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Abstract

This paper studies a linear random utility model of demand for variety

under spatial product differentiation. A motivation is given by previous

work establishing a connection between the demand generated by linear

random utility and CES demand. Two interpretations of the random

utility model are considered. First, the utility of a representative consumer

from a given variety is assumed to be random e.g. due to a random

linear trade cost or unobservable quality. In the second interpretation the

uncertainty is due to the incomplete information of the modeller regarding

the utility parameters. The demand system implied by stochastic utility

maximization has some resemblance with a CES demand system. An

application of the demand for variety model to new economic geography

is discussed. The approach to stochastic utility is based on maximizing

linear random utility functions via probabilistic constraints. The main

focus is on the case where the random utility/cost parameters are i.i.d.

normal random variables. In economic geography linear random utility

implies aggregate demand for variety and can explain intra-industry trade

between symmetric regions.
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1 Introduction

This paper studies a linear random utility (RU) model of the demand for vari-

ety under spatial product differentiation. A stochastic programming model of

linear random utility model is presented. The main focus is on the case where

the random taste parameters of the population of consumers, or of individual

consumers, associated with the different varieties, are independent and normally

distributed. The stochastic programming approach to dealing with random util-

ity is based on maximizing random utility via probabilistic constraints. This

framework provides a simple approach to optimizing a linear random objective

function. The goal is to extend previous work on random linear utility models

based on assuming discrete choice of a single variety [Anderson et al.1996] to a

stochastic optimization framework allowing for demand for variety.

A motivation for the random utility approach to the study of demand for

variety under spatial differentiation is given by previous work, demonstrating a

connection between the CES utility model of demand for variety and a linear

random utility model [Andersson et al.1988, Anderson et al.1996]. It has been

shown that the CES model can be constructed as being representative of a pop-

ulation of consumers making discrete choices. The main objective of this paper

is to study demand for variety from the point of view of stochastic linear utility

optimization. The demand system implied by stochastic utility maximization

is shown to have some resemblance to a CES demand system. The random

utility model endogenizes demand for variety, provided the number of varieties

available meets a certain threshold. Under this condition, and in the special

case of symmetric prices, both the random utility model and the CES model

imply an equal allocation of income across varieties.

The consumer may face uncertainty regarding the utility parameters, e.g.

due to unobservable characteristics. In this case optimization is performed be-

fore the realization of the random variable, like in models of state dependent

utility, and unlike in linear random utility models where the modeller faces un-

certainty [Anderson et al.1996]. In this context the consumers are not restricted



to buy a single variety. An application of the model is to consider a network

economy such as an electronic marketplace where the consumers choose between

different varieties characterized by attributes that can be unobservable and/or a

trade cost that can be random. The random utility/cost parameters reflect the

lack of complete information regarding the characteristics of the alternatives.

When the uncertainty is interpreted to be due to the lack of information of

the modeller, the discrete choice assumption can be endogenized in the stochas-

tic programming framework similarly as in random utility models (ibid.). If

the utility parameters are i.i.d., the aggregate consumer is then predicted to

demand all varieties like in random utility models based on discrete choice.

The key features in the new economic geography NEG models include gen-

eral equilibrium, transportation costs and Dixit-Stiglitz utility functions giving

rise to demand for variety [Krugman1991]. As an application of the random

utility framework this paper discusses an NEG model based on a linear ran-

dom utility approach. Most of the previous literature on spatial economics with

trade is based on deterministic models [Dean et al.1970, Fujita et al.1999]. In

general the preferences, technologies and/or endowments can be random, lead-

ing to a particular form of a random trade model [Pomery1984]. In an NEG

application random utility formalizes intra-industry trade between symmetric

regions [Dixit and Norman1993]. The focus is on spatial economy with linear

random utility and a deterministic trade cost.

The main results from this paper can be summarized as follows:

1. A stochastic programming framework for the optimization of linear ran-

dom utility is introduced. The uncertainty in utility can be due to the lack

of complete information available either to the modeller or the consumer.

The random utility parameter associated with a given variety can be inter-

preted as a utility parameter reflecting a random trade cost between the

representative consumer and the producer of the variety (cf. the Hotelling

model of product differentiation). The outcome of individual stochastic

utility optimization coincides with the predicted solution to the allocation



of the income of an aggregate consumer constructed from a population

with each consumer buying a given fixed number of varieties (or none).

Increasing the product diversity in the model both increases the (esti-

mated) utility of the aggregate consumer and, due to diversification, the

utility that can be obtained by consumers, like in [Dixit and Stiglitz1977].

2. In the stochastic utility interpretation, a random linear utility parame-

ter makes the goods imperfect substitutes. The demand system implied

by the stochastic programming model of random utility under indepen-

dent normally distributed utility parameters resembles a modified CES

demand system. In an NEG application of the model with an aggregate

consumer, trade takes place in spatially different CES composites. It is

optimal for the consumer to demand either all varieties or use all income

as money, unless the consumer is restricted to buy at most a single variety.

3. Assuming normally distributed utility parameters is sufficient for the ex-

istence of an equilibrium in a price game between the produces of the

different varieties, provided the suppliers ignore the impact of the own

price on the price index. In [Caplin and Nalebuff1991] a joint logconcave

distribution of the random utility parameters has been shown to be a suf-

ficient condition for the existence of a price equilibrium. A market-based

solution to product differentiation under uncertainty does not imply too

much differentiation but it may imply too little.

The structure of the paper is as follows. Section 2 introduces the stochastic

programming approach to random utility in the context of spatial differentiation.

Section 3 discusses the demand system implied by utility maximization under

normally distributed utility coefficients. Section 4 applies the random utility

model to study demand for variety under spatial differentiation. Optimal prod-

uct diversity is studied when assuming the normally distributed random utility

coefficients are i.i.d. random variables. Section 5 discusses applications of the

random utility model, first to an economic geography model and second to net-

work formation. Like in previous work on random utility [Anderson et al.1996],



the random utility model is the same irrespective of whether the uncertainty is

due to the modeller’s incomplete information or stochastic utility.

2 Spatial Differentiation under Uncertainty

In what follows spatial differentiation is studied from a random utility point

of view. Spatial differentiation may refer to either distance in a geographical

space or the difference in qualities of different products in a characteristics space

[Anderson et al.1996].

2.1 A Random Utility Model of Spatial Differentiation

Consider an economy with n consumers and m varieties. Let xij denote the con-

sumption of consumer i of variety j, i.e. the jth element in xT
i = (xi1, ..., xim).

Let x = (x1, ...,xn) denote the mn-vector of consumptions. The utility function

ui(xi) of consumer i is assumed to be linear in the random utility parameters

gij associated with spatially different varieties j = 1, ...,m (cf. related work in

[Caplin and Nalebuff1991]):

ui(xi) = bi

m∑
j=1

gijxij + h(zi), i = 1, ..., n, (1)

where bi ≥ 0 is a deterministic utility parameter, zi denotes consumer i’s con-

sumption of the numeraire and h is nondecreasing concave function. In what

follows, two cases of h are considered: net utility maximization with h(zi) = zi

and gross utility maximization with h(zi) = 0. Let Pj , the jth component in P

denote the unit price of variety j. Let zi = Ei − PT xi = z(Ei,P) ≥ 0 in (1)

where Ei denotes the income of agent i. Each variety j is associated with a one-

dimensional utility parameter gij , which is the jth element in gT
i = (gi1, ..., gim).

In what follows it is assumed that these parameters are normally distributed.

The extended version of this paper [Heikkinen2003] presents a model based on a

lognormal distribution with a nonnegative support, applicable to spatial differ-

entiation when the parameters gij measure decay due to distance in geographical

space.



The utility model (1) implies an ex post unit trade cost between i and j,

E(gij) − gij , measured as the difference between the expected marginal utility

and realized marginal utility. Let gil = L, the utility value of the ideal variety l

of i, denote a large value of the parameter gij after which further increases in gij

bring no additional benefit. Another trade cost measure can be defined as L−gij ,

where L can be chosen so that the probability of a negative cost (reward) is small.

This definition of a trade cost applies also to normally distributed coefficients

and can be rationalized as follows. Let zi = L ∈ R and zj = gij ∈ R denote the

address of consumer i’s ideal variety and the address of variety j, respectively.

Redefine the distance to j as dij = |zi − zj |. Consumer maximizing (1) is

indifferent between getting gij from one unit of j and obtaining L from one unit

of l by incurring the trade cost L−gij (cf. address models [Anderson et al.1996]).

I.e. for zi ≥ zj the trade cost of j is equal to the distance to j, L − gij = dij .

(For zi ≤ zj the trade cost is negative as L− gij = −dij ≤ 0.)

The model implies an ex post unit trade cost between i and j, E(gij)− gij ,

measured as the difference between the expected marginal utility and realized

marginal utility. Let gil = L, the utility value of the ideal variety l of i, denote

a large value of the parameter gij after which further increases in gij bring no

additional benefit. Another trade cost measure can be defined in terms of the

value of the ideal variety l: L − gij . The number L can be defined so that

the probability of a negative cost (reward) is small. This definition of a trade

cost applies also to normally distributed coefficients and can be rationalized as

follows. Let zi = 0 denote the address of consumer i, located at the origin. Let

zj denote the address of variety j, both on the real line. The distance from i

to j is redefined as dij = |zj − zi|. When zj ≤ zi let gij = −dij ≤ 0 denote

the disutility value of the distance from i to j. When zj > zi, let gij = dij

denote the utility from j to i. Thus, L = dil = gil. Note that if zi = zl, the

utility from j depends negatively on the distance to the ideal variety, gij = −dlj

for all j with zj ≤ zl, like in address models [Anderson et al.1996]. The trade

cost of i between j and l, L − gij is then equal to the distance from zj to

zl. Consumer i is indifferent between obtaining gij from j and incurring the



trade cost L − gij to get L at zl. The coefficient gij in (1) can thus be seen

as the difference between the utility from l and the trade cost between j and

l. For example, consider an economy with n spatially distinct demand markets.

In each market a representative consumer chooses between m ≤ n varieties,

produced at spatially distinct markets. Variety j is associated with a random

coefficient gij at demand market i. In this context xij can be interpreted as the

volume of trade from j to i.

Two Interpretations of Random Utility

Two interpretations of stochastic utility are discussed in [Anderson et al.1996].

In the first original approach the random utility model is the assignment of a

random variable measuring utility to each alternative. In the second approach,

the uncertainty in utility can be interpreted to be due to the lack of information

of the modeler (ibid.). The modeler is assumed to have imperfect knowledge

about the utility functions. This case is discussed in 2.4. In the first approach

the utility parameters {gij} of each agent i are random. In the presence of

random utility parameters two models are considered. First, in 2.2 utility max-

imization is considered assuming each variety is associated with a random util-

ity coefficient. In 2.3 deterministic iceberg transportation cost parameters are

introduced, and xij refers to a CES composite from region j demanded by rep-

resentative consumer i in the presence of random utility parameters regarding

the composites.

2.2 Random Utility Maximization

When h(zi) = zi the ith consumer’s random objective function can be written

as

bigT
i xi + E −

m∑
j=1

Pjxij . (2)



Letting Ui denote the new objective, the corresponding optimization problem

can be stated as:

max Ui = U∗
i s.t. Pr(bi

m∑
j=1

gijxij+Ei−
m∑

j=1

Pjxij ≥ Ui) ≥ p̄i, s.t.
m∑

j=1

Pjxij ≤ Ei.

(3)

Random utility in (2) is derived by agent i only if the probability that the

ex ante value of this term is at least Ei meets a given reliability threshold p̄i.

Otherwise the utility of i is h(Ei) = Ei by setting the demand equal to zero

xi = 0. When h = 0, the objective is written as:

max ui = u∗i s.t. Pr(bi

m∑
j=1

gijxij ≥ ui) ≥ p̄i, s.t.
m∑

j=1

Pjxij ≤ Ei. (4)

The theory of random utility has essentially been developed under the assump-

tion that the utility coefficients associated with different varieties are indepen-

dent and identically distributed [Anderson et al.1996]. In what follows for sim-

plicity i.i.d. coefficients are assumed.

2.3 Aggregate Consumer’s Problem: Income Allocation

between Composites of Goods

This section summarizes the [Dixit and Stiglitz1977] utility model from the

point of view of a spatial economy. Consider an economy with m regions each

producing V distinct varieties and n ≤ m regions represented by an aggregate

consumer. Let djk denote the consumption of variety k in region j. Let θ > 1

denote the constant elasticity of substitution CES parameter and let g̃j denote

the deterministic decay cost between the representative consumer and region

j. The CES composite utility from varieties from region j is given by the

[Dixit and Stiglitz1977] utility:

xj = g̃j(
V∑

k=1

d
θ−1

θ

kj )
θ

θ−1 . (5)



The deterministic allocation problem, discussed first, is for the (aggregate) con-

sumer to maximize the utility function

max
m∑

j=1

(xj + zj) (6)

subject to the aggregate income constraint

m∑
j=1

(zj + πjxj) = E, (7)

where πj denotes the price index of composite j. Letting pjk denote the price

of variety k in region j, the CES price index in region j is defined as (ibid.)

πj =
1
g̃j

(
V∑

k=1

p1−θ
jk )

1
1−θ . (8)

The income allocated to varieties from region j is denoted by Ej . Problem

(6)-(7) can be solved in two stages: first, treating Ej as a given parameter, the

optimal allocation of Ej within region j is determined. Second, substituting the

solutions d∗jk(Ej) from the first stage in (6) gives the new objective that is then

solved with respect to the allocations Ej subject to
∑m

j=1(Ej + zj) = E. The

first problem for each region j = 1, ...,m is to

max
(dj1,...,djV )

(
V∑

k=1

(g̃jdjk)
θ−1

θ )
θ

θ−1 s.t.
m∑

j=1

pjkdjk = Ej , (9)

The kth solution to (9) is the CES demand in region j for variety k [Dixit and Stiglitz1977]:

d∗jk =
Ejp

−θ
jk∑V

k=1 p1−θ
jk

, (10)

If the trade cost increases, the decay parameter g̃j decreases, decreasing the

utility from the composite from region j as can be seen from (5), keeping the

expenditure constant at Ej . Substituting (10) in (5),

xj(Ej) =
Ej g̃j

(
∑V

k=1 p1−θ
jk )

1
1−θ

=
Ej

πj
. (11)

The remaining problem then is to max
∑m

j=1(xj(Ej)) subject to
∑m

j=1(zj +

Ej) = E.



This model can be extended to random utility as follows. Let gj (omitting

the consumer index) denote the random utility parameter associated with a

composite good from region j. When the parameters gj are random, the aggre-

gate consumer is not able to verify whether the composites from each region are

exactly equivalent from utility point of view. The aggregate consumer’s problem

is to find the optimal income allocation E∗ = (E∗
1 , .., E∗

m)T solving (cf. (1)):

max
E,z

m∑
j=1

(gjxj(Ej) + h(zj))

subject to
∑m

j=1 zj +
∑m

j=1 Ej = E, where xj(Ej) is defined in (11). When

h(zj) = 0 for all zj ≥ 0 the stochastic gross utility maximization problem can

be written as

max
x

u s.t. Pr(
m∑

j=1

gjxj ≥ u) ≥ p̄ (12)

subject to the aggregate income constraint:

m∑
j=1

(πjxj + zj) = E, (13)

where xj is defined in (11). The solution {x∗j}m
j=1 to (12)-(13) implies the

optimal income allocation between different regions j = 1, ...,m. Section 5.1

returns to the above model.

2.4 Econometric Model with Discrete Choice

The econometrician’s model is based on assuming that the utility functions are

deterministic but the modeller has incomplete information about the utility

function [Anderson et al.1996]. Assume that this uncertainty is captured by a

distribution of the taste parameter g across the population of individuals that

are statistically identical: the choices are governed by the same probability

distribution. In random utility models with discrete choice it is assumed that

each consumer buys a single variety. The motivation is given by the assumption

that the consumer knows his linear utility function and is able to determine the



best choice (ibid.). Consider the aggregate consumer’s problem:

max U s.t. Pr(
m∑

j=1

gjxj −
m∑

j=1

Pjxj ≥ U) ≥ p̄,
m∑

j=1

Pjxj ≤ E, (14)

where gj is the random taste parameter of a representative consumer regarding

variety j. It can be shown that under price symmetry, if the modeller imposes

the discrete choice hypothesis, the choice probability of variety j is:

Pr(j) =
x∗jPj

E
, (15)

where E denotes the aggregate income and x∗j is the jth solution to the aggregate

income allocation problem (14) (derived in section 3). In the special case of

price symmetry the modeller’s income allocation problem subject to the discrete

choice hypothesis coincides with an aggregate consumer’s unrestricted problem.

E.g. the model in 2.3. can be interpreted in this way, as a model of an aggregate

consumer maximizing random utility subject to an aggregate income constraint,

as well as as a model of individual optimization).

3 The Demand System with Random Utility

Consider the stochastic utility optimization problem of a representative con-

sumer to maximize the gross utility:

max u (16)

subject to

Pr(
m∑

j=1

gjxj ≥ u) ≥ p̄ (17)

and subject to the income constraint

m∑
j=1

Pjxj = E. (18)

Gross utility is denoted by u to distinguish from the net utility U in (3). It is

argued in the extended version of this paper ([Heikkinen2003]) that this can be



rewritten as the constrained optimization problem:

max
m∑

j=1

ḡxj + φ−1(1− p̄)σ

√√√√ m∑
j=1

x2
j + λ(E −

m∑
j=1

Pjxj), (19)

where λ denotes the Lagrangian multiplier, ḡ = E(g), σ2 = V ar(g) and φ

denotes the standard normal distribution function. Letting p̄ ≥ 0, φ−1(1− p̄) ≤

0. Let v = (−φ−1(1− p̄)σ)2. Solving for λ implies:

λ =
ḡΠ
Π̂

−

√
ḡ2Π2 − Π̂(mḡ2 − v)

Π̂
, (20)

where Π =
∑m

j=1 Pj and Π̂ =
∑m

j=1 P 2
j denote price indices. Assume that the

marginal utility from income λ ≥ 0. Letting

Dj =
ḡ − λPj√

v
. (21)

the demand function xj under i.i.d. utility parameters can be stated as (ibid.)

xj =
EDj∑m

j=1 DjPj
. (22)

Relation to the CES Demand System

Note the formal similarity between the demand due to random utility (22)

and the CES demand (10). In the special case with price symmetry Pj =

P, j = 1, ..,m, the RU demand and CES demand coincide: xj = E/(mP ), j =

1, ...,m, assuming λ ≥ 0 in (20).

It follows from (22) that for any two varieties j and k 6= j:

r =
xj

xk
=

Dj

Dk
=

ḡ − λPj

ḡ − λPk
. (23)

Under CES demands (10), referred to as xces
j , xces

k ,

r =
xces

j

xces
k

=
P−θ

j

P−θ
k

. (24)

It can be observed that the ratio of the demands for any two varieties only

depends on the prices of these varieties in the CES model. In the case of the

RU model it also depends on the price index Π via λ. Let t = Pj/Pk. In



the CES model, for any two varieties the elasticity of substitution is constant,

eces = θ, where θ is the utility parameter in (5). In the RU model, when

evaluated at a fixed Pk, the elasticity of substitution depends on λ, t and Pk:

eru =
λt

ḡ
Pk
− λt

. (25)

It can be seen from (25) that eru approaches ∞, indicating perfect substitutabil-

ity between the different varieties, only in the special case when ḡ = λPj =

P, j = 1, ...,m, corresponding to the case without uncertainty, i.e. with σ = 0

or p̄ = 0.5. Thus, a linear random utility model under i.i.d. utility parameters

does not imply that the varieties are perfect substitutes as in general eru 6= ∞.

Proposition 1. Let the demand xj for variety j be defined by (22) and let

c denote the unit production cost. When ignoring the impact of own price on

the price index, the profit function of the producer of variety j in region j,

Ij = Pjxj − cxj is quasiconcave in Pj.

Proposition (1) shows that the random utility model satisfies the sufficient con-

dition for the existence of an equilibrium price P ∗ in the game between the

distinct producers of j = 1, ...,m.

4 Optimal Variety under Stochastic Utility

The following proposition is proved in [Heikkinen2003]:

Proposition 2. Consider problem (3) of a representative consumer i. Let

Pj = P, j = 1, ...,m. Assume that the parameters gij are i.i.d. random variables

with a normal distribution. Let E(gij) = ḡ and let V ar(gij) = σ2. Denote the

objective function by: Ui. Suppose there is a feasible solution to this problem. Let

φ denote the standard normal probability distribution function. Then, an optimal

allocation is to let x∗ij = x∗ = E
Pm , i = 1, ..., n, j = 1, ...,m, if m ≥ dm∗

i e and

x∗ij = 0, i = 1, ..., n, j = 1, ...,m otherwise, where the threshold product variety

is m∗
i = (−φ−1(1−p̄)σbi

biḡ−P )2.



The threshold number m∗ is the minimum sufficient variety that yields non-

negative utility U . Proposition (2) implies for gross utility maximization as

defined in section 3 the modified threshold:

m̄ = (
−φ−1(1− p̄)σ

bḡ
)2. (26)

Likewise, the following can be shown (ibid.).

Proposition 3. Consider problem (16)-(17). If m ≥ m̄, the optimal demand

of a representative consumer for variety j, x∗j , is given in (22). If m < m̄, it is

optimal to set x∗ = 0.

The required threshold variety makes the RU model of demand for variety

different from the CES model (where the marginal utility from income always is

nonnegative). The demand for variety that results from the stochastic program-

ming model is also different from the outcome of expected utility maximization

e.g. in portfolio theory where under linear Bernoulli utility functions and i.i.d.

coefficients there is no gain in expected utility from demanding all varieties.

Proposition (2) implies the following:

Remark 1. Assume that a representative consumer-producer at region i has

income equal to the competitive profit from production at i, and that the labour

(resource) is equally distributed across the locations. A decentralized directed

network economy as modelled by independent normally distributed network co-

efficients is either with no trade or with symmetric trade along all links.

Remark 2. Under symmetric prices, the maximum utility is obtained when

the number of available varieties m approaches infinity: U(m) = E
P [(bḡ − P ) +

σφ−1(1− p̄)
√

1
m ] → E

P [(bḡ − P )] as m →∞.

Consider an economy with n consumers and m varieties. The equilibrium

price P and variety m are jointly determined from

n∑
i=1

xij(P ) = R/m,



where the total amount of resources is R, and one unit of each variety requires

one unit of resource. The maximum price is determined from:

Pmax(m) = bḡ + σφ−1(1− p̄)
1√
m

. (27)

Any P such that 0 ≤ P ≤ Pmax yields the same total utility nU +nE. A market

based equilibrium may produce too little variety since any m ≥ m∗ can be sup-

ported as a price equilibrium, assuming P (m) ≤ Pmax (cf. [Dixit and Stiglitz1977]).

Assuming p̄ ≥ 1
2 , the following observations can be made differentiating

welfare U∗ with respect to ḡ, σ and m: U∗ is increasing in both ḡ = E(g) and

m and U∗ is decreasing in uncertainty as measured by σ. The discrete choice

model with xij ∈ {0, 1} for i = 1, ..., n and at most one j = 1, ...,m is an optimal

solution only if p̄ = 1
2 or σ = 0.

5 Applications to Network Economics

In what follows, An application to NEG based on the model of an aggregate

consumer in 2.3 is summarized in 5.1. An application to network formation is

discussed in 5.2.

5.1 A Random Utility Model of a Spatial Economy

The NEG approach to trade [Fujita et al.1999] studies trade assuming 1) price

equilibrium 2) iceberg transportation costs and 3) product differentiation. In

the new trade theory space is often modelled by iceberg transportation costs

[Krugman and Venables1996]. In what follows consider the demand for variety

model of an aggregate consumer in 2.3 where random utility is independent of a

deterministic iceberg trade cost g̃ij between regions i and j. Consider a spatial

setting with n = m distinct demand markets, as modelled by the decay trade

cost parameters g̃ij ∈ [0, 1]. Each variety j = 1, ...,m is produced at a distinct

location, and each location is associated with a representative consumer with

income E/m, where E denotes the aggregate income. Assume that the price



of each variety k in each region j is competitively determined. The price of a

composite from region j to region i modifies (8) to:

πij =
V

1
1−θ pj

g̃ij
.

Assume that each region j has the amount of xj of a productive immobile

resource. Production of one unit of variety j takes one unit of resource. The

competitive equilibrium price πj of composite j determined from the resource

market equilibrium condition:
m∑

i=1

xij(πj) = xj , j = 1, ...,m,

where xij denotes the aggregate demand in a representative region i for the

composite from region j and is the jth solution to (12)-(13).

The CES-demand for variety k (10) in a representative region is the solu-

tion to maximizing the constant elasticity of substitution CES utility subject

to a budget constraint as formalized in problem (9). The function in the proba-

bilistic constraint in the aggregate consumer’s problem (12)-(13) is linear in the

decision variables xj . The random utility parameter can be interpreted as being

independent of the deterministic parameter g̃ij measuring a linear decay cost

between regions i and j. The allocation problem is then formally equivalent to

the problem studied in Proposition (3). This implies the following:

Remark 3. Suppose that the number of demand markets n is equal to the

number of supply markets m. Assume that the number of regions m meets the

threshold in Proposition (3). Then the aggregate consumer’s demand defined at

demand market i on the CES composite from each region j = 1, ....,m is given

by (cf. (22))

xij =
EDij∑m

j=1 Dijπij
(28)

where now

Dij =
ḡ − λπij√

v
. (29)

All inter-regional trade is intra-industry trade IIT . By the Grubel-Lloyd

definition [Greenaway and Milner1986]) in terms of production for imports and



exports the volume of IIT is
∑m

i=1

∑
j 6=i xij(πij) where xij(πij) is the demand

in region i for the composite from j at price level πij.

Aggregate Consumer vs. Individual Consumer

The demand for variety that the RU model predicts under discrete choice can

be interpreted to follow from the incomplete knowledge of the econometrician

estimating demand by specifying the distribution of the utility parameter, as

argued in 2.5. Both the CES model and the random utility model can be

interpreted as models of a representative consumer. The stochastic utility model

of an individual consumer gives another motivation for trade in goods that are

substitutes but can not be considered as perfect substitutes due to the random

utility parameter (as shown in section 3). Like in the Hotelling type models,

the utility parameter measures the decay cost to the different varieties. The

consumer is unable to specify exactly how far the different alternatives are from

his address (his ideal variety [Anderson et al.1996]).

5.2 Network Formation

As an application of the simple model in section 4 with price symmetry, consider

[Bala and Goyal2000] where network formation is studied when the determinis-

tic utility of i is given by

ui = bi(1 +
m∑

j=1

g̃ijxij)− P

m∑
j=1

xij (30)

where the level of communication is fixed x ∈ {0, 1}m. By symmetry the de-

terministic parameter g̃ij = g̃, i = 1, ..., n, j = 1, ...,m measures the decay in

a direct link between node i and node j. It is assumed that by paying the link

formation cost P i obtains from j g̃ij = g̃ ∈ (0, 1]. Furthermore, if there is a link

between j and k 6= j, i, the amount node i obtains from k through the indirect

link via j is g̃2. Node i then prefers a direct link to k to an indirect link via j if

g̃ − P ≥ g̃2. (31)



If (31) is satisfied, the outcome is referred to as the complete network. In

general, if the shortest path between i and j is via m links, i obtains g̃k. A

connected network need not be complete as some links may be indirect if the

condition (31) does not hold.

In a strict Nash network each agent gets a strictly higher payoff with his

strategy than he would with any other strategy [Bala and Goyal2000]. A strict

Nash network with utility functions (30) is either empty (with no links) or

connected via direct or indirect links between all nodes (ibid). Consider first

the stochastic decision problem of a representative node i as written in (3).

The parameters gij are assumed to be normally distributed. As argued in 2.1,

the coefficient gij is negatively related to the distance between nodes i and j,

dij = L − gij for some large L. The distance can be defined in characteristics

space or geographical space. This formulation simplifies the network formation

game in [Bala and Goyal2000] by assuming each node makes its link formation

decision without knowledge of existing links independently of each other. Like

under (31), there is no incentive to consider indirect links. Letting E = m

captures the conditions xi ∈ {0, 1}m, i = 1, ..., n since by Proposition (2) under

price symmetry and the i.i.d. assumption only symmetric allocations emerge.

In the deterministic model the empty network results whenever the cost of a

single link exceeds its benefit P > g̃ (ibid.). In a stochastic network, there can

be an incentive for network formation even if there is no incentive to form a

single link. Proposition (2) implies that there is an incentive to form m ≥ m∗

links or none under the i.i.d. assumption. Then, in the absence of knowledge of

the decisions of other nodes, the symmetric random network is either empty or

connected, via direct links only.

Assuming the nodes know the network (decisions of others) may change the

outcome of Proposition (2) in two ways. First, some of the direct links may be

replaced by indirect links (star network). Second, if the outcome of the simulta-

neous move game is an empty network, a connected network can still emerge if

link formation can be supported via indirect links (this is referred to as a wheel

network, ibid.). In both cases (star or wheel), the network is connected. To



rule out indifference between forming and not forming links, consider only strict

Nash networks. In summary, the outcome of network formation with i.i.d. de-

cay parameters is analogous to that observed in previous work on deterministic

network formation: a strict Nash network is either empty or connected.

6 Conclusion

This paper has revisited the modelling of demand for variety, from the point of

view of linear random utility optimization via probabilistic constraints. In an

economy with a single factor and constant returns to scale, the random utility

model under the i.i.d. assumption implies demand for the spatially different va-

rieties. This is analogous to the demands generated by CES-utility. In empirical

work on intra-industry trade ”industrial organization” features can explain part

of this type of trade and the current work adds horizontal differentiation due

to uncertainty in utility to the set of such variables. Uncertainty endogenizes

demand for diversity. An application of the new model of demand for diversity

to new economic geography was discussed.

Two interpretations of the linear random utility model are considered. First,

it can be assumed that the utilities are random, e.g. due to unobservable char-

acteristics. The demand system due to stochastic utility resembles the CES

demand system. Under the second interpretation, made in most linear RU

models, the modeller has incomplete information about the utility functions.

The random parameters associated with the varieties, or composites, capture

this uncertainty.
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