

computations, it is not possible to use the scrambled Halton sequences for any very 

high number of dimensions (>16). 

The aim of this analysis was thus to develop a new method which would improve on 

at least two of these weaknesses, the performance in terms of correlation and the 

problems with generalisation to higher dimensions.  

It is virtually impossible to produce different sequences that have exactly the same 

multi-dimensional coverage, it is however possible to produce multi-dimensional 

sequences that have the same quality of one-dimensional coverage along the same 

dimensions. This can be achieved by applying a method that uses a different 

permutation of the same initial Halton sequence (rather than a permutation of the 

digits used in the radical inverse expression) in different experiments. This will not 

affect the quality of one-dimensional coverage (as the order of the draws is of no 

importance), but will lead to different multidimensional draws through the use of 

different permutations of the single-dimensional sequences (the multi-dimensional 

sequences are produced through association of the single-dimensional ones). 

We propose the use of shuffled Halton sequences, generated through association of 

randomly shuffled standard one-dimensional Halton sequences. This shuffling 

algorithm takes a standard Halton sequence of length R and simply randomizes the 

order of the elements in the sequence (by using a procedure based on pseudo-random 



 

 

numbers). Even with relatively low R, the number of different possible permutations 

R! is so high that the probability of applying the same random permutation to both 

sequences should be sufficiently close to zero to guarantee that the different one-

dimensional sequences are shuffled in a different way. The risk of this leading to 

poorer coverage should also be acceptably low, given the very poor initial quality of 

coverage. 

When used repeatedly on multi-dimensional sequences (through use on their one-

dimensional components) the method will produce different multi-dimensional 

sequences, where the quality of one-dimensional coverage along the different 

dimensions will be identical for the different sequences. Although the multi-

dimensional quality of coverage will differ between sequences, the differences should 

be less important than when using a method that also changes the one-dimensional 

coverage; indeed, as has repeatedly been observed in the existing literature, these two 

measures are closely related. It should also be clear that a combination of sequences 

with poor one-dimensional coverage can never lead to good multi-dimensional 

coverage. 

Another significant advantage of the shuffled sequences is its computational 

efficiency. As differently shuffled versions of the same one-dimensional sequences 

will be used in each experiment, there is no need for longer sequences (as is for 

example the case when using incremental parts of the scrambled sequences). The 

multi-dimensional draws will be different across experiments, this should help to 

prevent problems with correlation in simulation errors, which would occur if the same 

draws were used repeatedly. 

Unlike the computer code for generation of scrambled Halton sequences, the code for 

the shuffling algorithm is very straightforward and can be used for any number of 

dimensions; there is no need for prior computation of permutations or for changes in 

the code, no matter how many dimensions are needed. Also, unlike for the scrambling 

approach, the method used is the same for any prime used, there are no increases in 

complexity with higher primes. 

As a graphical illustration of the coverage provided by the shuffled Halton sequences, 

plots of the shuffled sequences corresponding to the scrambled sequences shown in 

figure 4 are shown in figure 5. The shuffling produces different results in different 

runs; the plots in figure 5 can thus only serve as an illustration. However, the exercise 

was repeated many times, and the plot repeatedly showed significantly better 



 

 

coverage in the shuffled sequences. These results are reflected on the plots in figure 5, 

indeed they show none of the major blank areas which are characteristic of the poor 

quality of coverage shown on the corresponding plots in figure 4. 

5. QUALITY OF MULTI-DIMENSIONAL COVERAGE 
Dobkin et al (1993) propose to measure the discrepancy between the distribution of 

draws (in the two-dimensional 0-1 space) and a uniform distribution through the use 

of a large number of differently-sized axis-aligned rectangles. 

We let Χ  be the pattern of n points in the unit cube. The method than uses every 

possible combination of (x,y) coordinates and calculates the discrepancy between the 

proportion of space (out of the area of the rectangle) and the proportion of points (out 

of the total number of points in the sample) for the rectangle defined by [ ] [ ]yx ,0,0 × . 

The area of the rectangle is given by xy, the discrepancy for the rectangle is measured 

by: 

  ( ) [ ] [ ]( )
n

yx
A
xyyxd ,0,0#, ×−=Χ     …(9) 

where [ ] [ ]( )yx ,0,0# ×  gives the number of draws in the area [ ] [ ]yx ,0,0 × , and where in 

examples using the 0-1 space, A will be equal to 1. 

The use of all possible combinations of (x,y) leads to the use of n2 such rectangles, 

where n2-n of these rectangles do not have a point in Χ as their upper-right corner. 

This high number means that the method measures the discrepancy in a very 

representative sample of sub-areas of the 0-1 space. 

From this set of n2 rectangles, we can calculate the ∞L discrepancy, which is the 

maximum discrepancy observed over all rectangles, as well as the L  discrepancy, the 

mean discrepancy over all rectangles. An initial analysis showed that the conclusions 

reached by using the ∞L discrepancy tend to be more reliable. The ∞L discrepancy 

measures the worst observed local area discrepancy, this will in general give a fair 

representation of the overall quality of coverage. The L  discrepancy on the other side 

seems to be biased downwards, probably due to the averaging process. Not enough 

weight is given to high local discrepancy if discrepancy in the remainder of the 

sequence is at an acceptable level. The remainder of the analysis was thus only based 

on the ∞L discrepancy. 

Another possible problem with the method is the use of the coordinates of the actual 

pattern of points in the testing patterns. It has been observed in the analysis that this 



 

 

can sometimes bias the results. Indeed, one can imagine a two-dimensional pattern 

where most draws are contained in the lower left quadrant. Most of the rectangles 

used in formula (9) will then be contained in this area of the 0-1 space. Although the 

method also measures positive discrepancy, i.e. excessive coverage, and will thus 

identify the uneven coverage over the entire 0-1 space, it will in this case not be able 

to precisely analyse coverage in the area that contains a very limited number of draws. 

An alternative approach would be to use a predetermined vector of coordinates to be 

used in the test pattern. One way of doing this would be to use n evenly placed points 

along each dimension, the combination of all coordinates would then give a pattern of 

n2 evenly positioned two-dimensional coordinates in the 0-1 space. This will enable 

the method to also explicitly measure the discrepancy in areas with relatively low 

coverage. The formula for calculation of discrepancy as given in equation (9) is not 

changed, the coordinates at which it is used are simply replaced by these new evenly 

positioned coordinates.  

This measure of  coverage can very easily be extended to the case where K>2, by 

setting ck to be the coordinate in dimensions k. For K dimensions, formula (9) then 

becomes: 
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The shuffling algorithm produces different results in different runs; multiple runs 

must thus be used to obtain a stable estimate of the performance of the draws. Due to 

this increased computational cost, the detailed analysis was restricted to three 

different two-dimensional sequences of 100 draws. A more extended analysis, using a 

larger number of sequences, but fewer runs, was carried out on sequences generated 

from a wider choice of primes and largely confirmed the results from the detailed 

analysis. 

Although some of the results in table 1 do indeed show superior performance by the 

shuffled Halton sequences (especially for the sequence based on primes 29 and 31, 

but also for the sequence based on primes 41 and 43), they are not as convincing as 

expected, given the results observed in figures 4 and 5. Indeed, according to table 1, 

some of the scrambled Halton sequences perform better than the corresponding 

shuffled sequences. As a more detailed graphical analysis showed, these results are 



 

 

not at all representative of the actual differences in coverage, and are generally very 

counterintuitive. This could indicate some problems with the measure of coverage. 

Although there thus seem to be some problems with equation (9), some of the results, 

and all of the graphical analysis, show that the use of the shuffled Halton sequences 

generally results in more significant improvements in quality  

of coverage (from the original sequences) than the use of the corresponding scrambled 

sequences. Table 1 also shows that, according to equation (9), the shuffled sequences 

do have the potential to outperform the scrambled sequences for all choices of primes 

used (as shown by the lower confidence interval). 

Equation (10) was used in a separate analysis of the quality of coverage of higher 

dimensional sequences. The increased computational complexity made a large-scale 

analysis impossible on the computer systems used (the functions were coded in R), 

but a tentative analysis suggested significant advantages for the shuffled sequences.  

Although some of the results produced in this section confirm the advantages of the 

shuffled Halton sequences, there are clearly some problems with the discrepancy 

measure of Dobkin et al (1993), at least in the current application. The problem seems 

to be that the method is not able to adequately measure the proportion of the 0-1 space 

that has very low or exceedingly high coverage. A closer analysis showed that the 

method gives too much weight to the lower left corner of the 0-1 area (or with K>2, 

the space around the origin). This is due to the fact that this area is more often 

included in [ ] [ ]( )Kcc ,0,0 1 ××L , no matter what coordinates are used, due to the 

inclusion of the origin in this space. Hess and Polak (2003) use a different approach, 

based on using equally sized portions of the 0-1 hypercube, which are not necessarily 

aligned with any limiting axis. The results from that analysis are far more convincing, 

showing very constant performance by the shuffled sequences, and performance that 

is superior to that of the scrambled sequences. 

Finally, it should also be noted that the method shows that when using high primes 

(≥17), both the scrambled and the shuffled sequences provide better coverage than the 

original sequence. This reflects the observations made in the graphical analysis.  

This analysis was limited to sequences of 100 draws, similar results were also 

obtained when using a higher number of draws (c.f. Hess and Polak (2003)). 



 

 

7. REDUCTIONS IN CORRELATION 
As it was not possible to properly quantify the advantages of the shuffled sequences 

with the measure of coverage used in section 6, an alternative approach had to be 

taken. Figure 4 clearly shows how closely the quality of two-dimensional coverage is 

linked to the correlation between the one-dimensional sequences, with high 

correlation leading to poor coverage. An alternative to explicitly using a measure of 

coverage is thus to compare the correlation between the individual components of 

multi-dimensional sequences when using the different methods. 

A very detailed analysis was carried out, using all possible pairs of primes in the first 

25 dimensions (prime 2 to prime 97), thus also sequences based on non-neighbouring 

primes. Multiple runs (500) were used for each pair of primes, to get as stable an 

estimate of the remaining correlation as possible. The analysis showed a very stable 

performance by the shuffled sequences, virtually independent of the primes used. The 

mean absolute correlation over the 500 runs was calculated for each possible pair of 

primes, the values ranged from 0.0765 to 0.0871, while the variance over runs found 

in the single experiments ranged from 0.0034 to 0.0039. The results were thus very 

similar for different choices of primes. They are also very similar to the mean 

absolute correlation of 0.0802 found when using two pseudo-random number 

sequences of 100 draws each (where the variance is 0.0036). The behaviour of the 

shuffled sequences is thus, in terms of correlation, very similar to that of pseudo-

random number sequences. This could have been expected, because of the use of a 

random shuffling process. These results mean that correlation in the shuffled 

sequences is not significantly higher than that in pseudo-random number sequences; 

while still providing better coverage in the one-dimensional space, and hence also 

generally in the multi-dimensional space. 

The same analysis was carried out for the scrambled Halton sequences, using all 

possible pairs of primes with primes ranging from 13 to 47. The correlation matrix 

between the individual sequences is shown in table 2. This table shows that out of the 

45 pairs of sequences, 27 have a correlation that is higher (in absolute terms) than 

0.0871, the highest mean absolute correlation observed when using the shuffled 

sequences. Furthermore, 9 out of the 45 correlations lie above (in absolute terms) the 

upper 95% confidence limit on the correlation between two shuffled sequences (and 7 

lie above the upper 99% confidence limit). These results seem to indicate that the 

reduction in correlation achieved by using the shuffled sequences is more important 



 

 

than that observed when using the scrambled sequences. Again, very similar results 

were obtained when using a higher number of draws. 

Finally, just as in our analysis of coverage, the analysis of correlation showed that 

both the shuffled sequences and the scrambled sequences clearly offer an 

improvement over the original sequences when used on sequences generated from 

high primes (≥17), although for some choices of primes, the improvements offered by 

the scrambled sequences are barely significant. 

CONCLUSIONS AND RECOMMENDATIONS  
This paper has presented a detailed comparison between the performance of 

scrambled and shuffled Halton sequences. A graphical analysis has revealed very 

significant advantages of the shuffled sequences over the scrambled sequences. 

Indeed, the power of the shuffling algorithm to disrupt the correlation between the 

one-dimensional Halton sequences seems to be superior to that of the corresponding 

scrambled Halton sequences. This allows the method to generate sequences that offer 

a more uniform coverage of the 0-1 space. The analysis has also shown the difficulties 

in giving a reliable measure of the quality of coverage provided by a pattern of points 

in a delimited space. Even so, the few results that seemed to actually reflect the true 

quality of coverage showed clear advantages for the shuffled Halton sequences 

(notably for the sequence based on primes 29 and 31). 

An extended analysis of the effects on correlation confirmed that the power of the 

shuffling algorithm to reduce correlation is significantly superior to that of the 

scrambling approach. Indeed, this analysis showed that for 27 of the 45 pairs of 

primes used in the analysis, the correlation in the scrambled sequences is higher than 

the mean correlation in the shuffled sequences. For 9 of these pairs, the correlation in 

the scrambled sequences is higher than the upper 95% limit on the correlation in the 

corresponding shuffled sequences, and for 7 pairs it is higher than even the 99% limit 

in the corresponding shuffled sequences. 

Another very significant advantage of the shuffled Halton sequences is the simplicity 

of the approach. It can easily be implemented on any computing platform and can 

offer considerable runtime savings over other methods due to the fact that the same 

original sequence can be used repeatedly with a very high guarantee of producing 

different multi-dimensional sequences. The method can also, unlike the scrambling 



 

 

approach, be generalised to any number of dimensions, without increasing its 

complexity or requiring any additional coding or calculations. 

We would thus strongly recommend that this method be preferred to scrambled 

Halton sequences when dealing with high correlation and poor coverage in the 

original multi-dimensional Halton sequences. 

Recent experiments (Hess et al, 2003) have confirmed the advantages of the shuffled 

Halton sequences when used in actual estimation processes. This analysis showed 

very constant estimation performance when using the shuffled sequences. The 

performance was superior to that of corresponding standard Halton sequences as well 

as scrambled Halton sequences and pseudo-random number sequences. 

ACKNOWLEDGMENTS 
We would like to thank Andrew Daly for very helpful comments, discussions and 

suggestions.  



 

 

REFERENCES 
Bhat, C. R. (1999), "Quasi-random maximum simulated likelihood estimation of the 
mixed multinomial logit model", Transportation Research, 35B, pp.677-693 

Bhat, C. R. (2002), "Simulation Estimation of Mixed Discrete Choice Models Using 
Randomized and Scrambled Halton Sequences", Transportation Research, 
forthcoming. 

Braaten, E. & Weller, G. (1979), "An improved low-discrepancy sequence for 
multidimensional quasi-Monte Carlo integration", Journal of Computational Physics, 
33, pp. 249-258. 

Dobkin, D. P., Eppstein, D., & Mitchell, D. P. (1993), "Computing the Discrepancy 
with Applications to Supersampling Patterns", in Proc. 9th ACM Symposium for 
Computational Geometry, pp. 47-52. 

Halton, J. (1960), "On the efficiency of certain quasi-random sequences of points in 
evaluating multi-dimensional integrals",  Numerische Mathematik, 2, pp. 84-90. 

Hess, S., Polak, J. and Daly, A. (2003), “On the performance of the shuffled Halton 
sequence in the estimation of discrete choice models”, accepted for presentation at 
the European Transport Conference 2003. 

Hess, S. & Polak, J. (2003), “The Shuffled Halton sequence”, submitted to 
Mathematical and Computer Modelling. 

Train, K. (1999), Halton sequences for mixed logit, technical paper, Department of 
Economics, University of California, Berkeley .  

Train, K. (2003), Discrete Choice Methods with Simulation, Cambridge University 
Press, Cambridge, MA. 

Tuffin, B. (1997), “Simulation accélérée par les méthodes de Monte Carlo et quasi-
Monte Carlo: théorie et applications.”, PhD dissertation (in French language), 
Université de Rennes, France. 



 

 

 
 
 
 
 
 
 
 

 
Fig.  1.  Problems with correlation in two-dimensional Halton sequences 



 

 

 
 
 

 
Fig.  2. Two-dimensional Halton sequences generated from combination of primes between 
dimension 8 and dimension 15 



 

 

 

 
Fig.  3. Problems with correlation between Halton sequences generated from low primes 

 

 

 

 
Fig.  4. Problems with high correlation and poor coverage in scrambled Halton sequences



 

 

 
Fig.  5.  Coverage provide by shuffled Halton sequences 

 Table 1 :  Discrepancy in two-dimensional Halton sequences of 100 draws 
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 Scrambled 
sequence 0.0957 0.1803 0.1295 0.105 0.1348 0.1115 

Lower 95% 
limit 0.0755 0.0938 0.1173 0.0989 0.1056 0.0963 

Mean 0.0975 0.1142 0.1422 0.1195 0.1284 0.1139 

Sh
uf

fle
d 

se
qu

en
ce

s 

Upper 95% 
limit 0.1195 0.1346 0.1671 0.1401 0.1512 0.1315 

 
Table 2 : Correlation between scrambled Halton sequences of 100 draws 

 Prime 13         
Prime 17 -0.01846 Prime 17        
Prime 19 0.063063 0.33435 Prime 19       
Prime 23 -0.01103 -0.15156 -0.00853 Prime 23      
Prime 29 -0.09241 -0.14344 -0.02671 -0.27799 Prime 29     
Prime 31 0.039695 0.162972 0.092292 0.221403 -0.4492 Prime 31    
Prime 37 0.181811 0.060718 0.092974 0.001876 0.073196 0.122347 Prime 37   
Prime 41 -0.11697 0.087703 0.09592 0.009998 -0.06049 0.061755 0.285909 Prime 41  
Prime 43 0.106949 -0.04095 -0.00665 0.076421 -0.02143 0.200931 0.138587 0.31837 Prime 43 
Prime 47 0.111372 -0.13978 -0.18581 -0.16359 0.042235 -0.08658 -0.19614 -0.31577 -0.34897 
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