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Abstract

An integrated mathematical model for the evolution of urban structure and pop-
ulation is presented.
The city configuration consists of an occupation number representation of different
kinds of buildings such as lodgings and factories distributed over a grid of plots, and
the population configuration describes the distribution of the population between
city (c¢) and hinterland (h).
The dynamics of the total configuration is governed by motivation — dependent tran-
sition rates between neighbouring configurations. Equations of evolution on the
stochastic level (mastereqatuion) and deterministic level (quasi-meanvalue equations)
can thereupon be derived.
We focus on that sector of the model describing the population dynamics between
hinterland (k) and city (c¢). Under the assumption of equal net birth rates in (¢) and
(h), and for given growth of the total population P(t), the dynamics of the population
shares between (h) and (c¢) can be treated explicitely in terms of a time dependent
evolution potential.
One can distinguish between the two main cases of “constructive competition between
(¢) and (h)” and “worsending balance between (c¢) and (h)”. In the first case a
stabilisation of the population shares in ¢ and h takes place, whereas in the second
case a dramatic migratory phase transition sets in, namely a sudden rush of the
population from the depleting hinterland to the overcrowding city.

KEYWORDS:
1. Integration of Urban and Population Dynamics
2. Motivation Dependent Transition Rates
3. Master Equation
4. Quasimeanvalue Equations
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I. General Design Principles

The design makes use of the general modelling procedure of “Sociodynamics” which
is exhibited in detail in Weidlich (2002). It consists of the following steps:

1.

Search for a “window of perception”

This search leads to the choice of a model-specific set of appropriate order
parameters or key variables. Tt is anticipated that these variables satisfy an
approximately selfcontained dynamics under general boundary conditions.

. The elementary steps of dynamics

The elementary steps lead to small changes of the orderparameters. They are
provided by motivation-driven probabilistic transition rates composed of mobility
and wutility terms. These establish the link between the microlevel of orderpa-
rameters.

The equations of evolution

As a consequence of the elementary dynamic steps equations of motion for the
orderparameters can now be set up. They can be derived on the stochastic level
(master equation) or on the deterministic level (quasimeanvalue equations) for
the mean evolution of stochastic trajectories.

Simulation of Characteristic Scenarios

The transition rates entering the dynamic equations contain certain control-
and trend-parameters. After their calibration characteristic (realistic or virtual)
scenarios can be simulated by solving the equations. These can be compared
with empirical data.

. What can be learned from the model?

a) The urban evolution depends decisively on the trendparameters in the tran-
sition rates. They are measures of the influence of conditions of the land-
scape, of socio-economic preferences, of meighbourhood relations between
building plots, and of migratory trends in the population.

b) Model simulations of urban dynamics not only include the imitation of the
real evolution but also virtual evolutions and forecasts resulting from the
choice of different trend parameter sets.

¢) The urban evolution is path-dependent. Even if the trendparameters coin-
cide, small deviations of the initial conditions may lead (at instable situa-
tions) to diverging further evolution paths, due to inherent nonlinearities.
Simulations help to detect the situations where bifurcations occur.

d) The migration of population and the development of city and hinterland
are interrelated processes. In particular, migratory phase-transitions, e.g.
a population rush from hinterland to city can occur and are analyzable in
terms of the model.



II. The Integrated model for Urban and
Population Evolution

1. The Key-Variables

a) Material Variables: The City Configuration
The city “c” and hinterland “h” are tessellated into a grid of “plots” or
“sites” with coordinates i(i1,42), j(j1, j2) - - -- Each plot 7 has a capacity C;,
at a given time, to erect different kinds “k” of buildings — such as lodgings

L, factories F, ...~ on that plot.
The integer mgk) denotes the number of construction units of kind k erected
on plot 1.

(

The set of variables mik) and capacities C;:

m:{...;mEF),...m(L),...Ci;...;mg-F)...,m(-L),...Cj;...} (1)

is denoted as city configuration. It provides an occupation number repre-
sentation of the state of development of the city. There hold the evident
relations:

Y m < 2)
Co=) C; (3)

Ch=>_C; (4)

i€h

where C. and C}, are the total capacities of city and hinterland, respectively.

b) Personal Variables: The Population Configuration
Let P denote sub-populations differentiated by profession, origin, back-
ground, etc.
Let Ni(a) be the number of members of subpopulation P(® living on plot .
The set of variables

N={.;. NY N N NP} (5)

is denoted as population configuration. It describes the distribution of the
sub-populations P(®) over the sites i,...,7,..., of city and hinterland.
Aggregated or global personal variables:



N, = Z N{* = number of city inhabitants (6a)

aji€c
Ny, = Z NZ.(O‘) = number of hinterland inhabitants (6b)
ajich
P =pPy = N.+ N, = number of total population with Py = P(t = 0)
(6¢)
For later use we introduce the population shares n. and n,, by
N.=n.P; N, =n,P; with n.+n, =1 (7a)
and
N =N,— N, =nP; with n=n,—n, (7b)
where
P<N<4P; —-1<n<+1 (7¢)

2. Motivation-Driven Probabilistic Transition Rates

The elementary steps of city- and population-evolution are the following:

m={_...mP J=m®={ . mPx1), . } (8a)
N={. N }=>NY={. . (NY+£1),.} (8b)

N={ . N N 3=NY = (VY1) (N —1),..)
(8¢c)

The meaning of the steps

(8a): one unit of kind & is erected or torn down on plot %
(8b): birth or death of one member of P(*) on site i
(8c): migration of one member of P(®) from site i to site j.

The transition rates engendering the steps (8) are:

wf(mz({ci—): m; N) = wn(m§ N)
wh(m®), m; N) = wh (m; N) (9a)
wg (m; NI N) = w$ (m, N)
w? (m; N N) = w$ (m, N) (9b)
w(m; NI N = wg(m, N) = N pl*' [m, N]
where pj; = individual migration rate from i to j. (9¢)



In an explicit version of the model a concrete choice of the form of all transition
rates (9a), (9b), (9¢) must be made. Thereupon both sectors, the city and the
population evolution, can be treated quantitatively. For details see Weidlich
(2002) and Sigg and Weidlich (1998). In this lecture we only treat the population
sector of the model (see III).

3. Evolution Equations

a) The Stochastic Level: The Master Equation

Definition
P(m;N;t) = probability that configuration {m, N} is realized at time ¢
(10)
Normalization
> P(m;N;t) =1 (11)
m,N

The Master Equation:

dP(m; N; ) E (m® (k) k
— = zk:zj: [wﬁ(mjf; N)P(m;”; N;t) — wi(m; N) P(m; N; t)]

[ k k
+ 33 [k, (ml N)Pmf; N £) — wh, (m; N) P(m; N; t)]
k J
Ji (] [ ¥ Jt

+) Z [ (m; N P(m; N3 ¢) — o (m; N) P(m; Ns 1)
a 1,7

+> Z gy (m; Ni¥) P(m; N{; 1) — wii (m; N) P (m; N 1)

+) Z g (m; NiY) P(m; N{P; 1) — wi} (m; N) P (m; N; )

Terms on the r.h.s. of (12):

1. Line: probability flows by erection processes on all sites

2. Line: 7 7 by tearing down processes on all sites
3. Line: 7”7 ” by migration processes between all sites
4. Line: 7 7 by birth processes on all sites

5. Line: 7 7 by death processes on all sites.



b) The Deterministic Level: Quasimeanvalue-Equations
Quasimeanvalues Ni(a) (t); mg.’“) (t) describe the mean evolution of the stochas-

tic variables Ni(a),mg-k) for a bundle of stochastic trajectories in configura-

tion space starting from some initial condition Ni(a) (to); mg.k) (to)-
Quasimeanvalue-Equations are directly derivable utilizing the concept of
stochastic trajectories. They read:

+ wi; (1, N) — N(m N)

Remark: R
Quasimeanvalues 7 k) N (@) coincide approximately with the meanvalues
j

P (t) =" P(m; N;t)m{" (15)
m,N

NO(t) =" P(m; N;t) N[ (16)
m,N

if the probability distribution P(m;N;#) remains unimodal during its evo-
lution with time.

III. A Simple Implementation of the Popu-

latlon—Sector' (lobal Treatment of
City- and Hinterland-Population

1. The Global Population and Capacity Variables

N,(t) = number of city-inhabitants
N, (t) = number of hinterland-inhabitants
P(t) = N,(t) + Nu(t) = number of total population
N(t) = N,(t) — N,(t) = population difference (17)



Ne(t) = () P(t) ; Na(t) = an(t) P(2)
N(t) = a(t)P(t); with

fie(t) + n(t) = 15 ne(t) — fn(t) = n(t)
P(t) = p(t)Py, where Py = P(t = t;)

—1 < a(t) <415 (k) = 1 (18)

ni.(t) and 7, (t) are population shares and 7(t) is the share difference.
Assumed form of global capacities:

A

Ce(t) = Ceo + KeNe(t) = Polceg + kep(t)ie(t)]
Ch(t) = Cho + knNu(t) = Polcno + knp(t)in(t)] (19)
C.o and Cjy are extensive quantities:

Ceo = ceoPo;  Cho = cholFo, (20)
where c., and ¢y are size-independent parameters.

Global Personal Utilities and Transition Rates

Plausible assumption for the “utility” or “attractiveness” of city v. and of hin-
terland vy, for potential migrants:

v, = sPy'C, vy, = sPy 'Cy, (21)

(If C¢, Cp, Py are extensive quantities, and s is independent of system size, then
v. and vy, are also size-independent.)

Transition Rates for migration between ¢ and h, and for birth-death-processes
within ¢ and h.

wch(N) = pen N, = migration rate from h to ¢ (22)
whc(N) = ppN. = migration rate from c to h (23)

with individual transition rates

Peh = v €Xplve — V] (24)
Phe = v explv, — 0] (25)
and
wer(N) = B,N, = birth rate in ¢ (26)
we, (N) = 6,N, = death rate in ¢ (27)
wpt(N) = By N;, = birth rate in h (28)
wp, (N) = 6.N, = death rate in h (29)



3.

Evolution Equations for the Population Config-

uration A )
The evolution equations for N, and N, are a special case of the quasimeanvalue
equations (14). They read:

dN, . . . .
—— = Wer(N) — wpe(N) + wep(N) — we (N)

dt

= pen(N) Ny — pne(N) N, + 7N

= vexp {s [(Cco — cpo) + Pofl(nch — IihNh)} } N,

— vexp {—s [(cco — cno) + Py Y (KN, — thh)] N,

+ 7¢IV (30)
and

S = ) = () 0y () = w0y ()

= phc(N)Nc - pch(N)Nh + ’YhNh

= —vexp {s [(Cco — cpo) + Po_l(/-eC]\AfC - /@h]\Afh)} } N,

+ vexp {—s [(cco — Cho) + Po_l(/ic]\Afc — /{h]\Afh)] } N,

+ 1Ny (31)
where

Ye=(Bce—0) 5 = (Bn—0n) (32)

are net birth rates of city and hinterland, respectively. The last lines of (30)
and (31) follow by inserting (19), (20) and (21) into the individual transition
rates (24) and (25).

The Case of Equal Net Birth Rates in City and
Hinterland

We evaluate the case:

Ye = h =7 (33)
where the net birth rate in city and hinterland
v =(P) (34)



4.1

4.2

may depend on the total population f’(t). In this case the evolution of the total
population P(t) and of the population shares 7(t), 75(t) can be separated!

Growth of Total Population P(t)

Taking the sum of egs. (30) and (31), one obtais with (33) the separate equation
for the total population:

dP(t - dp(t L
O )b, or B = (P)a(e) 3
dt dt
Eq. (35) is easily solved in the cases of
v(P) = 7, = constant (exponential growth) (36a)
or
- P -
Y(P) = 7o (1 — F) (logistic growth) (36b)
with the result:
P(t) = p(t) Py = exp(yot) Po (37a)
or
Ps exp(vot) Py

P(t)

p(t) P (37b)

~ P+ Polexp(yt) — 1]}

Evolution of Population Shares 7.(t) and 7(t)

Inserting eq. (35) into egs. (30) and (31), one now obtains equations for the
population shares, i.e. for the separated migratory process:

dn.(t . .
% = —PhcNe + PehTln (38)
diy,(t . .
CI;( ) = +phcnc — PchMp (39)
1
where
Deh = Pen (N, 1) = vexplv. — vy] = vexpla(t) + b(t)n] (40)
Phe = Pre(N, t) = vexplvy, — v] = vexp[—a(t) — b(t)n] (41)
with coefficients
1
a(t) =S (CCO - ChO) + E(Kc - ’ih)p(t) (42)



and

b(t) = 5s(re + m)p(t) (13)

which are time-dependent via p(t) and are related by

_ (e — Kn)
a(t) = s(ceo — cro) + (ke £ 1) b(t) (44)

The Equation for n(t) = n.(t) — n,(t) and the Evolution Poten-
tial V(n,t)

Because of (7.(t) + 7 (t)) = 1, the equations (38) and (39) for the population shares
ni.(t) and 7y (t) reduce to one equation for the share difference n(t) = (7.(t) — np(t)):
dn(t)

dt

= (pch - phc) - (phc + pch)ﬁ(t) (45)

Let us now introduce the evolution potential

2O b
_ o~ (a(t) bty [b(tb)jzt;“ L b(lt)} (46)

which is slowly time-dependent due to the growth factor p(¢) on which a(t) and b(¢)
depend.

Making use of V' (n;t), the evolution equation (45) can be re-written in the form:

da(t) OV (1)
dt on

(47)

a) The Case of constructive competition between city and hinterland
In this case, co. = cocFPo and cop, = con Py are of the same order of magnitude,
and k. 2 kp, > 0 are both positive. This means, that both, city and hinterland,
react positively to growth of their population by extending their capacity (see
eq. (19)). It can be shown, that then the condition

b(t) 2 1;  a(t)| < a”(b) (48)

for three quasistationary states, where n_ and n. are stable, remains realized
for all times t > 0, even if p(t) grows. If n_ existed at t = ¢, 7 ~ ni_ will persist
also for ¢t > t,.

10



b) The Case of “worsening balance” between city and hinterland
In this case ¢y, and cgp still have the same order of magnitude, but . > 0, and
K, < 0 holds. This means, that c,(t) decreases with growing Ny (t), for instance
if the cattle of the hinterland population over-grazes the pasture ground so that
cp(t) is shrinking. Then a time ¢* exists, such that for ¢ > ¢*

b(t) = 15 la(t)] > a”(b) (49)

holds. Only one quasistationary state survives. A migratory phase transition
takes place for t > t*.

Illustration of the Migratory Phasetransition by the timede-
pendent Evolution Potential

The timedependent form of the evolution potential gives the best illustration of how
the migratory phase transition comes about. In case b) of worsening balance between
city and hinterland the trendparameters are such that for 0 < ¢ < t* condition (48),
but for ¢ > t* condition (49) is fulfilled. Condition (48) means that V(7,t) has
two minima and one mazimum inbetween, whereas (49) means that V' (i, t) has only
one minimum. If the system started in the one minimum (n_) = quasi-stationary
state, which disappears at time t = t*, a dramatic phase transition must take place
at times ¢t > t* leading the system into the only surviving quasistationary state 7.
corresponding to the only one surviving minimum of the potential. The dynamics of
this pase transition is of course described by the equation (47).
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Figure 1: b) The evolution potential V' (7n,t) with ”system ball” representing the path of
in Fig. la.

n(t) under conditions as



