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Abstract. The objective of this paper is to compare fractal-based parameters calculated by 

different fractal methods for urban built-up areas, and to link the observed spatial variations to 

variables commonly used in urban geography, urban economics or land use planning. 

Computations are performed on Brussels. Two fractal methods (correlation and dilation) are 

systematically applied for evaluating the fractal dimension of built-up surfaces; correlation is 

used to evaluate the fractal dimension of the borders (lines).  Analyses show that while fractal 

dimension is ideal for distinguishing the morphology of Brussels, each estimation technique 

leads to slightly different results. Interesting associations are to be found between the fractal 

dimensions and rent, distance, income and planning rules.  Despite its limitations, fractal 

analysis seems to be a promising tool for describing the morphology of the city and for 

simulating its genesis and planning. The model is robust: it replicates the urban spatial 

regularities and patterns, and could hence fruitfully be integrated into intra urban simulation 

processes. 

 
Keywords. Fractal dimension; morphology; urban; Brussels 
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I. Introduction  
  

Concepts of fractals, scaling and fractal dimension have already widely been 

used in physical and human geography (see e.g. Mandelbrot 1982; Goodchild and Mark, 

1987; Barnsley 1988 ; MacLennan et al., 1991).  Let us remind here that fractals are 

objects whose geometric properties include irregularity, scale-dependence and self-

similarity. If spatial fractal analyses initially concentrated on “natural” objects, they 

were later extended to urban forms and urban systems, linking urban hierarchy to fractal 

geometry, or analyzing the “global” urban physical form and growth processes (see e.g. 

Arlinghaus 1985; Arlinghaus and Arlinghaus, 1989; White and Engelen 1993; Batty and 

Longley 1994; Frankhauser 1990 and 1994; Batty and Xie 1996; Wentz 2000; Gomes 

2001 or Shen 2002).   

This paper aims at understanding the spatial internal layout of the city with 

fractal tools. We know that the city’s design emerges on its own in accordance with a 

locally ordered system (Hillier 1996; Hillier and Hanson 1984).  The spatial structure of 

cities is indeed a disorderly outcome of a long history of small incremental changes that 

occurred at large scales. The resulting patterns have neither geometrical, nor functional 

simplicity. The metropolitan feature is here limited to the built-up pattern and hence 

represented by a lattice of residential sites offering urban amenities and, in the 

interstices, “green areas” (that is to say areas that are not built up), where consumers 

enjoy “rural” leisure amenities. These empty spaces are ranked following an inverse 

hierarchical order.  This structure breaks the geometry of the nested and specialized 

rings of the Thünen City.  Hence, in order to formalize the urban area, we need a 

geometry that enables the nesting of residential and rural areas within a non-

homogeneous hierarchically organized pattern, with lacunae and fully occupied cells. 

Fractal geometry meets these conditions; it is – by construction – a hierarchical 

organization of nested objects at different scales (see Cavailhès et al. 2002 for further 

discussion).  

Batty and Longley (1994, chap. 6) have already tried to link fractality to the 

morphology of urban land use in the city of Swindon (England). They limited 

themselves to the type of land parcels (residential, commercial-industrial, educational, 

transport and open space).  It has also already been shown that fractal shapes reduce 

travel costs to urban sites and green areas, and that peripheries of cities look fractal 
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(Anas et al., 1998; Frankhauser 1998). This paper aims at further analyzing the structure 

of the intra-urban built-up areas by (1) taking the built-up structure into account, (2) 

using different fractal measurement methods, and (3) linking the obtained values to 

variables commonly used in spatial urban economics, urban geography and land use 

planning. The experiment is performed on Brussels, a city where residential wards were 

mainly planned by private property developers.  Hence, each urban residential ward has 

its own morphology. Specifically, this research focuses on whether different intra-urban 

patterns (historical center, planned urbanization, social housing, etc.) have different 

and/or unique fractal dimensions. It also attempts to see how far fractal dimension is 

statistically related to variables such as rent, household income, distance to CBD, etc. In 

other words, is fractal dimension a useful index for distinguishing urban wards? 

This paper attempts to draw two types of conclusions. On the one hand, it aims at 

linking the empirical fractal results to geographical and economic theories, to urban 

planning and land use (geographical conclusions). On the other hand, it aims at testing 

whether fractal indices enable one to improve the analysis of the structure of the urban 

wards, their morphology, barriers effects, etc.   

The paper is organized as follows. Section II briefly explains what is a fractal), 

defines the methodology used in this paper as well as the data processing step. Section 

III discusses the computational results in terms of exploratory data analysis and Section 

IV in terms of bivariate relationships. Results are interpreted in an urban territorial 

development context. Conclusions, perspectives and remarks are included in Section V. 

 

II. Methodology  

 

II.a What is fractality? 

 

Most of the currently used measures for describing urban patterns are based on 

the notion of density, that is the ratio between a mass (e.g. the built-up surface in a 

statistical sector) and the area on which this mass is localized (e.g. the total area of the 

statistical sector). Density is constant if the mass is proportional to the reference area, 

whatever the internal structure of the buildings: it gives a global information about the 

mass distribution in a given reference area. 

By definition, fractals are geometric objects in which mass is not distributed 

homogeneously, but concentrated in clusters at different scales. The particularities of 
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fractals become obvious, when considering the iterative procedure, which may be used 

for their generation. An example is given for the Sierpinski carpet (Figure 1). An 

initially given square of base length L is broken down to N1 = N = 5 smaller squares 

with base length l1 = 1/3  L, which are arranged like a chessboard within the initial 

square. This procedure is repeated in a second step for each of the five squares; we get 

N2 = N 2 = 25 squares of size l2 =  (1/3)2 L.  By repeating this operation, the number of 

squares is multiplied by a constant factor N = 5 at each step, whereas their size is 

reduced at each step by a factor r = 1/3. Hence, at a given iteration step n, we find Nn = 

Nn squares of size ln = rn L called built-up or occupied sites. The total surface Mn of the 

built-up sites can be computed at each step n: 

 

( )
n

n
nnn LrNLlNM 






=××=×=

9
5)( 22     [1] 

 

Since 5/9 < 1, Mn tends to vanish for high iteration steps.  

 

 

 
 

Figure 1: Generating the Sierpinski carpet: the initial square and the two first iteration 

steps. 

In fat: the same steps for generating the border of the Sierpinski carpet 

 

 

Whereas the built-up squares have at each step the same size ln, a spatial 

hierarchy appears in the free spaces (green areas) in the course of the iteration. At the 

first step, four large lacunae of size l1 are generated, and the second step adds ν2 = 4 × N 
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= 20 sites of size l2. Hence, at a given step n, the system of free spaces consists in Nn = 4 

× Nn-1 lacunae of size ln = rn × L, Nn-1 = 4 × Nn-2 lacunae of size ln-1 = rn-1 × L, etc. This 

hierarchical distribution of free spaces means that the built-up squares are distributed in 

a rather non-homogeneous way. A multi-scale cluster structure is observed.  Such 

concentrations also occur in the Fournier dusts (Figure 2 a).  This example reminds an 

intra-urban pattern where houses form blocs around courtyards, blocs being grouped 

around a square. 

 

 
 

Figure 2: Figure a shows a Fournier dust in second iteration (cf. text). Figure 2 b shows 

a teragon: the border is fractal whereas the mass contained is distributed 

homogeneously all over the iteration steps. 

 

 

It has been shown that this hierarchical distribution of free spaces corresponds to 

a Pareto-Zipf distribution (e.g. Mandelbrot, 1982; Goodchild and Mark 1987; 

Arlinghaus 1985).  We can thus expect that exploring their organization across the 

scales will provide information about their spatial organization.  

Fractal geometry is not only useful for describing the spatial distribution of 

built-up surfaces, but also for describing the filigree structure of the borders of built-up 

areas. Let us come back to the example of the Sierpinski carpet. As shown in Figure 1 it 
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is possible to construct its boundary, also by means of an iterative mapping procedure 

(fat line). We verify that the border length Ln at a given step n is  
n

n
nnn LrNLlNL 






=×××=××=

3
54)(44    [2] 

and thus tends to infinity although the border remains, topologically, a linear geometric 

object.  Hence, the perimeter of the Sierpinski carpet diverges, while its surface tends to 

zero.  The multi-scale aspect occurs now through the form of the border that consists of 

a multitude of “loops” of different sizes. First, loops are generated; they form big 

«bays» of size l1. Then the line segments of size l1 are broken by adding smaller loops 

of size l2 , etc. Hence, the spatial organization of the border follows a hierarchical 

principle. Hence, the surface of the Sierpinski carpet tends to zero while its perimeter 

diverges.  

Usual geometric measures like the length of a line or the surface of a two-

dimensional object are not appropriate for describing such structures. The measure 

theory introduces the concept of fractal dimension by means of a relation requiring that 

there exists a measure L, which doesn’t diverge or vanish, but which remains constant 

all over the iteration steps. The used relationship corresponds to [1] and [2], and 

introduces a generalized scaling exponent D: 

 

( )D
nn lN ×=L      [3] 

 

This requirement is fulfilled by the choice of the free parameter D, the fractal 

dimension. Inserting the relation Nn = Nn
 and ln = rn L, and setting L = LD yields1 to: 

 

r
ND

log
log

−=  

 

D is directly linked to the iteration parameters N and r. The same concept may 

be used for describing the distribution of the occupied sites e.g. in a Sierpinski carpet or 

for describing a linear structure like its border.  D describes how the mass is 

concentrated in a given surface (Frankhauser and Pumain, 2002). A value of D close to 

                                                           
1 The choice L = LD doesn’t affect the reasoning, but corresponds just to a particular choice of the unit 

for the measure. 
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2.0 describes a rather homogeneous distribution, whereas the lowest the value of D, the 

more the mass is aggregated at different scales. A dimension close to 0.0 corresponds to 

a mass concentrated in one point.  A value of 1.0 corresponds to a line, but also 

represents a threshold in fractals: when D < 1.0 the structure is necessarily composed of 

an unconnected set of points. Such a situation corresponds to the Fournier dusts.  D ≥ 

1.0 refers to structures that are either Fournier dusts or consist of a unique cluster, 

highly fragmented, like Sierpinski carpets. For linear fractal object like the border of the 

Sierpinski carpet, the fractal dimension measures the progressive lengthening of the 

border when passing from one scale to a smaller one: a value of D close to 1.0 informs 

us that the borderline doesn’t show important deviations from a straight line. Greater 

values correspond to filigree structures with a multitude of loops of different sizes.  

For Sierpinski carpets the set of occupied sites and the border have the same 

fractal dimension, since the same parameter values N = 5 and r = 1/3 are used for 

generating both the geometric objects. This is not necessarily the case as shows the 

example of the teragon in Figure 2 b. Here the border is generated by an iteration with  

N = 8 and r = ¼, but the inner surface remains constant all over the iteration. Hence, the 

fractal dimension for the border is equal to 1.5 (DPer) whereas the inner mass 

distribution remains homogeneous (DSurf = 2.0).  By analyzing the spatial distribution of 

the built-up areas as well as their borders, we obtain fractal dimension values that 

make it possible to situate the real world patterns with respect to the described types of 

fractals.  These fractals play the role of geometric reference models, like circles or 

squares in Euclidean geometry. In real-world structures, we do not expect to find well-

defined levels like in constructed fractals in all cases.  Nevertheless, fractal analysis 

makes it possible to explore the implicit hierarchy of a spatial pattern: fractal analysis 

enables one (1) to verify to what extent a spatial pattern2 is organized in a hierarchical 

way, and (2) to estimate parameters characterizing this spatial hierarchy. 

 

II.b Measuring fractality 

 

Measuring fractal behavior imitates in some sense the iteration procedure by 

testing if the same type of spatial organization occurs at each scale. A series of measures 

εn of different size is therefore introduced in analogy to the length ln  of the elements in 

                                                           
2 In this case, we only consider distributions of elements such as buildings on a two-dimensional surface. 
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the constructed fractals. For each value εn we count then the number N(εn) of elements 

which are necessary to describe the structure. This means that we neglect all details of 

the structure whose size is inferior to εn. Then an equivalent relation to [3] can be 

derived (Mandelbrot 1982): 

( ) D
nn

D
nn aNaN −×=⇒=× εεεε )()(     [4] 

It can be shown that the so-called form-factor a characterizes the general features of the 

structure which are not linked to fractal geometry (Mandelbrot 1982).  E.g. the fact that 

the Sierpinski carpet looks globally more like a square than an hexagon will affect the 

value of a. In addition, a also depends of all relative deviations from the pure fractal law 

occurring at different scales. Hence, it gives no precise information and may be fixed 

arbitrarily to a = 1 for a given structure, e. g. for a homogenous black surface. The 

observed values for a should vary within a small range around a = 1. 

 

 

 In real patterns, we often observe critical values εcrit which separate ranges of εn 

for each of which different fractal laws are observed. By introducing an additional 

constant c, it is possible to fit the fractal laws separately for each range and to estimate 

correctly their fractal dimensions.  Hence: 

N(εn) = a × εn
-D + c      [5] 

 

D is often estimated by using a double logarithmic representation of the power 

law.  If c = 0, this law is linear. However, as this corresponds to a nonlinear data 

transformation, deviations from the law are not treated in the same way all across the 

estimation range. Hence we prefer to minimize the least square deviations by means of a 

non-linear regression. Our computer program allows using simplified versions of the 

relation [5] without a, c or by keeping either a or c. Preliminary tests showed that it is 

wise to maintain a three-parameter version (a, D and c). As pointed out, a should 

remain small; this is usually observed. Otherwise the considered zone is very complex 

and fractal estimation does not seem useful.  

number ltheoretica
number observed)()( == D
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Several methods refer to the discussed logic, each one defining the scales i in a 

particular way. Two methods are used in this paper: the dilation and the correlation 

analyses.  

In the dilation method (noted Dil) each built-up site is surrounded by a square 

whose base length εn  is incrementally enlarged. Thus the squares referring to built-up 

sites that are close together intersect first, and in the course of the iteration, more and 

more clusters appear. N(εn)  corresponds to the number of squares of size εn necessary 

for covering the total occupied surface. It is obtained by dividing at each step n the 

occupied surface by the surface εn² of the squares. Preliminary tests have shown that the 

method is less reliable for linear structures where the mass of the object is relatively 

small. Hence this method is exclusively used for investigating built-up areas (surfaces).  

However, even for such textures, we have observed that the method tends to 

underestimate the values N(εn), when εn values are high. Hence, the estimated D-values 

tend to be lower than those expected by theory. Since this artifact seems to occur in a 

comparable way for different types of textures, the use of the method remains 

interesting.  

In the correlation analysis (noted Cor), the texture is not modified: we simply 

count the number of occupied sites (pixels) that lie within a square3 of base length εn  of 

each occupied site and then compute their mean number N(εn). The procedure is 

repeated for other values of εn. The information obtained is slightly different from the 

dilation analysis: we get information about the so-called “second-order” effects, i.e. we 

test the mean neighborhood scaling behavior and not really the cluster distribution. For 

simple fractal structures, the results tend to be the same, but for more complex 

structures differences are to be expected. This method turns out to be reliable and can 

hence be used to analyze surface distributions as well as linear distributions. From a 

theoretical point-of-view, the dimension obtained by correlation should not exceed that 

obtained by dilation. However, for real urban patterns as well as for specific constructed 

patterns, this is not necessarily the case. This may be explained by the above-mentioned 

artifacts and should not be over-interpreted.  

                                                           
3 In principle it is possible to choose any shape for the environment, such as a circle, a hexagon, etc. 

However, since pixels are square-like, the choice of a square helps to avoid rounding errors. 
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II.c Data processing  

Brussels is the capital city of Belgium, located almost in the center of the 

country. Defining its limits is an objective on its own (GEMACA 1995, Thomas et al. 

2000, Vanderhaegen et al. 1996): the city sprawls far beyond its original boundaries. In 

the administrative sense, the Brussels Capital-Region (B.C.R.) is one of the three 

Regions of the Belgian federal state. Spatially, it corresponds to the enlarged city center 

(19 communes) and hence excludes recent peripheral wards that mainly extend in the 

two other administrative and linguistic regions. This paper only refers to the city 

defined by the limits of the B.C.R. It corresponds to 954,000 inhabitants and 16,138 

hectares (in 2001). Ignoring the peripheral communes means better isolating urban from 

periurban land uses.  

The necessary input of our analysis is a city map representing built-up areas. 

The C.I.R.B. (Centre Informatique pour la Région Bruxelloise) has developed a 

comprehensive geographical information system for the Brussels Capital-Region. This 

system was developed in the 90’s for town planning and administrative uses.  The layer 

corresponding to the built-up areas is the only one taken into consideration in this 

analysis (Figure 3); each building is delineated. A pixel on the map represents a 2.5×2.5 

meters area on the ground. Each built-up information is binary: built-up, not built-up; no 

information is provided about the function of the building (hospital, plant or residence), 

nor about the type of green area (garden, public square, etc.).  There is no information 

about roads, parking spaces, rail-tracks, etc.; these spaces are not included in the 

considered built-up areas. 

Fractal dimensions are computed for a set of 26 windows. The size of a window 

(2750 × 2250 meters) is defined from the size and shape of the CBD of Brussels: it 

corresponds to the best fit by a rectangle to the Pentagon (CBD).  10% overlapping of 

the windows is systematically applied horizontally and vertically in order to optimize 

the analysis of the spatial structure.  A gliding window is then applied from left to right 

and from top to bottom. Due to the irregular administrative limits of the B.C.R., 

windows including at least 50% of B.C.R. are the only ones taken into account. Hence, 

26 windows are kept in the analysis; each window receives an identification that 

corresponds to the x, y location on the grid proposed in Figure 3. Given the 

characteristics of Brussels and the size of the windows, windows are – by definition – 

never homogeneous in terms of function or built-up patterns. Ideally, smaller windows 
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would lead to more homogeneous wards, but then they often reach the limit of the 

fractal software.  

For each of the 26 windows, three fractal dimensions are computed: 2 pertain to 

the surfaces, one to the borders. Results are first analyzed in a purely descriptive and 

exploratory way (Section III) and then associated with town planning and geographical 

variables (Section IV) in order to test whether fractal indices “measure” the urban 

landscape and give a good idea of the history of the city. 

 
 

Figure 3: The built-up area of Brussels Capital Region 

Source: Brussels Urbis 

  

III. The fractal dimension of Brussels: a descriptive approach 

 

As already mentioned, two methods are applied to built-up surfaces: correlation 

(Cor) and dilation (Dil). For the dilation technique, several trials are made in terms of 

number of iterations; 30 dilation steps seems to be the best fit for most of the studied 

windows. Cor and Dil are expected to lead to different results as they refer to different 

kinds of reasoning. Borders (lines) are also extracted by means of the dilation technique 

(5 iterations); the fractal dimension of the border is then computed using the correlation 
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method. In the next paragraphs, DSurf-Cor , DSurf-Dil and DPer-Cor are the notations used 

respectively for fractal dimensions computed on surfaces (Surf) or borders (Per), with 

the correlation (Cor) or dilation technique (Dil). 

Whatever the technique, the observed minimum value is 1.24 and the maximum 

1.96 (Table 1). As expected, the values of D depend upon the estimation technique.  

Correlation analysis leads to larger values than dilation; this can be explained by the 

above-mentioned artifact of estimation. In order to have global information about the 

different samples of windows, we also compute the arithmetic means of the D values. 

We are aware that from a statistical point-of-view, the fractal dimensions are not values 

that are really observed, since they are estimated by recurring to the values N(ει).  We 

might expect that a mean parameter should refer to these empirical values N(ει). 

However, since fractal dimensions are obtained by a non-linear estimation procedure 

over the used ranges of ει, we consider them as independent synthetic measures of the 

mass distribution in each window. This justifies the use of the arithmetic means of 

fractal dimensions as indicator for the order of magnitude of D.  

As expected, fractal dimensions for a linear topology (Per) are smaller than 

those referring to the built-up surfaces (Surf). 

 

Table 1: Descriptive statistics for D for different fractal methods 
 

 

 

 

 

 

On average, whatever the method used, the highest D values are observed in the 

city center, but the variation through the 26 windows differs according to the method 

used (Table 2). Measures referring to surfaces lead to values positively and significantly 

associated in the space (+0.589), while the dimension of the border is negatively related 

to the dimension of the surfaces (DSurf-Dil) or non significant (DSurf-Cor). Let us add at this 

point that at this scale of analysis, the border of the city has no or little sense. The 

perimeter is an artifact; it mainly measures the shape of the “non-built up areas” 

(lacunae). In our case, the denser the built-up areas, the smaller the green areas. All 

other Pearson’s correlation coefficients are not significant. This suggests that each 

  DSurf-Cor DSurf-Dil DPer-Cor 

 Mean 1.822 1.565 1.719 

 Minimum 1.338 1.261 1.543 

 Maximum 1.961 1.793 1.854 
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fractal estimation method measures a different component of the urban layout, and that 

the fractal behavior varies within the urban structure.   

 

Table 2: Pearson’s correlation coefficients between fractal dimensions  

 

  DSurf-Cor DSurf-Dil 

 DSurf-Dil 0.589 1.000 

 DPer-Cor n.s. -0.458 

 

As discussed in Section II.b, we can compare D obtained by correlation on the 

built-up surfaces (DSurf-Cor) to that obtained on the perimeter (DPer-Cor). We know that (1) 

if DSurf-Cor is equal to DPer-Cor, the structure is close to a Sierpinski Carpet (Figure 1), (2) 

if DSurf-Cor  tends to 2.0 and DPer-Cor < 2.0, the spatial structure tends to a teragon (Figure 

2 b), and finally, (3) if DSurf-Cor < 2.0 and DPer-Cor ≤  2.0 and different from DSurf-Cor the 

structure is mixed. Figure 4 gives the histograms of the DSurf- Cor and DPer-Cor values: 

they are all smaller than 2.0 and greater than 1.3.  Figure 5 illustrates the relation (ratio) 

between DSurf and DPer: most values are smaller than 1.0, that is to say DSurf is often 

smaller than DPer. In the case of Brussels, the ratio varies between 0.815 and 1.176: the 

fractal structure of the built-up area is mixed. 
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Figure 4: Histogram of DSurf-Cor  and DPer-Cor  
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Figure 5: Histogram of the ratio of DSurf-Cor and DPer-Cor 

 

Let us examine the extent to which the measures of D conduct to a coherent 

urban structure, to a classification of the 26 wards that reflects urbanization and land use 

planning, that corroborates former geographical analyses. A Ward hierarchical 

clustering method was applied to the 26 windows on three criterions: DSurf-Cor , DSurf-Dil  

and DPer-Cor. Distances were used for measuring resemblance. We can again question 

whether a classification of the dimensions is justifiable since the real observed values 

are the N(ε). However, we adopt the same point-of-view as in the preceding sub-

sections and consider that we dispose of a set of independent synthetic parameters D.  

Moreover, we show in Appendix 1 that an estimation of the distances between fractal 

dimension values D is an appropriate measure for comparing scaling laws N(ε). Table 3 

reveals a rather clear center-periphery structure: 3 sub-groups of windows are “urban” 

and 2 sub-groups of windows belong to the “suburban” part of the Brussels Capital-

Region. 

The clustering of the windows reflects the history of the city as well as the land-

use and socio-economic / demographic characteristics of the city (see e.g. De 

Keersmaecker 1990; De Keersmaecker and Carton 1992; Mort-Subite 1990; Thomas 

and Zenou 1999; Goffette-Nagot, Thomas and Zenou, 2000; Vanderhaegen et al. 1996).  

When Belgium became independent in 1830, Brussels was a market town, limited by 

ramparts. Its accession to the status of capital city of the country as well as the 

concomitant Industrial Revolution led to an important increase in population and hence 

a high pressure on its territory. The city became very dense in the center (behind the 

former ramparts) in an area called the Pentagon (here noted C3), and later extended to 

the periphery. At the end of the 19th century, large urban public works enabled further 

urban sprawl and new residential alternatives were offered to upper-class households in 



-16 - 

the East (Schaerbeek (D2), Woluwé-Saint-Lambert (E3) and Ixelles (D4)), in the South 

(Saint-Gilles (C4), Forest (B5)) and in the North (Koekelberg (B2)). All these wards 

belong to cluster U1 of the classification of the fractal dimensions.  During the same 

period, the “Quartier Léopold” (D3) and the “Quartier Nord”(C2) developed 

respectively in the East and North of the city; those wards are centered on a main 

railway station and have been deeply restructured in the sixties by functionalistic 

urbanization. This is also the case of some parts of Molenbeek (B3), which originally 

developed around factories during the 19th century; hence, old council flats still 

characterize this part of the city.  These wards belong to cluster U2.   

 

Table 3: Ward classification of 26 windows according to DSurf-Cor , DSurf-Dil  and DPer-Cor 

 

Mean D Content  Description   
 
Group 

Sub-
group 

Surf-
Dil 

Surf-
Cor 

Per-
Cor 

  

 U1 1.70 1.92 1.69 B2, D2, C3, 
E3, C4, D4 

City center and mixed wards of the 
19th century  

Urban U2 1.75 1.89 1.65 C2, B3, D3  CBD with buildings and offices + 
some residential and old industrial 
wards   

 U3 1.52 1.79 1.73 C1, D1, B4, 
E4, B6, B1, 
E5  

Mixed residential parts of the 20th 
century and industrial  

Suburban S1 1.46 1.82 1.78 A2, E2, A3, 
F3, F4, C5, 
D5, C6 

Urban with gardens, 20th century  

 S2 1.42 1.44 1.68 E1, A4 Rural, large industrial surfaces and 
public equipment 

 

 

 The expansion of the city in the Interbellum period (Cluster U3) was 

characterized by wards forming a first green belt. Several factors were behind this 

development: new tramway tracks, the Universal Exhibition in 1958 in the North of the 

city (Heysel – B1), the construction of social housing (garden cities such as Floreal in 

Watermael Boitsfort). After World War II, the city spread further and further away, 

“diluting” in the countryside; as in many other cities, this was due to the low price of 

land in the periphery, to the increasing use of the car and to the consumption of rural 

amenities. This characterizes the detached buildings of cluster S1 and the suburban 

wards of Uccle and Woluwé. Finally, in the western and northern parts of Brussels, 
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there are still some rural spaces that are increasingly coveted and settled by industries, 

schools, hospitals, stores, or other private and public amenities. This characterizes 

cluster S2. Let us recall that “rehabilitation” is invisible at this level of analysis: it 

mainly affects the inside part of the buildings and not the relative organization of the 

buildings (no demolition). 

From this descriptive exploratory data analysis, we can conclude that (1) each 

fractal dimension measures complementary aspects of the structure of the urban built-up 

area, and (2) the concomitant use of the three dimensions provides a rather accurate 

reflection of the intra-urban structure of Brussels. The urban structure seems to 

correspond to a multi-fractal logic OR to the overlay of different fractal patterns.   

 

IV. A binary explanatory exploration of the data  

 

Section III confirms results obtained by models based on land-use characteristics 

as well as socio-economic and demographic statistics. Let us now test single bi-variate 

relationships between fractal dimensions and some of those variables. 

 

IV.a Housing characteristics    

 

Bid-rent theory postulates an implicit trade-off in housing decisions between 

housing space and type, and proximity to central urban functions. Housing type is hence 

a key variable for defining urban structure: cities are often articulated as spatial patterns 

with flats near the center, terraced houses occupying the inner suburbs and 

detached/semi-detached houses in the outer suburbs, each ring reflecting a stage in city 

growth. However, the date at which the land parcel was integrated into the urban 

development process also defines the structure of the neighborhood: a specific 

architectural project can lead to a specific spatial structure that should lead to specific 

and unique fractal dimensions. Hence, in this first hypothesis, we test the link between 

the fractal dimension D and some morphologic characteristics of the built-up type. A 

priori, this should be true for Brussels (see Section III), but it is difficult to measure as 

each window is – by definition – characterized by a mixed urbanization processes.  In 

the case of a city such as Brussels, a homogeneous ward would be far too small to be 

analyzed by fractal methods. However, if the size of the analyzed areas is too small, the 

results are no longer reliable: the boundary effects become too important. 
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For each window, several variables were created in order to quantify the type of 

housing by available statistics. Most variables are obtained from the 1991 Population 

Census (I.N.S. 1991). Table 4 gives the relationship between the fractal dimensions and 

the housing characteristics. Given the density of the built-up areas, the dilation method 

leads to the most significant results close to those obtained by the correlation method. 

These are, however, very different from the dimension of the perimeter: this latter 

relates to the borders of the empty spaces (lacunae). Hence, if the mass is large, the 

theoretical number of possible arrangements is smaller than if there were only some 

small black dots to distribute.  Hence, the variation of the potential fractal dimensions is 

smaller for the centers.  

 

Table 4: Pearson’s correlation coefficients between fractal dimensions and housing 

characteristics.  

 

  DSurf-Cor  DSurf-Dil  DPer-Cor  

 % detached and semi-detached 
housing 

-0.841 -0.713 n.s. 

 % dense terraced housing -0.345 n.s. 0.473 

 % flats /total housing 0.837 0.724 n.s. 

 % flats in buildings of more than 10 
housings 

n.s. 0.504 n.s. 

 Concentration of buildings of more 
than 10 housings 

-0.373 n.s. 0.373 

 Number of flats/number of houses  0.856 0.571 -0.441 

 Number of flats in buildings of more 
than 10 housings/number of 
detached housings  

0.819 0.569 n.s. 

Note : n.s. = not significant at α = 0.05 

 

Our first conclusion states that each estimation technique (Dil, Cor) conducts to 

a value of D that is significantly related to the characteristics of the housing. Moreover, 

land uses that are larger in scope (i.e. residence) have a greater degree of irregularity 

simply because they are larger in scale and there is hence less effort put into the 

geometric control on land under development. This second statement confirms Batty 

and Longley’s results (1994, page 226). Last but not least, given the different nature of 

the fractal estimation methods applied here, differences in the relationships are observed 
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especially when comparing surfaces to borders; note the opposition in sign between the 

correlation coefficients computed for surfaces and that for perimeters. 

Let us also mention that the history of the development of the city also influences the 

fractal dimension. Table 5 gives the relationship between the age of the housing and D. 

Pearson’s correlation coefficients are never significant for the fractal correlation method 

computed for surfaces.  DSurf-Dil and DPer-Cor give more significant results, but the sign of 

the coefficient is often opposite: DSurf-Dil refers to the built-up areas (surfaces), DPer-Cor 

refers to the sprawling shape of the town border.  The older the housing, the more dense 

the urbanization and the higher DSurf-Dil  but the smoother the town border and hence the 

smaller DPer-Cor.  To the contrary, the more recent the housing, the larger it is (further 

away from the city center) and hence the sprawl is more important (lengthening of the 

town border; higher DPer-Cor ) and the smaller DSurf-Dil. 

Let us recall that Pearson’s correlation coefficient between the age of the 

buildings and DSurf-Cor (Table 5) is never significant at the 5% level.  Their values, 

however, vary according to the age of the buildings. In fact, dilation of the image (DSurf-

Dil) implies dilating the built-up surfaces and hence ignoring the irregularities, the 

details, the “noises” observed in the built-up areas. Hence, this technique (Dil) tends to 

a generalization, to a better “modeling” of the built-up areas. To the contrary, DSurf-Cor is 

computed on built-up surfaces that are not dilated, and hence takes into account more 

irregularities. They are hence non-significantly related to the average measures of age 

computed on wards.  

Table 5: Pearson’s correlation coefficients between fractal dimensions and the age of 

the housing  

 

 
 DSurf-Cor  DSurf-Dil  DPer-Cor  

 % housing built before 1919 0.609 n.s. -0.655 

 % housing built before 1945 0.680 n.s. -0.606 

 % housing built after 1960 -0.492 n.s. 0.586 

 % housing built after 1971 -0.481 n.s. 0.507 

 Mean age of the housing -0.647 n.s. 0.640 

 Housing after 1961/housing 
before 1945 

0.500 n.s. -0.585 

 

Note: n.s.: not significant at α = 0.05 
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IV.b Distance to the CBD  

Distance is a key factor for interpreting the internal structure of a city (Anas et 

al.  1998): on average, the further from the CBD, the more recent the residence, the 

smaller the rent, the larger the houses and the higher the transportation costs (see e.g. Le 

Jeannic  1997; Goffette-Nagot  2000; Cavailhès et al.  2002). Hence, we expect a 

significant difference between the fractal dimension in the city center compared to that 

of the outskirts.   

Table 6 gives the Pearson’s correlation coefficients between the fractal 

dimensions D and the crow-fly distance to the city center. Two ways of defining the city 

center are used: one corresponds to the historical and administrative core of the city 

(Grand-Place), the other to the location of offices and many national and international 

administrations (Quartier Léopold). As expected, dimensions computed for surfaces 

(DSurf-Cor, DSurf-Dil) lead to significant negative coefficients: the center is denser and more 

homogeneous in terms of built-up areas. Dilation, however, leads to higher values of the 

correlation coefficients. As expected, dimensions computed for the borders give 

opposite results: the greater the distance to the center, the higher the value of DPer-Cor: 

borders penetrate in “green areas” (gardens, etc.) on various scales.  This is the case for 

the windows located in the periphery of the studied area.    

Subsection IV.-a  showed that fractal dimensions are related to the stage of 

development of the city (history); this subsection (IV.-b) confirms this fact as it shows 

that fractal dimensions are significantly related to the distance to the CBD.   

 

Table 6: Pearson’s correlation coefficients between fractal dimensions and distance to 

city center, for two ways of defining the center  

 

 

   
 
Distance to 

DSurf-Cor  DSurf-Dil  DPer-Cor  

Grand-Place -0.623 -0.935 0.525 
Quartier Léopold -0.716 -0.844 n.s. 

   

Note: n.s.: not significant at α = 0.05 
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Figure 6 translates graphically the results of the comparisons of the DSurf-Cor 

values for large and small distances from the CBD (larger/lower than 1.800 meters). 

The absolute values of D are greater near the center and their variation is smaller than 

further away from the city center: centers are more homogeneous and more densely 

built. More important fluctuations at greater distances from the CBD mean that the 

spatial organization is weaker at the outskirts and hence that the complexity of the built-

up areas is greater: on average, housing in the periphery is not planned and its structure 

is spatially more heterogeneous.  Hence, D is a measure of diversity. 

 

Figure 6: Distribution of the DSurf-Cor values for windows close to the city center (right) 

and windows further away (left) 

 

Small
Large

Distance from
CBD

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

D

05101520
Count

0 5 10 15 20
Count

 
 

 

IV.c Rent   

 

From spatial economics, we know that a household selects a residential location 

within a metropolitan area that is made up of several residential sites. The household’s 

fixed income per unit of time is assigned to hiring a residential plot, commuting to the 

CBD and enjoying urban and rural amenities (see e.g. Cavailhès et al., 2002 and 2003). 

In this case, we want to test whether this economical mechanism could be translated 

into the built-up characteristics and hence by fractal dimensions. In Brussels, we know 

that high rents are associated to periurban locations as far as residence is concerned, and 

to central locations for offices.   
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Three rent indicators are considered here. The first is the average monthly rent 

for housing obtained by an annual survey (De Keersmaecker 1994). The second is the 

population density, which should give an indication of the intensity of the pressure on 

real estate. Thirdly, “human density” is considered; it refers to population plus 

employment density. 

 

Table 7: Pearson’s correlation coefficients between fractal dimensions, rent and 

density. 

 

 

           
 

DSurf-Cor  DSurf-Dil  DPer-Cor  

Average rent for 
housing 

n.s. -0.680 0.533 

Population density 0.723 0.834 -0.405 
Population + 
employment density 

0.648 0.869 -0.533 

 

Note: n.s.: not significant at α = 0.05 

 

Table 7 reveals quite interesting results: first, it shows that fractal dimensions 

related to built-up surfaces (DSurf-Cor and DSurf-Dil) increase when density increases, 

confirming that large population densities are associated to homogeneous built-up areas 

(D large) and inversely.  This also means that low densities have a different spatial 

structure of the built-up areas: in terms of planning and land uses, small densities mean 

less buildings and hence a greater variety in the size of the empty spaces. This confirms 

the classical North American model: a center with dense, rather small, uncomfortable 

and low-quality housing, and a periphery with larger housing, less dense and rather 

comfortable. 

Another way of interpreting these results is to refer to former geographical 

analyses: results are simply to be related to the structure of the housing market.  Indeed, 

former papers (see e.g. De Lannoy and Kesteloot 1985; Vanderhaegen et al. 1996; 

Kesteloot 1997) have shown that in Brussels the housing market is structured into three 

concentric circles of decreasing rent. A first set of central wards dating mainly from the 

19th century where housing mainly corresponds to old houses divided into flats occupied 

by tenants; some were renovated but most were not, explaining the low central rents for 
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housings. The second concentric zone, is – on average – characterized by more recent 

housing of better quality. In this zone, we also find some wards characterized by social 

housing; in some of them, the housing has been sold to the private sector. In the third 

zone, most of the housing is occupied by the owner; housing consists mainly of 

detached or semi-detached houses or high standard flats.  

Whatever the theoretical background for interpreting the results, fractal 

dimensions are significantly related to the rental housing market.  

 

IV.d Household income 

In Brussels, we know that on the average high incomes are located in the 

periphery and poor people characterize the central wards. Income is a way to 

approximate the socio-economic characteristics of the inhabitants.  Median, average and 

interquartile income are available in Belgium at the scale of the urban ward, for each 

ward containing at least 30 households (I.N.S. 1994). A synthetic value is computed for 

each window. 

 

Table 8: Pearson’s correlation coefficients between fractal dimensions and households’ 

income  

 

     
 

DSurf-Cor  DSurf-Dil  DPer-Cor  

Average income n.s. -0.743 0.496 
Median income n.s. -0.755 0.569 
Interquartile 
difference in 
income 

n.s. -0.758 0.457 

Note: n.s. = not significant at 0.05 level 

 

D obtained by correlation on the built-up surfaces (DSurf-Cor) is never significantly 

related to income (Table 8).  Dilation applied to surfaces produces D values negatively 

and significantly related to income, whatever the way of measuring the income: high 

values of DSurf-Dil are associated to small incomes reflecting the particular structure of 

Brussels, where rich households are located at the outskirts and poor people occupy the 

densely built-up areas of the city center (see structure of the housing market in IV.-c). 

As expected, the correlation method applied to the perimeter leads to opposite results: 



-24 - 

the higher the income, the higher DPer-Cor, the more garden areas and other green spaces 

re linked. Once again, Table 8 cannot be interpreted on its own: a tight link is to be 

made (1) with the history of the city, its development and the resulting structure of the 

built-up areas, and (2) with the spatial structure of the housing market and rents.  

 

IV.e A multivariate exploratory attempt  

Most variables used in the preceding subsections are now introduced in a 

multivariate approach. The objective is not here to produce a predictive urban model.  In 

this sense, we can even wonder if the socioeconomic variables “explain” fractal 

dimension or inversely. Our aim here is simply to see how far the variation of the fractal 

dimensions are associated to the co-variations of rent, distance, housing structure, etc. 

commonly used in urban models. A factor analysis followed by a Varimax rotation is 

applied to the variables used in the preceding sections (Table 9).  Correlation between 

the factors scores and the fractal dimensions are then computed  (Table 10). 

                        

Table 9 : Rotated loadings 

 

  Factor 1 Factor 1 Factor 3 

 % detached housing   0.007 0.682 0.455 

 % terraced housing            0.148 0.725 0.023 

 % buildings > 10 housings 0.575 -0.773 -0.044 

 % housing built before 1919 -0.823 -0.208 -0.322 

 % housing built before 1945 -0.884 -0.258 -0.270 

 % housing built after 1960 0.976     0.011 0.117 

 % housing built after 1971       0.872 0.056 0.020 

 Mean age of housing 0.931   0.195 0.254 

 Index of oldness 0.959   0.017 0.113 

 Pop. + employment density -0.471  -0.758 -0.293 

 Average income 0.280  0.236 0.880 

 Central rent 0.126  0.129 0.935 

 Total rent 0.169  0.200 0.928 

 Distance to center 0.401 0.762 0.434 
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Table 10: Pearson’s correlation coefficients 

    (n.s. = not significant at 0.10) 

 

  DSurf-Cor DSurf-Dil DPer-Cor 

 Factor 1 n.s. n.s. 0.573 

 Factor 2 -0.778 -0.630 n.s. 

 Factor 3 n.s. -0.543 n.s. 

 

 

 

Three factors summarize 86% of the initial information (eigenvalue > 1.0). 

Factor 1 mainly translates the characteristics of the age of the housing. Factor 2 groups 

the variables measuring density and Factor 3 is mainly an economic factor grouping 

variables related to income and rent. Pearson’s correlation coefficients reveal the 

differences between the variations: D related to the border (DPer-Cor) is mainly related to 

the age of the housing (Factor 1). In fact, the more recent the housing, the larger the 

gardens and green spaces and the more detailed the planning, and hence the “best” the 

border is delineated. Fractal dimensions related to surfaces (DSurf-Cor, DSurf-Dil) are best 

related to Factor 2 and Factor 3, to respective density measures (Factor 2) and to the 

economic characteristics of the wards (Factor 3).    This confirms preceding comments: 

distance to the CBD translates the center-periphery structure of the city not only in 

terms of the rent of housing and household income, but also in terms of the history of 

the urbanization procedure. Hence, the fractal dimension is an indicator of the 

morphology of the urban ward, but each method for estimating this dimension brings 

complementary information.   

 

V. Conclusions and perspectives 

 

The objective of this paper was to compare fractal-based parameters computed 

by different fractal methods applied on urban built-up areas in Brussels, and to explain 

the observed spatial variations by means of variables commonly used in geography, 
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urban economics and land use planning. Bearing in mind the limited and exploratory 

nature of the analysis undertaken here, it is possible to state the following conclusions: 

(1) With one intra-urban example (Brussels), this paper confirms that with fractal 

analysis, one can quite reasonably describe the spatial dilution of the built-up areas 

within a metropolitan area. Such analysis describes the structures of the built-up 

surfaces as well as the limits of the green spaces or lacunae; the fractal descriptors are a 

priori quite complex but take into account the hierarchical nature of the urbanization 

process. It is more than a measure of density: density does not take the spatial structure 

into account. 

(2) The paper confirms the sensitivity of the results to the fractal method used (Johnsen 

and Brown, 1994). More particularly, it shows that the structure of the intra-urban built-

up areas seems to correspond to a multi-fractal logic OR to the overlay of different 

fractal patterns. The different exploratory data analyses show that the fractal dimensions 

vary differently and fractal characterization may hence lead to false results when 

applying only one method. Methods related to the surfaces provide good indicators of 

the spatial internal structure of the built-up areas; those related to the borderlines give 

interesting results on the structure and shape of the green areas (e.g. gardens). Methods 

related to surfaces provide results that co-vary in space but are not equal. Fractal 

dimensions describe the heterogeneity of the spatial distribution of lines (limits), 

surfaces or volumes. It gives information on the division of the zone; it measures the 

structure of the built-up area according to its complexity and its dimensional behavior 

(tending respectively to a line or to a surface). It gives information on its shape and on 

its hierarchical structure (nested scales). Fractal dimension is hence a better descriptor 

than population density: it takes into account the underlying structure of the built-up 

areas.  

(3) Interesting statistical associations can be found with the structure of the housing 

market, the rent, the distance to the city center, the income of the households as well as 

some planning rules. Given its nature in time and space, housing market and distance to 

the CBD have a strong center-periphery organization that is to be translated by the 

computed fractal dimensions. We know that for Brussels, however, the structure is the 

inverse of Paris: Brussels follows the North American type of urban model. The 

associations put forward in this paper strongly confirm the interpretation of the urban 

structure; this is done within a geographical, economical and historical background. 

Hence, coupled with an adequate model, fractal simulation will definitely improve the 
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functioning of the city. It “describes” the structure, but is also a powerful instrument for 

analyzing and planning. 

The analyses performed in this paper are suggestive and exploratory rather than 

definitive.  They reveal some basic problems of observation and measurement that are 

generic to most empirical science. We are aware that our results are only valid in the 

scope of this application for Brussels. Results are limited by the availability of the data 

and by the different choices made for defining the built-up areas and the windows. 

However, the results reported here are relevant and confirm other empirical and 

modeling approaches used for Brussels. Moreover, they are included in a larger project 

that will lead to the comparison of several European cities; at this stage of the 

comparison, results seem to converge.   

Despite the limits of the case study as well as the limits of the method itself, 

fractal analysis seems to be a promising tool for describing the morphology of the city 

and for understanding its genesis and planning. Fractals are far for being an explanatory 

tool (and will never be!), but they do seem to be a good tool for reproducing urban inner 

morphology, for simulating.   The model seems to be – on average –  robust : it 

replicates the urban spatial regularities and patterns, and could hence be fruitfully 

integrated at a later stage in intra-urban simulation processes (saving time and money!).   
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Appendix 1 

The Ward classification procedure is based on the comparison of “distances” between the 

observed values (differences). In our case, distances are computed between fractal 

dimensions D.  These values are not directly observed but obtained by estimation from the 

fractal distribution law N(ει) = ει
D. Hence, it is of interest to test whether the obtained 

classification corresponds to that which would be obtained when recurring to the fractal 

distribution law. If this hypothesis holds, we can affirm that the classification obtained for 

the dimensions is also valid for the fractal laws.  

In order to obtain proof, we show that if the difference between two fractal dimensions D1 

and D2 is greater than the difference between two others (D3 and D4), it implies that the 

same holds for the differences between the corresponding fractal laws N1 = εD1, N2 = εD2, 

N3 = εD3, N1 = εD1.  

To this end, we assume that we have classified a set of fractal dimensions D1, D2, D3, D4 so 

that: 

D1 > D2 > D3 > D4 
We moreover assume for the distances that 

D1 - D2 > D3 - D4 
This yields 
 

(D1 - D2) log ε > (D3 - D4) log ε 
⇒      log δ12 > log δ34 
where δ12 = ε(D1 - D2) and δ34 = ε(D3 – D4) . Since the logarithm is a monotonous function, this 

yields: 

δ12 > δ34  ⇒ ε(D1 - D2)  > ε(D3 – D4) 
We may rewrite this relation as follows: 
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Since D2 > D4 we know that the prefactor on the righthand side is > 1 and thus  

( ) ( )4343

4

2
DDDD

D

D

εεεε
ε
ε

−>−  

so that  

( )4321 DDDD εεεε −>−  

Thus, if we have obtained a classification of the dimensions, this classification remains 

valid for the fractal laws. 


