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Congestion and Safety: A Spatial Analysisof London

Abstract

A disaggregate spatid analyss, using enumeration digtrict data for London was
conducted with the aim of examining how congestion may affect traffic safety. 1t has been
hypothesized that while congested traffic conditions may increase the number of vehicle
crashes and interactions, their severity is normally lower than crashes under uncongested free
flowing conditions. Thisis primarily due to the dower speeds of vehicles when congestion is
present. Our andysis uses negative binomia count models to examine whether factors
affecting casudties (fatdities, seriousinjuries and dight injuries) differed during congested
time periods as opposed to uncongested time periods. We aso controlled for congestion
gpatidly usng anumber of proxy variables and estimated pedestrian casudty models Snce a
large proportion of London casualties are pedestrians. Results are not conclusive. Our
results suggest that road infragtructure effects may interact with congestion levels such thet in
London any spatid differences are largdy mitigated. Some smdl differences are seen
between the models for congested versus uncongested time periods, but no conclusive trends
can befound. Our resultslead usto suspect that congestion as amitigator of crash severity is
lesslikely to occur in urban conditions, but may Hill be a factor on higher speed roads and

motorways.
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Introduction

Congestion reduction is often stated to be one of the primary goas of transport policy.
Thisis seen as desirable due to the economic costs associated with traffic congestion. Trave
ddlay is seen as both reducing economic productivity and reducing the qudity of life of those
guck intraffic. All ese equa, congestion reduction is a desirable policy.

However, dl dseisnot normdly equd. In particular, it has been speculated that there
may be an inverse relation between congestion reduction and improved safety (Shefer &
Rietveld, 1997). Freeflowing traffic will normally travel at speeds that make the likelihood
of fatalities higher when accidents occur. On the other hand, congested traffic can dow
traffic such that fataities are unlikely to occur in the event of an accident. Increased traffic
levels and congested traffic will increase the number of interactions between vehicles and
potentia collisons. Therefore, it is plausible that while more congested traffic may lead to
more accidents, the outcomes of those accidents are less severe,

This poses a potentia policy dilemmafor decison makers. Externa costs associated
with congestion may be off-set by externa benefits associated with fewer traffic fatdities due
to congestion.

Recent empirica evidence suggests that these effects do occur. Zhou & Sisiopiku
(1997) examined a sixteen mile segment of an Interstate freeway in Michigan. They
correlated accidents with the volume to capacity ratio of the freeway finding that this tended
to follow a U-shaped curve. That is, more accidents occurred when vehicle flow was
reaively low and when it was rddively high. However, more severeinjury and fatd
accidents tended to decrease as the volume to capacity ratio increased, strongly suggesting
that more congested links lead to lower accident fatdities. Another study of traffic flow on
interurban French motorways found that crash severity levels are greater during night-time

hours (Martin, 2002). A study of highways in Connecticut also found that larger volume to
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capacity ratios are associated with a reduced number of crashes (Ivan et d., 2000). This latter
result is not necessarily consistent with the theory formulated by Shefer & Rietveld asthis
result included dl levels of crash severity.

These studies were not focused on urbanized road conditions. Dickerson et a. (2000)
used data from London (as we do) to examine the relationship between accident externalities
and traffic flow. While not disaggregating by severity leves, they conclude thet at high
traffic flowsthere is a subgtantia negetive externdity while a low flow levelsthere is not.

This result suggests that the theory eaborated by Shefer & Rietveld (1997) may not hold but
one can't say for certain without disaggregating accidents by severity level.

The study reported here attempts to do this, again using data from London. Our data
set conggts of highly disaggregate spatia units, enumeration digtricts, for which we have
over 15,000 units. Thisdatais overlayed with accident data from the STATS19 database by
severity levd of accident and time of day of the accident. This gives us data on fatal, serious
injury, and dight injury accidents which we disaggregate by day and nighttime periods. We
a0 disaggregate pedestrian casudties since about 19% of dl the casudties in our database
are pedestrians and nearly 50% of fatdities are pedestrians. Our models include other spatia
data that may be associated with accidents, including road network data and demographic
data. We control for inner and outer London areas and various other proxies for congestion.
Therefore we estimate model s that attempt to control for congestion both temporally and
goatialy.

Results are inconclusive and we cannot confirm the hypothesis of Shefer & Rietveld
(1997). We find that our proxy variables for relative congestion do not seem to be giving the
anticipated result. In generd we find no differences between Inner and Outer London.

Minor differences are found between models for congested versus uncongested time periods

but no conclusive trends can be found. Overal, our results tend to suggest that these effects



DRAFT: Please do not cite without permission of the authors

are minor or non-existent in London. We speculate that this may be because speeds are
generdly low both in congested and uncongested areas and that those areas that are congested
dready have infrastructure in place that mitigates the safety effects associated with high

Speed traffic.

The data sources used for this andys's are described in some detail in the next section.
We then present the statistical method used followed by a presentation and interpretation of
the results. Conclusions are then presented.

Data

Our andlysis focuses on the Greater London metropolitan area. Thetota area of the
metropolitan areais about 1580 sg km of which Inner London is about 320 sq km (20.2%)
and Outer London is 1260 sq km (79.7%). The boundaries are shown in Figure 1. The spatia
data unit used in our study isthe Enumeration Didtrict (ED). These consst of an average of
200 households each and for the Greater London area there are 15,366 units. These are
shown graphicdly in Figure 2, which adso shows the distribution of traffic casudties within
esch ED. The geographical Sze of the ED’ s varies Since they are ddlineated based on the
number of households in each. The average size of each ED is about 10 hectares, with the
smallest being 0.065 hectares and the largest being about 950 hectares.

The digitad ED boundary data and road network data were obtained from UK
Ordnance Survey (OS) datavia EDINA services (UKBORDERS and Digimap respectively).
Data on traffic casuaties was extracted from the STATS19 database and is geo-coded and
assigned to the ED’ s using a geographic information system (GIS). Demographic data on
population and employment was obtained from the Office of Nationd Statistics. Car
ownership datawas based on 1991 UK censusdata. Information on hospita locations was
supplied from NavTech by Saturn Technology UK. All these databases were integrated using

aGlISthat alowed aggregation to the ED leve.
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The STATS19 UK nationa road accident database has information on the recorded
location of an accident, identified by its x and y coordinates corresponding to the British
Nationa Grid coordinate system. STATSI19 disaggregates the outcome of each accident by
fadities, seriousinjuries and dight injuries, as wel as many other variables that identify the
individual, the vehicles involved, and other factors associated with the accident. Of these
other factors we aso disaggregate by time of day of the accident and weekdays and
weekends. Thisalows usto have accident data for a congested time period (7:00am —
8:30pm on weekdays) and uncongested time period (8:30pm-7:00am on weekdays). We
disregarded weekend data for this andysis since weekend patterns of congestion may be quite
different. Casualty data was aggregated for three years of data, 1999-2001.

The tota number of casuaties appears to vary sgnificantly between the congested
and uncongested time periods. Over 82% of total casuaties occur during congested periods
while only about 18% occur during the uncongested times of the day (excluding weekends).
Table 1 shows that during the congested time period the percent of accidents that are faidities
islower, a 69% relative to the percent of serious and dight injuries (79% and 83%,
respectively). Inner London, which is relatively more congested also has alower percent of
fatalities (43%) relative to Outer London (57%), while the percent of serious and dight
injuriesislarger in Inner London. Similar trends dso hold for pedestrian casudties, with the
percent fatdities being lower during congested time periods and in Inner London, relative to
injuries. Thiswould tend to suggest that congestion would tend to mitigate the more severe
accidents, as suggested by Shefer and Rietveld (1997).

To obtain data on features of the road network, data was obtained from EDINA
Digimap Meridian2™ data, which is derived from the latest available versions of Ordnance
Survey (OS) data. This data usesthe Nationa Grid coordinate system for describing

locations within Greet Britain and is therefore easly entered into our GIS. The coordinate
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resolution of the datais one meter. It is ageometrically structured vector database customized
from avariety of OS datasets that define the real world geographic entities (objects) as point
and linefeatures. Different infragtructure features were extracted from the dataincluding
motorway, A road, B road, minor road, roundabouts and nodes. Three leg and four leg
junctions were derived from the node data usng a MapBasic program. These are identified
within the database digtinct from just nodes as shown in Figure 3. In our anaysiswe
normalize these by land area so that we can represent the intensity of these road network
features within agiven ED.

Totd resdentia population was based on 1998 estimates from the Office of Nationd
Statistics (ONS). Totd employment data at the ED level were obtained from ONS, Labour
Force Survey, 2000. Data on household car ownership at the ED level were obtained from the
1991 UK census. Unfortunately, we do not have recent year car ownership data a the ED
leve.

Information on public trangport bility was obtained from Trangport for London
(TfL). Thisincluded the location of bus stops, underground stations and railway stations.
These were aggregated to the ED level using our GIS. Bus stop data was normalized by area
while for underground and railway stations we include adummy varigble if a least oneis
located inthe ED. Spatid location of nationd rallway stations and underground stations
within Greater London are shown in Figure 4.

Recent work has shown the importance of medical technology in reducing fatditiesin
accidents (Noland & Quddus, in press, Noland, in press). To control for this we included
data on the location of hospitals. This data was obtained from NavTech European data
supplied by Saturn Technology Ltd UK. There are atotd of 52 hospitals within Greeter

London. Distance of the nearest hospital was caculated from the centroid of each ED to the
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geo-coded location of the hospital. The minimum distance of the nearest hospita from the
ED centroid was 35m and the maximum distance was 7542m.

One of the key determinants of the likelihood of aroad accident isthe relative
exposure to traffic. Unfortunately, we do not have data on the volume of vehicle travel
within each ED. Instead we use a method devised by Graham and Glaister (in press) to
represent the level of trave activity based upon the levels of employment in each ED reldive
to dl other EDs. This proxy varigble for the volume of traffic flowing through each ED is

derived as,

E; L
PE, 2?7 —  wheei?]j (1)
iU

inwhich dj; isthe centroid distance from ED i to ED j. Origin and detingtion traffic within

an ED is proportiond to the leve of totd employment, E; for ED i. Therefore, following

Graham and Glaigter (in press), we define proximate employment, PE; for each ED to
represent the volume of traffic passing through the ED. Clearly thiswill be heavily weighted
basad upon the employment of neighboring EDs with more distant EDs receiving less weight.
Intuitively thisis essentialy a gravity measure of the didtribution and interaction between
activities, commonly used to determine how traffic is digtributed within aregion.

Summary gatigtics for the variables used in the andlyses is presented in Table 2 and
Table 3. Notethat the tota casudty figures are only for the weekdays, summary statistics for
the congested versus the uncongested period are also shown.
Statistical M ethodology

The Poisson regression model is a natura first choice for modeling discrete, random,
nonnegative and sporadic events such as traffic accidents. The Poisson distribution has only

one adjustable parameter, namely the mean ? , which must be postive. A log-linear
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relationship between the expected number of casudties and explanatory variablesisamore
commonly used formulation, i.e,
?,?2E(n | X,)?exp(RX,), n=01,2,... 2
Inthis case n; isthe number of casudties occurring on each ED over agiven time
period, X; isavector of explanatory variables indicating infrastructure, demographic and
other characterigticsof the ED i and 3 isavector of estimable coefficients. The probability

density function can be expressed as

n;

Pr(n, | X,) ')% 3

However, the Poisson regresson mode has some potential problems. The rate at which
events occur during a period of observations may not be a constant, that is, the variance of n;
may not be equa to the mean. Various deviations from the basic Poisson process can result in
overdisperson in the data (Washington et d., 2003). The solution is to gpply the Negative
Binomia (NB) modd. The NB mode is derived from the Poisson modd by incorporating a

stochastic component in the relationship between? and X wherethe mean? isreplaced with
the random variable 7 i.e,

7?2 exp(BX; ?7?) 4

Here? isanon-negative random term, representing the unobserved variation across
observations. One can think of ? ether asthe combined effects of unobserved variables that
have been omitted from the model or as another source of pure randomness (Washington et

a. 2003). The probability density function for the NB distribution can be expressed as

2n?2Wk)2 Uk 322 2 7
A2 = Wi 2@k 22 2 SWik 27 2 ©)
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Where k(? 0) is often referred to as the overdispersion parameter. In the andyss that

follows we estimate NB models since most often accident data will display overdigpersion
and tests of our modelsindicate thet thisis the case for our deta.
Results

The basic objective of our analyses was to test whether the hypothesis that congestion
on urban streets and highways provides a safety benefit. For this reason our analyses Strategy
was to evauate severd models. Firgt, we disaggregate the data by severity of the casudty
that results, by fatdity, seriousinjury, and dight injury. We aso disaggregate the andyses
by time of day, specifying a congested time period of 7:00am to 8:30pm on weekdays and an
uncongested time period of 8:30pm to 7:00am, also just on weekdays. We control for spatia
congestion by including adummy varigble to control for Inner London versus Outer London,
with the former tending to be more congested. In addition, we analyze smilar modes for
pedestrian casudties. Thisis done mainly because pedestrian casudties congtitute about 19%
of total casudtiesin London and pedestrian fatdities are about 50% of al treffic fatditiesin
London.

Table 4 displays results for aNB modd using data from the congested time period
(7:00am to 8:30pm, weekdays). Table 5 shows the same analyses using the uncongested time
period (8:30pm to 7:00am, weekdays). Similar pedestrian casuadty models are shown in
Tables6 and 7. All modds contain numerous explanatory variableswhich are discussed in
turn in the sections that follow.

Proxy variables to measure congestion

Anindicator variable was included for those ED’ s located in Inner London. These
correspond to the most congested parts of the city. Thisvariableis not datidticaly different
from zero (at the 95% confidence leve) for the three models of the congested time period

(Table4). In other words, we are picking up no residua difference between Inner and Outer

10
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London that could explain differencesin dl three types of casudties. We do pick up adight
negative effect for dight injuries being lesslikely in Inner London compared to Outer

London during the congested time period. One could speculate that congestion levels are
smilar throughout the region during these hours and thus one would not expect to see large
differences, however, on balance congestion is probably more persstent within Inner London
compared to Outer London.

In the models for uncongested time periods (Table 5), the Inner London dummy
variable hasalow leve of sgnificance (about the 75% leve) in the fataity modd. The
coefficient vaue is rdaively high at 0.3134 compared to other estimates for this variable.
This seemsto be imply that during uncongested time periods there is adight difference
between Inner and Outer London with the former being more likely to have fatdities, dl dse
equal. Whether thisis due to less congestion during these time periods cannot be determined.

The models of pedestrian casudties (Tables 6 and 7) show no significant difference
between Inner and Outer London. Inner London clearly has more pedestrian traffic than
suburban areas, so perhaps this merely reflects increased exposure levelsin Inner London
versus increased risk in Outer London off- setting each other.

Ancther key variable which proxies for relative congestion levels is our messure of
proximate employment. This has a pogtive but week leve of gatistica sgnificancein the
fatdity mode for the congested time period but is positive and significant for serious and
dight injuries (Table 4). Inthe modds of uncongested time periods only the injury models
are clearly positive and sgnificant (Table 5). In both cases the coefficient valueis larger for
seriousinjuries than for dight injuries, opposite of what we would expect. However, we dso
see that during the uncongested time period these coefficient values are larger than during the
congested time period. This means that proximate employment (aVMT proxy) seemsto

result in more injuries during uncongested time periods than during congested time periods.

11
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Thiswould seem to suggest thet if this variable represents congestion that congestion may
lead to fewer accidents with serious and dight injuries. The same generd trend holds in our
pedestrian modds (Tables 6 and 7) with amuch stronger effect for pedestrian fataities during
uncongested time periods (at a 90% leve of sgnificance).

A third varigble that could proxy for localized congestion within the ED’sis our
measure of employment density. These areas would presumably be more congested during
the daytime and uncongested a night. Slight injuries gppear lesslikely during congested
time periods but during uncongested time periods coefficient values are dl negative (Tables 4
and 5). Results are dso indeterminate in the pedestrian models with conflicting results for
the effects during congested time periods, with dight injuries being positive and significant
while serious injuries have a negetive vaue (Table 6).

Our results gppear to be relaively indeterminate as to whether congestion mitigates
the severity of traffic crashes. A clear conclusion could have been made if the Inner London
dummy variable showed a negative and sgnificant effect for fatdities during congested
periods with this effect disgppearing during uncongested time periods. A smilar effect for
the proximate employment variable would have led to a clearer conclusion. Clearly we do not
have details on actud vehicle speeds and flows within each ED and this complicates
interpretation of these results. There seems to be some week evidence that during
uncongested time periods the probability of injuriesis greater than during congested time
periods, but no evidence that the probability of fatdities increases.

I nteractions with road infrastructure

Congestion effects could perhaps be mitigated by differencesin the road
infrastructure within Inner London compared to Outer London. An analyss of variance
(ANOVA) confirmsthat al the independent variablesin our andys's, with the exception of

rallway sations, have a different average value when Outer and Inner London ED’s are

12
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compared (see Table 8). Inner London has a higher density of Underground stetions and bus
stops, relative to Outer London. Inner London aso has a higher density of road length (with
the exception of Motorways) and a higher dengity of both three-leg and four-leg junctions,
compared to Outer London. The density of roundabouts is higher in Outer London. Both
employment dengty, population dendty and proximate employment are dso higher in Inner
London. The distance to the nearest hospita is higher in Outer London. More householdsin
Inner London do not own cars compared to Outer London.

The effect of the infrastructure variables on casudties is of mogt interest as
differences in these may be endogenous. That is, if these factors have an effect on sdfety, it is
possible that changes have been made over time such that they mitigate adverse safety
impacts associated with the traffic volumesin these areas. In generd, we would expect that
denser primary (A and B) road networks would lead to more vehicle interactions and more
accidents. For the congested time period (Table 4) we see that increased A road dendty is
positive and Satidticaly sgnificant. The coefficient for dight injuriesis highest, but not
much higher than thet for fatdities. For the uncongested models (Table 5) the coefficient
vaueis highest for the fatality model. These results suggest that while A road dengity is
associated with higher fatdities and injuries, during uncongested time periods the effect
seems to be associated more with fataities than with injuries. Interestingly, in the pedestrian
casuaty models (Tables 6 and 7) while these effects are dtill positive (and in most cases
datidticaly sgnificant), parameter vaues are generdly lower.

Reaults are somewhat different for B road density. For congested time periods, B
road dengty is associated with more dight injuries. Thereis no significant effect for elther
uncongested time periods or in the pedestrian models.

Minor road dengity is generally associated with fewer casudtiesin al cases, except

there is no association with fatdities during uncongested periods (for both totd fatdities and

13
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pededtrian fatdities). The vaue of the coefficient is largest for the association with fatdities,
that is, thereisa stronger effect on reducing fataitiesin congested aress, relative to both
injury categories, when minor road density ishigher. This does not hold during uncongested
time periods where the association is stronger for the injury moddls. Clearly, given that
minor roads will tend to have lower speeds, those ED’ s with denser minor road networks will
have fewer casudties of dl types probably due to the lower average speeds on minor roads.
Our results suggest that as the dendity of the road classes moves from minor to B road to A
roads, we see an increasing association with dl types of casudties.

Motorway density is found to be associated with more dight injuries during congested
time periods. During uncongested time periods increased motorway density isalso
associated with more serious injuries. To some extent this supports the idea that less
congestion increases the severity of accidents and we would expect to find this effect stronger
in ED’swith motorways. This seemsto be the case, dthough motorway density does not
appear to be associated with more fatalities. Pedestrian casudties are not associated with
motorway dengty, not surprisingly, sSince pedestrians are prohibited from using motorways.

Junctions are normally considered relatively hazardous as this is where more vehicles
interact and accidents are more likely. Wefind no satisticaly sgnificant effect with respect
to fatdities in any of the models. There are strong associations between junction density and
injuries. Four-leg junction density gppears to be postively associated with dight injuries
during congested time periods, while three-leg junctions are positively associated with both
serious and dight injuries. During uncongested time periods we find that four-leg junction
dengty is postively associated with both serious and dight injuries while three-leg junction
dengty isnot. In the case of pedestrian casualties (Tables 6 and 7), we find that both three
and four-leg junctions are associated with both serious and dight injuries during congested

time periods. Four-leg junctions show no association with pedestrian injuries during

14
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uncongested time periods while three-leg junctions do (opposite the effect found for dl
injuries).

These results would tend to support the assertion that increased potentid vehicle
interactions increases accidents. In any case, this result would seem to support the hypothesis
that increased vehicle interactions leads to more accidents, but that these accidents are not
necessaxily fata accidents.

We find the surprising result that roundabout density does not seem to be associated
with fewer casudties but has a postive association with increased dight injuries. This occurs
during both congested and uncongested time periods. This effect is not present for pedestrian
injuries but during uncongested time periods there isasmdl (at the 80% confidence leve)
positive association with increased pededtrian fatalities. This latter result could be an
indication of the risks associated with uncongested traffic.

The surprisingly positive association of roundabout dendty with dight injuries could
actualy be an indicator of the relative safety of roundabouts. Roundabout locations may be
endogenous, in that they were congtructed at junctions with high accident probabilities.
Thereisno way to know if the positive association with dight injuries may be due to the
inherent danger of the conditions a these junctions that have been mitigated by roundabout
congtruction. In other words, if these were norma junctions, then perhaps they would be
associated with serious injuries and fatdities.

Thelocation of public transport stations would tend to be associated with high levels
of pededtrian activity and relatively more congested traffic. Thiswould be particularly truein
the case of London Underground stations. We include a dummy variable for whether an ED
has an Underground gtation and find a sgnificant and positive association with dl casudties
during congested time periods (Table 4). This association aso occurs during uncongested

time periods and coefficient vaues are actualy dightly higher, especidly for fatdities (Table

15
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5). Therefore, this result would tend to support our conclusion that congestion may mitigate
the severity of accidents, dthough the differences are quite minor.

One possihility isthat these effects are due to pedestrian traffic ng the
Underground station. Our pedestrian models show similar associations during congested
time periods but no association with fatalities during uncongested time periods (Tables 6 and
7). Of course, pededtrian activity around the station would be very low when the gtations are
closad during nighttime and early morning hours.

The location of ralway stations shows an association with serious and dight injuries
for both congested and uncongested time periods and for both al injuries and just pedestrian
injuries.

The dendty of bus stops was dso included in our models. These were strongly
associated with dl classes of casudties, except pedestrian fatalities during uncongested time
periods. These effects may be due to the presence of buses causing vehicle accidents but the
results for the pedestrian models suggest that greater pedestrian activity around bus stops may
lead to the association with more pedestrian casudlties.

Demographic variables

We include various demographic variables in our modd to control for other effects
asociated with casudties. We find that higher residentid population density is strongly
associated with reductions in casudties. Thisis consistent with the findings of Noland &
Quddus (2003) in aspatial andlyses of dl of England. This effect gppears to be strongest (i.e.
highest negative coefficient value) for the association with fatalities (both in total and for
pededtrians). This effect may be due to the lower speed limitsin areas with higher population
densty.

We dso find an association with the percent of households with no cars. That is, the

fewer cars, the more casudtiesin al our models. Our car ownership data dates from 1991

16
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while our casudty datais from 1999-2001, which may introduce some uncertainty in this
result as car ownership in London continues to increase. However, we would expect those
areas with lower car ownership in 1991 to il have lower car ownership in 1999-2001. This
result possibly suggests some association of casuaties with more deprived aress, as
suggested by Graham & Glaigter (in press) for pedestrian casudties.

Finaly, we include a proxy varigble to control for access to medica care. Thisisthe
distance to a hospital for each ED. We would expect greater access to a hospita to decrease
the likelihood of afatdity but have less affect oninjuries. We find no conggtent pattern in
our results. One possibility isthat we do not have data on which hospitals have accident and
emergency services and thus we may not be capturing the effect of fast access to medica
care. In addition, ambulances may be digpatched from other locations, o actua time from
the occurrence of an accident until the patient is transferred to a hospital may not be
correlated with these distances.

Conclusons

Our andysis attempted to determine if the hypothesis that traffic congestion may
result in some safety benefits could be confirmed. For the data analyzed here, for the greater
London metropolitan area, we find little evidence to support this hypothesis. Spetia
differences between Inner and Outer London appear to be minor. Differences between our
models for congested time periods and uncongested time periods, in general, do not lead usto
any firm conclusons.

Some of our results suggest that there may be some smal negative safety effects
associated with reduced congestion. We found a small positive association between
roundabout density and pedestrian fatdities. Roundabouts tend to be difficult for pedestrians
to cross and during nighttime areas with higher roundabout density appear to be more

hazardous. Exposure aso appearsto be akey confounding factor, especidly for pedestrian
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activity. Wefind that public trangport stations tend to be associated with more casualties, but
less so during uncongested time periods when pedestrian activity would be much less (i.e,
when stations are closed).

The dendity of various road classes dso shows someintriguing results. Areas with
higher minor road density are associated with lower casudlties, while those with higher A
road dengity tend to be associated with more casudties. Thismay be due to higher traffic
levels on A roads but may aso be due to lower speeds on minor roads.

Our results for motorway dengty indicates some effects thet might confirm the
hypothesis of congestion being beneficid for safety. Results showed increased serious
injuries during uncongested time periods, but no increased association with fatdities. This
evidenceis clearly weak, but does suggest that while these effects may not be occurring on
urban roads, they may till be present on motorways or higher speed roads. Clearly, more
research is needed into these effects to fully understand the interactions between congestion

and road sfety.
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Table 1: Breakdown of crash severity by congested time periods and congested locations

Congested | Uncongested
Variables timeperiod | timeperiod | Inner London | Outer London
Total casualties 82.2% 17.8% 46.9% 53.1%
Fatalities 69.3% 30.7% 43.0% 57.0%
Seriousinjuries 79.0% 21.0% 47.7% 52.3%
Slight injuries 82.7% 17.3% 46.9% 53.1%
Pedestrian fatalities 80.5% 19.5% 46.9% 53.1%
Pedestrian seriousinjuries 83.6% 16.4% 55.2% 44.8%
Pedestrian dight injuries 88.9% 11.1% 56.7% 43.3%
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Table 2. Summary satisticsfor enumeration digtrict data, casualty data

Summary statistics (N=15366) Spatial unit: EDs

\Varidble name Mean | Std. Dev Min Max
Totd fadities 0.040 0.224 0 6
Tota serousinjuries 0.832 1.689 0 33
Totd dight injuries 5761 | 10.470 0 245
Congested fatalities 0.028 0.175 0 3
Congested serious injuries 0.658 1.378 0 29
Congested dight injuries 4.764 8.592 0 204
Uncongested fatdities 0.012 0.130 0 5
Uncongested serious injuries 0.174 0.557 0 11
Uncongested dight injuries 0.997 2.480 0 67
Pedegtrian fatdities 0.019979 0.148069 0 3
Pedestrian serious injuries 0.246128 0.70289 0 20
Pedestrian dight injuries 1.010933 2.439881 G 67
Pedestrian congested fatdities 0.016075 0.13183 0 3
Pedestrian congested serious injuries 0.205714 0.601264 d 16
Pededtrian congested dight injuries 0.898347 2.133629 0 60
Pedestrian uncongested fatdities 0.003905 0.063403 0 2
Pedestrian uncongested seriousinjuries 0.040414 0.227596 d 4
Pedestrian uncongested dight injuries 0.112586 0.505565 0 23
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Table 3: Summary datisticsfor enumeration district data, independent variables

[Summary statistics (N=15366) | Spatial unit: EDs

l\/aiable name Mean | Std. Dev Min Max
Proximate employment /1000 0.389 0.175 0.136 1.306
Employment per sq km of area /10000 0.439 1.261 0 31.000
Motorway length(km) per sq km of area 0.007 0.190 0 11.504
A road length (km) per sg km of area 0.798 2.066 0 60.013
B road length (km) per sg km of area 0.325 1.373 0 49.344
Minor road length (km) per sq km of area 3.416 4.397 0 97.754
Three-leg junctions per sq km of area/100 0.555 0.625 0 30.769
Four-leg junctions per sq km of area/100 0.095 0.236 0 6.667
Number of roundabouts per sq km of area 0.451 3.247 0 105.042
Underground stations 0.019 0.146 0 4.000
Railway dations 0.021 0.147 0 3.000
Bus stops per sq km of area 16.907 | 25.435 0 451.467
Resident population per sq km of area/1000 10.718 | 8.793 0 162.882
Distance to nearest hospita (m)/10000 0.233 0.121 0.003 0.754
Percent of households with no car 40.990 | 18.668 0 97.140
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Fatalities Serious|Injuries Slight Injuries

Cosf. t-stat Cosf. t-Stat Codf. t-stat
Proxy variablesfor congestion
Indicator variable for Inner London -0.0478 -0.30 0.0176 0.61 -0.0419 -1.37
Proximate employment /1000 0.7768 154 1.3681 2.63 1.0602 9.17
Employment per sq km of area /10000 -0.0298 -0.70 -0.0917 0.18 -0.0278 -2.31
Infrastructurevariables
Motorway length(km) per sq km of area 0.1403 1.00 0.3031 0.46 0.4494 5.97
A road length (km) per sq km of area 0.0958 4.59 0.0746 2.90 0.0960 16.19
B road length (km) per sq km of area 0.0343 0.78 0.0215 -0.87 0.0287 353
Minor road length (km) per sq km of area -0.0652 -2.76 -0.0427 -7.24 -0.0436 -13.13
Three-leg junctions per sq km of area 0.0346 0.37 0.1152 415 0.0908 4.69
Four-leg junctions per sg km of area -0.2774 -1.09 0.3051 054 0.3968 8.09
Number of roundabouts per sq km of area 0.0094 0.72 0.0080 0.69 0.0119 349
Underground stations (dummy variable) 0.4422 1.88 0.4436 245 0.5831 8.70
Railway stations (dummy variable) -0.3022 -1.05 0.3348 325 0.3291 5.24
Bus stops per sq km of area 0.0103 5.79 0.0113 16.21 0.0127 28.28
Demogr aphic variables
Resident popul ation per sq km of area/1000 -0.13%4 -10.56 -0.1121 -19.35 -0.0938 -50.24
Distance to nearest hospital (m)/10000 -0.3617 -0.81 -0.0719 -2.57 -0.1144 -1.35
Percent of households with no car 0.0142 4.25 0.0115 1441 0.0120 16.91
Constant -3.3839 -15.42 -0.7725 -23.35 1.0084 24.76
Overdispersion parameter 15442 3.05 0.9763 26.78 1.0378 62.33
Number of observations 15336 15336 15336
L og likelihood function at convergence -1805.21 -15224.6 -36900.83
Log likelihood ratio 0.078 0.093 0.075
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Fatalities Serious|Injuries Slight Injuries

Coef. t-stat Coef. t-stat Coef. t-stat
Proxy variablesfor congestion
Indicator variable for Inner London 0.3134 123 0.0874 117 -0.0113 -0.19
Proximate employment /1000 0.8486 092 1.6090 6.02 1.3043 6.01
Employment per sq km of area /10000 -0.1391 -1.46 -0.1319 -4.96 -0.0644 -2.82
Infrastructurevariables
M otorway length(km) per sq km of area 0.0584 0.18 02184 2.20 0.3355 2.66
A road length (km) per sq km of area 01111 2.66 0.0896 7.40 0.0953 857
B road length (km) per sq km of area 0.0566 0.71 0.0224 1.06 0.0218 1.37
Minor road length (km) per sq km of area -0.0041 -0.11 -0.0599 -5.70 -0.0338 -541
Three-leg junctions per sq km of area 0.0857 0.58 0.0632 142 -0.0260 -0.72
Four-leg junctions per sg km of area -0.1908 -0.38 0.2973 2.34 05164 552
Number of roundabouts per sq km of area -0.0171 -0.52 0.0082 115 0.0124 192
Underground stations (dummy variable) 0.6815 176 0.6025 4.85 0.6185 497
Railway stations (dummy variable) -0.1109 -0.26 0.3272 2.61 0.4350 3.73
Bus stops per sq km of area 0.0096 2.70 0.0094 9.55 0.0132 1584
Demogr aphic variables
Resident population per sq km of area/1000 -0.2211 -8.65 -0.1172 -20.23 -0.0944 -26.32
Distance to nearest hospital (m)/10000 0.9533 133 -0.1619 -0.76 0.0797 0.50
Percent of households with no car 0.0163 2.89 0.0117 6.93 0.0128 9.45
Constant -4.3965 -11.46 -2.0671 -18.97 -0.6189 -7.39
Overdispersion parameter 104010 4.03 1.9468 14.81 3.4481 40.81
Number of observations 15336 15336 15336
L og likelihood function at convergence -900.18 -6745.58 -17726.29
Log likelihood ratio 0.034 0.081 0.050
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Table 6: NB modelsfor pedestrian casualty congested time period (7:00am to 8:30pm, weekdays)

Pedestrian Serious

Pedestrian Fatalities Injuries Pedestrian Slight Injuries

Codf. t-stat Codf. t-stat Codf. t-stat
Proxy variablesfor congestion
Indicator variable for Inner London -0.0681 -0.34 0.0363 0.58 0.0059 015
Proximate employment /1000 0.4535 0.68 10764 5.10 0.7925 557
Employment per sg km of area /10000 -0.0389 -0.63 -0.03x4 -1.78 0.0373 2.72
I nfrastructurevariables
M otorway length(km) per sq km of area -61.3129 -0.16 0.0413 043 -0.0913 -1.10
A road length (km) per sq km of area 0.0697 257 0.0398 3.88 0.0471 6.78
B road length (km) per sq km of area 0.0556 118 -0.0023 -0.13 0.0122 115
Minor road length (km) per sgq km of area -0.0563 -1.95 -0.0415 -4.98 -0.0379 -7.93
Three-leg junctions per sq km of area 0.0464 0.39 0.1818 471 0.1937 7.65
Four-leg junctions per sq km of area -0.0023 -0.01 0.1621 164 0.3426 542
Number of roundabouts per sq km of area -0.0127 -057 0.0030 053 0.0018 045
Underground stations (dummy variable) 04812 162 0.1995 182 05722 748
Railway stations (dummy variable) -0.1536 -043 0.3093 2.87 0.3594 479
Bus stops per sq km of area 0.0122 5.80 0.0125 16.14 0.0147 271.26
Demogr aphic variables
Resident population per sg km of area/1000 -0.1201 -755 -0.0987 -21.47 -0.0824 -31.65
Distance to nearest hospital (m)/10000 -0.1543 -0.26 -0.4901 -2.55 -0.1290 -1.10
Percent of households with no car 0.0212 4.80 0.0199 13.90 0.0211 22.75
Constant -4.3345 -14.84 -2.2362 -24.04 -1.0923 -18.25
Overdispersion parameter 2.0039 211 0.9833 12.77 1.0085 31.88
Number of observations 15336 15336 15336
L og likelihood function at convergence -1177.33 -7539.43 -17491.20
Log likelihood ratio 0.070 0.098 0.105
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Pedestrian Serious

Pedestrian Fatalities Injuries Pedestrian Slight Injuries
Cosf. t-stat Cosf. t-stat Coef. t-stat
Proxy variablesfor congestion
Indicator variable for Inner London -0.0204 -0.05 -0.0342 -0.24 0.0717 0.81
Proximate employment /1000 1.9018 1.65 1.7839 4.44 1.215]] 418
Employment per sq km of area /10000 -0.0580 -04 -0.0390 -1.1Q 0.0122 0.44
Infrastructurevariables
M otorway length(km) per sq km of area -0.2740 -0.20 -0.1548 -0.43 -0.2009 -0.73
A road length (km) per sq km of area 0.0727 1.56 0.0493 2.67 0.0809 6.49
B road length (km) per sq km of area -0.1572 -0.84 0.0181] 0.56 0.0064 0.29
Minor road length (km) per sq km of area 0.0112 0.25 -0.0458 -2.70 -0.0168 -1.66
Three-leg junctions per sq km of area 0.0742 0.61 0.1393 2.30 0.1448 2.79
Four-leg junctions per sq km of area -0.0296 -0.06 0.2191, 1.23 0.1587 1.19
Number of roundabouts per sq km of area 0.0272 1.40 0.0031 0.29 -0.0038 -0.44
Underground stations (dummy variable€) 0.5785 1.07 0.7650 4.31] 0.8913 6.55
Railway stations (dummy variable) -0.5325 -0.67 0.7928 4.26 0.6812 478
Bus stops per sq km of area 0.0050 112 0.0108 7.80 0.0116 11.00
Demogr aphic variables
Resident population per sq km of area/1000 -0.1390 -4.55 -0.0823 -9.39 -0.0808 -14.05
Distance to nearest hospital (m)/10000 1.3686 1.15 -0.3575 -0.84 -0.2352 -0.83
Percent of households with no car 0.0282 3.33 0.0217 7.34 0.0238 11.58
Constant -6.8929 -11.78 -4.4285 -22.56 -3.5147 -26.32
Overdispersion parameter 1.5048 0.56 1.7459 495 2.1629 11.73
Number of observations 15336 15336 15336
L og likelihood function at convergence -362.97 -2308.81, -4784.40
Log likelihood ratio 0.074 0.106 0.105
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Table 8: Analysisof variance of difference between independent variablesfor Inner

London and Outer London

Analysis of variance (ANOVA)

Experimental unit: Enumeration Districts (EDS)

Treatments. Inner London (6586) and Outer L ondon (8780)

Factors F statistic| p-value | Average:

(prob>F) Inner Average:

London | Outer London

Area (sq km) 422.86 0.0000 0.0485 0.1429
Proximate employment /1000 14607.03| 0.0000 0.5300 0.2829
Employment per sq km of area/10000 83.03 0.0000 0.0329 0.0186
Motorway length(km) per sq km of area 16.74 0.0000 0.000 0.013
A road length (km) per sq km of area 158.02 0.0000 1.039 0.617
B road length (km) per sg km of area 190.81 0.0000 0.500 0.193
Minor road length (km) per sg km of area 816.39 0.0000 4.556 2.560
Three-leg junctions per sq km of area/100 893.25 0.0000 0.724 0.428
Four-leg junctions per sq km of area/100 507.26 0.0000 0.144 0.059
Number of roundabouts per sq km of area 7.78 0.0053 0.366 0.514
Underground stations 30.95 0.0000 0.0264 0.0132
Railway gations 1.89 0.1691 0.0191 0.0224
Bus stops per sq km of area 254.80 0.0000 20.658 14.093
Resident population per sq km of area/1000 3316.83 | 0.0000 14.9961 7.5094
Distance to nearest hospital (m)/10000 2648.96 | 0.0000 0.1793 0.2734
Percent of households with no car 6112.00 | 0.0000 52.4388 32.3648

Note: p-value>0.1 impliesthat the 'mean’ of factor (explanatory variables) at Inner London and Outer London
are not statistically different at the 90% confidence level.

27




DRAFT: Please do not cite without permission of the authors

i
-
i
-
B
-

-
-
0

e
EU
e
EU
e
-

e
s

,: T A
etk gii
e

Figure1l: Inner and Outer London asdefined in our data
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Figure 2: Spatial distribution of total traffic casualtiesfor years 1999 to 2001 in Greater
L ondon by Enumeration Digtrict (ED)

29



DRAFT: Please do not cite without permission of the authors

<

b~
39"
i A '}w—_’.-"
!

A

W\

&)
W
h

*, o,
L
g Iy
LY

\{,-*
B

—~ :}_, )
x}_;%{'
i I-L-}'\ e

t
-

Figure 3: MapBasic resultsfor a part of central London identifying four-legged

junctions
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Figure 4: Underground and national railway stations within Greater London
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