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Abstract: We apply spatial interaction models using panel data to explain commuting
behaviour in the Netherlands. Our main conclusion is that the distance-decay effect is not
constant over time and that changes in this effect are region specific. In more densely
populated regions the change in the distance-decay parameter is small suggesting that
regional increases in congestion have a large negative effect on the increases in average
commuting distance. The panel spatial interaction model we derive is well-suited for
testing significance of the centrality index (an often used variable in spatial interaction
models). Although evidence is found for competition effects in a pooled cross section
framework, controlling for time invariant unobserved heterogeneity renders this relation

Spurious.

1. Introduction

Spatial interaction models, a certain type of gsamodels, are popular tools to predict
commuting flows between regions (Fotheringham ankelly, 1989). The focus of
these models is on the distance-deterrence pargmitieh measures, loosely speaking,
the effect of the distance between two regionshersize of the commuting flow between
these regions (conditional on the characteristickeregion, for example, the number of
jobs). Previous studies have estimated the distdaetarence effect based on cross-
section data on commuting flow for a specific shpatiod (usually one year, see
Fotheringham and O’ Kelly, 1989, for an overview)ese studies usually acknowledge
that it is open to debate to what extent the esésmean be generalised to other periods.
This ambiguity is problematic as spatial interactmodels are frequently used to
evaluate the effect of new infrastructure projectduture commuting flows for different
scenarios. To predict commuting flows in the futweuld be relatively straightforward

if it can be assumed that the distance-deterreffieet & constant over time in the
absence of infrastructure improvements. It is impilale however that the distance-
deterrence effect is constant over time, becateseethtive costs associated with the
commuting distance are thought to fall over timlee Thain reason is that as average
income grows over time, the costs of commutingtinedao wages fall, implying that
employees will choose to travel by faster, but mexpensive, modes, which increases

the average distance travelled (even when the geex@mmuting time remains



constant). An increase in the average distance travelledigsin increase in

congestion, which may weaken the original effeegc@ise congestion tends to be a local
phenomenon, it is generally expected that the trar&tion in the distance-decay
parameter is locally specific.

Recently, Thorsen and Gitlesen (1998) have engbiyievaluated alternative
model specifications to predict commuting flowseirhmain conclusion is that spatial
interaction models are sensitive to the chosenifsgegeon and potentially misspecified
due to measurement errors in the distance fundistimates of the distance-deterrence
parameter appear not to be independent of the ohoedel specificatiof In the current
paper, we will estimate the time-variation in thstance deterrence effect on commuting
flows using panel data. By employing panel dataaveeable to address both the
specification issue and the problems associatdd mweasurement errors. Surprisingly,
the use of panel data in the current context ishbRanel data estimation turns out to be
extremely straightforward.

The benefits of using panel data have been extgsiiscussed (Hsiao, 1985;
Baltagi, 2002). We will see that in the contexspétial interaction modelling, the main
advantage is that one may control for origin-degtom specific heterogeneity. Common
sense suggests that any variable that measuresdhemic distance between regions
fails to capture the heterogeneity of the econafistances. For example, when
economic distance is measured by the geographitahde between the centres of
regions, then this measure not only ignores therbgeneity due to variation in
infrastructure, but fundamentally ignores the \#rain the specific spatial form of both
regions including the distribution of jobs and desices within the regions. As is well

known, omission of heterogeneity leads to biasieresulting estimates if the omitted

! Another reason may be that the population defrsitases which may increase the costs per comgnutin
distance due to increased congestion.

2 Similarly, in the empirical literature on migrati@nd competing destinations, which is based otiapa
interaction models, it is generally reported tlmat ¢stimates of the distance deterrence effecendisp

upon the chosen functional specifications (in patér, the inclusion of the competing destination
parameter).

% Panel data applications of gravity models are comin the international trade literature (Brunlet a
2002).

* While interpretation of the results is less ambiggithan estimates based on cross-section data.



variable correlates with the explanatory variabRemel data estimation controls fully for

time-invariant heterogeneity.

2. Panel data and spatial interaction models

2.1 Spatial interaction models

A common application of spatial interaction modeisthe field of commuting and
infrastructure evaluation is the following doublyonstrained gravity model
(Fotheringham and O’Kelly, 1989), which will be tfeeus of our paper:

P, = AO,B;D,F(d;)u;, (@D)
where B denotes the number of commuters between regiod j,&) denotes the size of
the labour force in region i (origin), ;@lenotes the number of employed workers in
region j (destination) and F{ddenotes the distance-decay, where F (F > O)sisnasd to
be a decreasing function of the distangebdtween the regions i and j; and B are
‘balancing factors’, which guarantee that the arighd distance totals are constrained, so

> P, =D, and > P, =0,.° Finally, y denotes the random error with imdependent
i j

and identically distributed. In empirical applicats, F(g) is usually specified as
exp(@d;) or ij (a, B < 0). In the following, we will assume that F{d- ij, but all the

results can easily be adapted presuming differenttional forms of F. So:
- B
P, =AOB,D,d;"u;. 2

In the empirical literature, the first aim is totiggate (3, the distance-decay parameter,
which determines how the number of commutes demendommuting distance. The

main underlying assumption of this model is that®pends on factors related to region i

® In the context of commuting flows, the disadvaetagf panel data are minimal, because the usual
problems of panel data are related to non-respatisition and self-selectivity (Kasprzyk et al989) are
absent. The main restriction is that the methocbtiecting data over time remains the same.

® Thorsen and Gitlesen (1998) extend the above nimdieicluding an effect of labour market
characteristics of;2 Our estimation approach is insensitive to suckxansion.



(Gi and A), factors related to region j (and B) and depends on factors which are
related to both region i and regiomly through the commuting distance d;. Although
such an assumption may be correct for some apiplisatit is plausible that other factors
then ¢, let's call them g influence R. One example in the literature is thatis a
centrality index, which measures the competitiommrother regions or a contiguity
variable, which measures if regions i and j aretigoous (Fotheringham and O’Kelly,

1989, chapter 3). Hence, a more general formulatidhe spatial interaction model is:
_ B 6 -
R, =AOB;D;d;"¢c; vy, L) =1..N. (3)

The main empirical problem is that estimate afepend on the correct specification of
cij, which is often problematic. This issue can be asdidy means of panel data.

A more general spatial interaction model is Aloss@heory of Movements.
(Alonso, 1978; Fotheringham and O'Kelly, 1989)tHis model the origin and destination
totals are not constrained, but dependent on thentiag factors. For the commuting
application this means that employment in eachore@ affected by accessibility to the
labor force, and active population is affected legessibility to jobs. Estimation of
Alonso’s Theory of Movements falls apart into twiages (De Vries et al., 2002) The
estimation of the distance-deterrence function Xxacly the same as in the doubly
constrained model. Estimation of the effect of aedality on location is more
complicated. As in this paper, we are only concg@mgth the effect of distance, the
results are also valid for Alonso’s Theory of Mowants. The same holds true for special
cases of this model, such as singly constrainedetaoéstimation of the distance-decay
parameter is the same for all these models.

Sen and Soot (1981) propose three methods toas{smThe first method
involves maximum likelihood, the other two methaugolve a linearisation of (3) such
thatp can be estimated in a less cumbersome way. Fpfisity of exposition, we will
ignore the function;c The first of these linearisation methods impttest (3) is written

as:



In(Pij )+ In(Pji) - In(Pii) - In(ij) = lg(ln(dij )+ In(dji) - In(dii) - In(djj N+ E; TE; & — €&
whereg; is independent and identically distributed 11DGB).

2.2 Spatial interaction models and panel data
A more general formulation of the model, which alofor variation over time in the

commuting flows is:
Rit = AitOutBthﬁdijB”'Cijtgcijogouijt’ L=1.N j=1,.T, 4)

where we acknowledge thfify may vary over time and may be origin and desomati
specific. The latter may be important because gtlierdistance, the economic costs may
be origin and distance specific, for example dudotml differences in infrastructure.
Moreover, we recognise that the factgrcan be decomposed into a time varying factor
cit and a time-constant factofoc The latter factor mainly includes variables tha¢
related toobserved spatial particularities (e.g. contiguity). Furthee allow the effects of
Oy and 0 on the commuting flows to depend on parameteasid¢. In the empirical
application, the research will focus on the chaind®;, whereasx, ¢, 6, and6, will be a
nuisance parameters of less interest. We emphtssehe current specification of the
model is extremely general. For feasible estimatme will put restrictions on the
functional form off3;. We will first assume thaBj; obtains the following particular

functional form:
By =By + B, ®)

implying, that the change over time [ is not origin/distance specific and therefore the

same for all commuting flows:

IBijt - IBijt—l =B, = B =DB. (6)



In the empirical estimation, we will estimal;, the change in the distance-deterrence
parameter. The above specification presumes tleathihnge in the distance-deterrence
function is not region specific, which may be utisti, because it does not allow for
local changes in the distance-deterrence effegtdeie to new infrastructure or increased
congestion. To allow for region-specific effectse tfollowing less restrictive functional

form may be more appropriate:

IBijt = IBij * B - (7)

This specification is more general than (5). Equrafi7) presumes that the chang@iiris

origin specific. In this case:

IBijt - IBijt—l = /Bu - IBit—l = A/Bit . (8)

In the empirical analysis we will estimal; (based on (4) and (5)) ad; (based on
(4) and (8)). We will test whethéf3;; = AB:.

Without loss of generality, we can structugein the following way:

Uje = Vi Vie Vi Vi s 9)
where y, Vi and \ areunobserved variables, and;yis anunobserved random variable
which is independent and identically distributetieexplanatory variables in (4) are
assumed to be independent gf ¥A\n example of yis the time-invaryinginobserved
measurement error due to spatial particularitiag tbe spatial forms of regions i and j,
the presence of natural barriers between i andd)tleunobserved measurement error in
the costs associated with distance (e.g. the presafrspecific types of infrastructure).
Note that y reflects an unobserved time-varying deviatiorhi flows originating from

region i, for example due to infrastructure impnmests in region i. The variablg fias a

similar interpretation.



2.3 Fixed or random effects?

In the panel data literature, there is a largeditee on the assumptions of the type of
unobserved variablesjvvi and \ (Baltagi, 2001). These variables could either be
assumed to be random or assumed to fixed parametbes estimated. In the context of
commuting flows, it makes sense to assume thatviv and \y are fixed, because
interference is based on specific set of flows between regions (which cannot be
interpreted as a random drawing from a large pdijoumlaf flows). One advantage of the
fixed effect assumption is that the explanatoryialdes are allowed to be correlated to
unobserved fixed variables. A disadvantage is #ifgcts of time invariant variables

(distance) are not identified.

2.4 Estimation

After taking the logarithm of both sides of (4),eotan in principle estimate the model by
means of ordinary least squares (OLS) to get essnafAfB;, a, ¢, 6, 6o, Vi, Vi and .
However, if N or T is large, estimation will inv@vtoo many individual dummy
variables (y, vi and y already involve R+ 2NT dummies; in our application this would
mean 2400 dummies), and the matrix to be invente®bS is usually too large. We
propose here a specific solution which encompassmation methods applied in cross-
section spatial interaction models (Sen and Sda81)land panel data models (Hsiao,
1985). This method is to write (4), using oddsas@s:

(Pye / P )(Pyie / Py)

ijt

e (dl ﬂl]l_ﬂljt*1 / d” .But_ﬂutfl )(d . ﬂjlt_ﬂjltfl / d B ﬂ”t_ﬂ”tfl ).
(F)ijt—l / F)iit—l)(Pjit—l / ijt—l) : : !

0
Cii Ciit Vit
Ciit Cjjt Viie Viit

\' \'

Vin (10)

Cijt-1 Cjita ijt-1 Vijit-1

Ciit1 ijt—l Viit-1 ijt—l
Maybe rather surprisingly, equation (10) demonetdhat the change in the commuting

flows between i and j (relative to the internal eouting flow for i) relative to the return

flow from j to i (relative to the internal flow fof) doesnot depend on nuisance



parameters (v Vi, Vi), the origin and distance size effects and doéslapend on any
observed (or unobserved) spatial particularity.
Hence, defining) as a change over time such that = x — %.1 taking logarithms, and

making use of (6), it appears that:

AIn(Pit) - AIn(Pit) + Aln(Ryt) - AIn(Pje) = AB{In(dy) — In(di) + In(dh) - In(d;)] + 6 Aln(cir)
- AIn(ciit) + Aln(cjir) - Aln(cj)] + random errof. (1)

Readers familiar with the panel data literaturd vaalise that although estimates/At
obtained based on (10) are consistent, one caly edgain more efficient estimators.
Equation (10) has been based on the change irothenating flow between two periods,
but it can easily be seen that it is more effickentocus on the change in the commuting
flow compared to thaverage commuting flow over the whole period (since the variation
in the average flow is less than the variatiorhimmflow from one year).

One can see that the time-invariant variables #nat associated with time-invariant
coefficients are not identified and do not afféf%. The time-varying factor;ccan be
measured in several ways but it is common to spegifas G (or ;) see Fotheringham,
1983; 1986; Fotheringham et al., 2001; Pellegrimil &otheringham, 1999; Ishikawa,
1987). For example, it may refer to the averagecaiilon of the labour force in a region.

In this case, using equation (11) simplifies into:

AIn(Pyt) - AIn(Pir) + AIn(Pji) - Aln(Pj) = AB{In(d;) — In(di) + In(di) - In(d;)] + random
error. (12)

So estimation of\B; is not affected by the.¢or G;). Based on equation (12)B; can be

estimated by means of OLS. In a similar waf; can be estimated.

ijt

" Presuming thatf€l;) = exp@d;) and the factorjcenters also exponentially @(pﬁt , it appears that
we obtain the same equation as above, the onlgrdiite being that the first term on the right sde
replaced bydad; — di + d; — d;] and the second BfAc;; - Aci; +ACj; -Ac].



Alternatively, if the choice set of destinationss constant over regions (Fotheringham

and O’Kelly, 1989; Thorsen and Gitlesen, 199&)ntay be specified as follows:

Cp = Z D.d’, wherek #iandk # j, y<0
k

3. Commuting in the Netherlands 1992 — 2001

3.1 Description of the data

The commuting flow data we use come from ten settpldabour force surveys (1992 to
2001), which contain each about one percent of IDimouseholds. The locations of
residence and workplace of each employee are buitvik We have calculated regional
commuting flows for 40 (COROP) regions. Each regammtains, on average, about
160,000 employees. In 1992, 83 % of the employigesahd work in the same region. In
2001, 78 % of the employees live and work in th@esaegion. So, in the Netherlands
during the nineties, the population of employeesctwiwork in the region of residence
has decreased substantially.

The measurement of distance is usually a sensisuge, as spatial interaction models are
sensitive to the measurement error in the distéunetion (Thorsen and Gitlesen, 1998).
One of the main advantages of panel data analysiet the consistency of the estimates
is not affected by time-invariant measurement error @®ahstrated in (10) becausg v
is not identified).

In the current application, we have used the awecagnmuting distance by car in 1995,
which overestimates the average commuting distéfocemost commuting flow8.
Although the measurement error is systematic, titme invariant, and will therefoneot
affect the consistency of the estimates.

As a preliminary exercise to estimating the paretadnodel based on (12), we have
estimated a spatial interaction model employing rass=section analysis based on
equation (3).

So, we have estimated ten times the distance-gerayneter (and not the change in this

parameter as in the panel data analysis), whichinegjus to specify the spatial

8 We would like to thank AVV Transport Research @erior providing these data.
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particularities of the region. In this analysis, weluded dummies for adjacent regions
and for commuting flows to the region of residerfegrther, we used weights as
proposed by Sen and Soot (1981). Then 10 distaarean@ter estimates are plotted in
Figure 1. The full results can be received upomestifrom the authors.
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Figure 1: distance decay over time

An ordinary least squares regression on these a&stmyields that the distance decay
parameter increased with 0.029 each year.
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3.2 Estimation results

In this section we estimate a trend in the distatemay parameter on Dutch commuting
data for the period 1992 — 2001. To this aim, weved various econometric models in
section 2. The basic model is given in equatiora(®) we use the first of the two
linearizations giveri.*° We apply OLS, fixed effects and random effectavestors.
Weights as proposed by Sen and Soot (1981) are(agerthged over time), reflecting the
fact that large flows are measured more accuraRsgults are shown in table 1 (standard
errors between brackets).

pooled panel estimators
OLS FE RE

distance decay -3.908 - -3.908
(0.032) (0.056)

trend in dist. decay 0.0295| 0.0295 0.0295
(0.0058) | (0.0024) | (0.0024)

centrality index -0.133 0.031 -0.128
(0.064) (1.070) (0.182)

Table 1: estimation results

In the first specification, where no individual &tts are allowed for, effects of distance
and a trend in this effect appear to be highlyifigant. The hypothesis that the distance
decay parameter does not vary over time is thestesjl against a positive trend. We find
a negative coefficient for the centrality index,igrhis significant at the five percent
level. This might indicate competition or congesteadfects.

The second and third specification control for iserlied heterogeneity by allowing for
individual effects. In the fixed effects specificat, the distance decay parameter is not
identified since this estimator is based on vasiatver time and not over individuals
(space). The trend in distance decay estimate mimteshange compared to the OLS

specification, but it is more efficient. Howeveretcentrality index now turns out to be

° Before taking logs, we have added 1 to all flows.
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insignificant. Apparently, the relation found iret®LS specification was spurious, and
due to unobserved heterogeneity.

The random effects model assumes that unobserterbgeneity is independent from
explanatory variables, in our case distance. Téess a reasonable assumption.
Estimates are then obtained from an optimal contiminaf time series and cross section
information, so that the effects of time invariaatiables like distance are also identified.
Again we find the same coefficients for distanceajeand trend as in the OLS
specification, but the random effects estimatanase efficient. Just like in the fixed

effects specification, the centrality index is grsficant.

3.3 Regional variation

We finally consider region specific distance decagfficients and trends in the random
effects model. Hypotheses that regional differermcekese variables are statistically
insignificant are strongly rejected. Figure 1 shoegional distance decay parameters in
a map of The Netherlands. Commuting distancesedaéively large in the west of the
country, where population and economic activity@mecentrated, and in the province of
Groningen. In figure 2 we present a map of regidreasdds in distance decay. Again,
regional differences are substantial. The increas@erage commuting distances is
smallest in the west of the country. In the intrcttn to this paper we have argued that
average commuting distance should increase over @imce roads in this region are

often congested, a marginal increase in distanagddraapme at a higher price.

0 For relyability of the data, we consider commutftogvs over a distance smaller than 100 km onlyisTh
leaves us with 494 of the 1600 possible flows.
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Figure 1: regional distance decay
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Figure 2: regional trends in distance decay

It appears that growth in the distance decay pamaas smaller in the west and centre
of the country than it was in the north and soitpotential explanation would be that
traffic congestion is considerable in the formegioes. In the introduction to this paper
we have argued that average commuting distancddshmunease over time. In congested

areas a marginal increase of the commuting disteoes at a higher price.

4 Conclusions

This paper has proposed a spatial interaction nfoaielework for estimating
interregional commuting panel data. A central goestvas whether the distance decay
parameter is constant over time. This questiori major importance for the analysis of
infrastructure projects. A main finding of our emgal research is that a significant trend

in the distance decay parameter exists, people@thdemmute over increasing distances.

15



This finding is consistent with several micro arsaly (eg. Rouwendal and Rietveld,
1994), but our results are established using da&ggregate flows. Also, we show that
trends in the distance deterrence parameter vayregions.

A major advantage of using panel data is the cooedor possible omitted variable
biases. In a regional context, biases could stem fneasurement errors in the distance
matrix or spatial particularities within or betwesgions. Since distance and most of
these particularities can be considered time iavdrithey do not affect a fixed effects
estimator. The panel spatial interaction model vapgpse is thus very suitable for testing
the impact of a centrality index. The relation barfd in cross section analyses turns out

to be spurious when we correct for unobservedrjirggional heterogeneity.
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