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Spatial Hazard Models: Limitations and Applications1 
 
Brigitte Waldorf, Dept. of Geog. and Regional Development, University of Arizona, Tucson, 
Arizona 85721, USA, Phone: +1-520-621-1652, Fax: +1-520-621-2889, Email: bwaldorf@planet.nl 
 
Abstract. The paper critically evaluates the literature on spatial hazard models. It augments 
this literature by outlining the limitations as well as the as yet unexplored potential of 
longitudinal modeling in a spatial setting.   It argues that the literature has not fully exploited 
the longitudinal framework for the description of spatial point patterns and spatial 
relationships.  In particular, the paper points out how longitudinal models can be used to 
describe the temporal dimension implicit in the process generating an observed point pattern. 
The paper also argues that –when estimating explanatory longitudinal models for spatial point 
patterns– the literature has ignored the conceptual problems that arise when transferring 
longitudinal models from the ‘medium time’ to the ‘medium space’.  Finally, it identifies the 
realm of applications where explanatory longitudinal models can and should be applied.   
 

1. Introduction 
Longitudinal models –also referred to as hazard models and duration models–  

have become an established method in regional science and related disciplines, 
applicable in various contexts dealing with the timing of events.  While first being 
applied by engineers concerned about the failure of products and in biomedical 
research concerned about the timing of deaths following the onset of a disease, 
longitudinal models have subsequently also been used in the social sciences to 
understand the temporal dimensions of such diverse phenomena as the length of 
unemployment spells (e.g., James 1989, Narendranathan and Stewart 1993), duration 
of residence (e.g., Odland 1997, Glavac and Waldorf 1998, Davies Withers 1997), 
and consumer store-choice dynamics (Popkowski Leszczyc and Timmermans 1996).  

At the core of these models is the non-negative random variable T, measuring 
the duration of a state or, equivalently, the length of time prior to a terminating event, 
and of prime interest is the conditional probability of an event happening at time t, 
given that the event has not happened up to that time.   An elaborate mathematical 
framework has been developed to model the variations in duration T by specifying 
conditional failure probabilities or hazard rates of failure. The framework includes 
non-parametric, semi-parametric and parametric formulations of the hazard model for 
both continuous and discrete time scales (Lawless 1982, Kiefer 1988, Yamaguchi 
1991), as well as the treatment of a variety of econometric issues, such as unobserved 
heterogeneities (Heckman and Singer 1985) and endogenous interactions in the form 
of spill-over effects and spatial externalities (Irwin and Bockstael 1998).  
 Just like duration, distance is also a non-negative random variable.  This 
property has more recently been used to apply the mathematical framework of 
longitudinal models to spatial patterns, using distance as the endogenous random 
variable of interest (e.g., Odland and Ellis 1992, Esparza and Krmenec 1996). 
Applying the mathematical framework of hazard models to distance led to the term 
‘spatial duration models’.     
 The analogy between duration and distance (spatial duration) is 
straightforward and justifiable from a mathematical point of view, and issues of 
estimation, specification, tests and diagnostics can easily be addressed using the 

                                                 
1 Paper presented at the 2002 Congress of the European Regional Science Association, 
Dortmund, Germany, August 2002. 
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extensive methodological toolbox provided for the analysis of temporal data. It is this 
analogy that has prompted social scientists to herald spatial duration models as a 
useful complement (Odland and Ellis 1992) to traditional methods for the analysis of 
spatial point patterns (e.g., Diggle 1983, Boots and Getis 1988).  However, the 
analogy between duration and distance raises questions from a conceptual perspective 
and leads to difficulties in the interpretation (or even misinterpretations) of spatial 
duration models that have not yet been addresses in this emerging field.  At the same 
time, however, regional scientists have not fully taken advantage of the richness of the 
longitudinal framework, confining their analyses to the description and comparison of 
spatial point patterns and spatial linkages rather than utilizing the framework for the 
understanding of spatial processes.   

This paper, therefore, critically evaluates the use and interpretation of duration 
models in a spatial context and explores avenues of further extension.  In particular, 
the paper augments the literature on spatial duration models by considering three 
specific topics. The first issue deals with the description and categorization of spatial 
point patterns and asks whether spatial duration models are capable of adding to such 
a task.  The second issue deals with the question how spatial duration models can be 
utilized to describe the space-time trajectory of spatial patterns and thus shift to a 
process-oriented perspective. The third topic identifies the conceptual problems 
arising in the interpretation of spatial duration models, especially the interpretation of 
conditional failure probabilities and hazard rates when the medium is space rather 
than time.  
 The paper is organized in four sections.  Following this introduction, the 
second section presents a brief overview of the mathematical foundations of 
longitudinal models.2  The third section reviews applications of longitudinal models in 
a spatial setting.  Moreover, it provides critical discussions on the three issues dealing 
with description/categorization, pattern-generating processes, and interpretation of 
hazards in the medium space. The paper concludes with a summary and future 
research directions. 
 
2. Mathematical Foundation of Longitudinal Models 

One of the classic examples of longitudinal models refers to the length of time 
a person is alive, often referred to as the survival time.  Implicit in this example are 
two states, ‘alive’ and ‘dead’, and of interest is the duration of the life span, i.e., when 
death occurs or, more generally, when the switch between the two states occurs.   

Formally, the elements of this example can be captured in the following way: 
let s1 and s2 be two states of any object or person, and let T measure the time that 
elapses before the switch from s1 to s2 occurs.  As shown in Figure 1, the at-risk 
period begins at time T=0, and the duration of being in state s1 or the timing of the 
terminating event is not constant but varies across objects/persons.  When connected 
with a random selection process of objects/persons, T becomes a non-negative 
random variable whose outcomes are not known a priori. 

The random variable T can be captured in a variety of well-known ways.  If 
time is measured on a continuous scale, then the probability density function of T is a 
non-negative function f(x) with:   

∫=∈→
b

a
dxxfbaTPthatsuchxfxf )()),(()(:  

 

                                                 
2 For a detailed (and very good) review, the reader is referred to Kiefer (1988). 
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Figure 1: Basic elements of a longitudinal design 
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The distribution function, F(x), specifies the probability that the survival time is less 
than a value x.  It is defined as: 

∫=<=
x

dttfxTPxF
0

)()()( . 

In the longitudinal framework, two other frequently used specifications 
describing the distribution of the random variable T are of importance, namely the 
survivor function, S(x), and the hazard rate, h(x).  The survivor function describes the 
probability that the terminating event will not occur prior to x.  Thus, it takes on the 
form: 

∫
∞

=≥=→
x

dttfxTPxSxS )()()(: . 

Note that: 
)(1)( xFxS −= . 

The hazard function, h(x), is defined as: 

),0[)|),[(lim)(:
0

∞∈
≥+∈

=→
→ δ

δ
δ

xTxxTPxhxh  

Note that: 

dt
tSdxSxfxh )(ln)(/)()( −==  

The hazard function describes the exit rate or instantaneous rate of an event 
happening during [x,x+δ] given that it has not happened up to (and including) time x. 
If T is measured on a discrete scale, then f(x) is a probability function and h(x) 
becomes the conditional probability: 

)|(
)(

)(
)(
)(

)(
)()( xTxTP

xTP
xTxTP

xTP
xTP

xS
xfxh ≥==

≥
≥∩=

=
≥
=

== . 

For 0)()( <>dxxhd , the hazard increases (decreases).  The increasing 
(decreasing) hazard is also referred to as positive (negative) duration dependence and 
implies that the conditional probability that the spell will be terminated, increases 
(decreases) with increasing duration of the spell.     

The focus on the conditional probabilities and hazard functions distinguishes 
longitudinal models from the conventional regression models that, in contrast, rely on 
estimating the (unconditional) probability density functions, f(x).  Although the 
probability density function and hazard function are mathematically equivalent, 
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estimating hazard functions has two major advantages: first, information on 
incomplete spells (the spell lasts for at least time t but the exact duration is not 
known) does not need to be discarded in the estimation; second, changes in exogenous 
variables that occur during the spell can be accounted for by focusing on the 
conditional probabilities of the hazard model but not by focusing on the unconditional 
probability density functions of a conventional regression model. 

The basic framework has been successfully applied in a variety of contexts 
and with a variety of estimation approaches for the hazard functions. Three types of 
estimation can be distinguished: non-parametric, parametric and semi-parametric 
approaches.  The non-parametric approach is based on actuarial (life table) methods 
where the hazard for each discrete time interval is obtained by relating the number of 
failures to the duration-dependent at-risk set (those who have not yet failed at duration 
t), and properly accounting for censored observations.  

The parametric formulations utilize a number of well-known (and well-
behaved) distributions (Waldorf and Esparza 1991), such as the exponential, Weibull, 
log-logistic, uniform, and Gamma distribution for which the parameters are estimated 
via maximum likelihood techniques.3  

The Weibull distribution with 1)()( −= βλλβ xxh  takes on a pivotal role as its 
parameters induce a flexible shape of the hazard function. For 1=β , the Weibull 
distribution reduces to the exponential distribution and its hazard is thus constant, i.e., 
the exit rates are the same no matter how long the spell has already lasted; for 

1)(<>β , the exit rates monotonically increase (decrease) with increasing duration of 
the spell.  

In the social sciences, the effects of exogenous variables X on the hazard are 
most often accommodated in a semi-parametric model such as the frequently used 
proportional hazard model.  The proportional hazard model assumes that the hazard 
function is separable into two factors: a baseline hazard, ho(t), and a function 

),( βXΦ that is independent of duration t.  Typically, the function Φ  is specified as 
an exponential function of a linear predictor such that  

∑
=

==
n

k
kk tXXthXth

1
)(exp)0|()|( β , 

where h(t | X=0) = ho(t) is the baseline hazard and Xk are exogenous variables with 
associated proportional and duration-independent effect βk on the conditional 
probability of terminating the spell.  The baseline hazard may remain unspecified and 
the model is then estimated via a partial log-likelihood function4 (Cox 1972, 1975). 
Alternatively, the baseline hazard may refer to a particular distribution of T (e.g., a 
Weibull distribution) and estimation of the parameters involves maximum likelihood 
procedures.  

                                                 
3 The log-likelihood function is ∑ ∑

= =

−−=
n

i
i

n

i
iii tSItfIL

1 1

),(ln)1(),(ln)(ln θθθ where θ  

is the parameter vector, Ii is an indicator variable with Ii=1 if the observed duration ti for 
individual i is not censored and Ii=0 otherwise.  
  
4 The partial log-likelihood function takes on the form: 

∑ ∑
= =

Φ−Φ=
n

i

n

ij
ji xxL

1
)],(ln),([ln)(ln βββ . 
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Three types of covariates can be incorporated: attributes that do not change 
over time (e.g., race); time-dependent5 variables that are measured for an individual 
but that may change during a spell (e.g., marital status); and time-varying covariates 
that constitute explicit functions of time, x(t). 

Two frequently employed extensions of the longitudinal framework are 
competing-risks models (e.g., Hachen 1988, Han and Hausman 1990; Narendranathan 
and Stewart 1993, Thomas 1996) and multi-episode models (e.g., Blossfeld and 
Hamerle 1989, Popkowski Leszczyc and Timmermans 1996).  The competing-risks 
model is appropriate if a spell can be terminated in two or more ways.  For example, 
death may be the result of any of the many causes of death.  The hazard rate of 
competing-risks models reduces to the sum of the single-risk hazards if the risks are 
assumed to be independent.6  Multi-episode models are appropriate if more than one 
spell is observed for each object/individual in the sample. Most empirical studies 
assume restrictive conditions such as independence across spells, and thus effectively 
reduce the multi-episode model to a single-spell model.   
 
3. Applications of the Longitudinal Framework in a Spatial Setting 

The above section shows that longitudinal modeling has become a rich 
methodological tool kit that focuses on the conditional probabilities / hazards for the 
non-negative random variable ‘duration’.  Over the last decade, regional scientists 
have adopted the longitudinal framework in the context of spatial analysis, describing 
spatial hazards rather than temporal hazards.  Common to all these studies is that they 
use distance7 between points –a one-dimensional projection of two-dimensional 
space– to serve as the mathematical equivalent of duration.  The emerging models are 
labeled spatial duration models or spatial hazard models.  Since distance, just like 
time, can be viewed as a non-negative random variable, the entire mathematical 
apparatus developed for longitudinal models can also be applied to spatial duration 
models (Figure 2).  It should be noted that this differs from the transfer typically 
employed in spatial econometrics. That is, whereas spatial econometrics is concerned 
about dealing with spatial interdependencies that arise when using spatial rather than 
temporal units of observation, the focus here is on using a spatial rather than temporal 
endogenous variable.   
 Although all studies using hazard models to analyze spatial patterns and 
processes have exclusively relied on some form of distance as the endogenous 
variable, two conceptually distinct types of application have emerged in the literature.  
The first type refers to the analysis of a spatial point patterns in a bounded area, the  
 
Figure 2: Transfer of Hazard Models from a Temporal to a Spatial Setting 
                                                 
5 The terminology employed in the literature is inconsistent.  For example Greene (1998, 
2000) uses the terms ‘time-dependent covariate’ and ‘time-varying covariate’ opposite to the 
definitions provided in this paper.  
 
6 If it cannot be assumed that the competing risks are independent risks, the estimation of the 
joint distribution is only possible under additional restrictions (Heckman and Honoré 1989). 
 
7 The longitudinal framework that has been used to model distance, can also be employed for 
other non-negative random variables describing space, most notably area.  In many applied 
research questions, such as those dealing with economic trade, residential search, or ecology 
(e.g., spread of a wild fire), the focus on area promises to provide an insightful avenue. 
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Figure 2: Transfer of Hazard Models from a Temporal to a Spatial Setting 
 
 

 Duration T is a      Duration Models based on  
 non-negative  
 Random Variable             conditional probabilities of exit 
 

 
 
Mathematical  
equivalence of  
duration and distance: 

 
  
 
 Distance D is a       
 non-negative       Spatial Duration Models 
 Random Variable. 
 
 
 
 
 
second type refers to the analysis of spatial processes that manifest themselves in the 
form of pairs of points anywhere in space.   

The study by Odland and Ellis (1992) is an example of applying the 
longitudinal framework to the analysis of spatial point patterns. They use a 
proportional hazard model with spatially varying covariates to analyze directional 
variations in the spacing of settlement locations in Nebraska.  The variable of interest 
in their study is the nearest neighbor distance between settlements, and it is found that 
the distances increase as one moves from East to West.  The Odland and Ellis study is 
of particular importance since it can be credited as the first attempt to utilize hazard 
models to study spatial patterns.  

Nearest neighbor distances are also used in the Harvestore diffusion analysis 
by Pellegrini and Reader (1996). In addition to a proportional hazard model, they also 
estimate fully parameterized models where the baseline hazard is specified using 
various distributions, with the Weibull distribution providing the best fit. Their study 
contributes to the literature by demonstrating how censoring can be used to deal with 
edge effects.8 Pellegrini and Grant (1999) use both nearest neighbor distances and 
extreme-value distances in ideological space to estimate explanatory models of policy 
coalitions in U.S. Congress.   

A purely descriptive study of a point pattern is provided by Reader (1998).  
His study tackles the random labeling hypothesis and uses inter-event distances 
(between-point distances) rather than nearest neighbor distances.  He argues that the 
emerging non-parametric survival functions provide a useful complement to K-
function analyses of comparing spatial point patterns. It should be noted that, by using 
inter-event distances rather than the subset of first-order nearest neighbor distances, 

                                                 
8 For a point that is closer to the edge of the study area than to any other point of the point 
pattern, the nearest neighbor distance is recorded as censored and as being at least as long as 
the distance to the edge. 
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his models are equivalent to multi-episode models and thus implicitly assume 
independence of distances in a spatial system with complex dependencies.  

The second type of applications refers to pairs of points that are intricately 
linked, e.g., by trade or by relocation.  There are two examples that fit this type, and 
both have the sole purpose of description, rather than explanation. First, Rogerson, 
Weng and Lin (1993) analyze the spatial separation between locations of parents and 
locations of their adult children by fitting Weibull distributions to the observed 
distances. Second, Esparza and Krmenec (1994, 1996) analyze the spatial extent of 
producer service markets by fitting Weibull distributions to the observed distances 
between producer services providers and their clients. They find that, for 
independently owned firms, the spatial hazards of distances to their clients show a 
negative duration dependence, whereas for non-independently owned firms (e.g., 
branch firms) the geography of interaction is less clustered and the hazards of spatial 
interaction are nearly constant (exponential distribution). As a result, the survivor 
function of firm-client distances for independently owned firms is steeper than that for 
non-independently firms.  It should be noted that, since a firm may have more than 
one client, the data structure gives rise to a multi-episode model.9  

In the following sections, the application of the longitudinal framework to 
analyze spatial relationships will be critically discussed.  Specifically, three issues 
will be addressed: the description and categorization of spatial point patterns; the need 
to focus on point patterns as the outcome of a point-generating process; and finally the 
interpretation of conditional probabilities and hazards in the medium space.  

 
3.1 Description and Categorization of Spatial Point Patterns 

There is no doubt that, for descriptive purposes, distance data extracted from a 
spatial point pattern can be adequately and fruitfully analyzed in a longitudinal 
framework. In particular, the framework offers a convenient means of estimating the 
parameters for a variety of distributions for non-negative data (see section 2) and –
through its ability to deal with censored data– it can efficiently handle edge effects of 
point patterns in a bounded area.  

At the core of spatial duration models for the description of spatial point 
patterns is a set of points (e.g., settlements) with each point constituting an 
observation and the variable of interest is the distance to another point (e.g., nearest 
neighbor) in the point pattern.10 To illustrate the distance dependent behavior of 
hazards when analyzing nearest neighbor distance, Figure 3 shows a simple example 
of 15 points in a 3 3.5 area, arranged in a uniform, random and clustered fashion, 
respectively. The empirical survivor and hazard functions of the nearest neighbor 
distances are shown in Figure 4.  As expected, the survivor function steeply declines 
for the clustered pattern, reaching the median at a distance of dMedian = 0.4 already.  In 
contrast, the survivor function of the uniform distribution is flatter and the median is 

                                                 
9  Since the sample is based on randomly selected firms rather than randomly selected trade 
linkages, the implicit assumption of independence of multiple trade linkages measured for pne 
firm is of course quite strong.  However, it should be noted that this dependency problem is 
not confined to spatial applications of hazard models.  It is, for example, frequently found in 
(temporal) hazard models of residential mobility where more than one residential spell for a 
household is included in the model. 
 
10 Using inter-event distances rather than nearest neighbor distances, implies that each point 
represents n-1 observations, yielding a multi-episode model. 
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Figure 3: Hypothetical Point Patterns 
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Figure 4: Non-parametric Estimated Survival and Hazard Functions for Nearest Neighbor 
Distances 
 

 
reached at a distance of dMedian = 0.6. The survivor function for the random pattern 
takes on a middle position.  Comparing the three hazard functions shows that the 
hazards are smallest for the uniform pattern and largest for the clustered pattern.  
Moreover, although the hazards show an erratic behavior,11 the overall trends are 
positive for all three patterns.  

This positive duration dependence suggests that fitting a Weibull distribution 
to the observed nearest neighbor distances will yield shape parameters β > 1 for all 
three patterns, and this is indeed the case (Table 1). Figure 5 shows the estimated 
Weibull survivor and hazard functions for the three patterns.  The steepness of the 
estimated Weibull survivor function is most pronounced for the clustered pattern, and 
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11 Note that –since the risk set decreases with increasing distance– the number of observations 
used to estimate the hazard also decreases with increasing distances.  
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estimated (Weibull) hazards of the clustered pattern exceed the estimated (Weibull) 
hazards of the uniform distribution.  

 
Table 1: Estimates of Fitted Weibull Distributions (standard errors in parentheses) 
 Nearest Neighbor Distances Squared Nearest Neighbor Distances 
 Uniform Random Clustered Uniform Random Clustered 

 
Scale: λ 

 
 

 
1.614 
(.174) 

 
1.917 
(.252) 

 
3.973 
(.571) 

 
2.604 
(.563) 

 
3.676 
(.966) 

 
15.788 
(4.536) 

Shape:  β 
 
 

2.660 
(.584) 

2.070 
(.781) 

2.744 
(.820) 

1.330 
(.182) 

1.035 
(.390) 

1.372 
(.410) 

 
 
 
Figure 5: Estimated Weibull Survivor and Hazard Functions for Nearest Neighbor Distances 
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hazard function is not suitable for a unique categorization of spatial point patterns.12 It 
is, however, possible to categorize point patterns using the hazard function for the 
squared nearest neighbor distances. That is, in a random pattern, the squared nearest 
neighbor distances u = d2, are exponentially distributed (Cliff and Ord 1981) and thus 
have a constant hazard:13 
 
Figure 6: Estimated Weibull Survivor and Hazard Functions for Squared Nearest Neighbor 
Distances 

                                                 
12 In contradiction to Pellegrini and Reader (1996, p. 237) and Pellegrini and Grant (1999, p. 
61), positive duration dependence cannot be interpreted as an indication of clustering and 
negative duration dependence does not imply decreased clustering. 
 
13 In the past, nearest neighbor distances rather than squared nearest neighbor distances have 
erroneously been associated with a constant hazard (Odland and Ellis 1992, p. 101; Pellegrini 
and Reader 1996, p. 224).  
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)exp()( uuS λ−= and λ=)(uh . 
A simple test for randomness thus involves fitting a Weibull distribution with 

hazard 1)()( −= βλλβ xxh  to the squared nearest neighbor distances and testing for β = 
1. As shown in Table 1, the shape parameter β of the random pattern is not 
significantly different from 1, and the estimated hazard function for squared nearest 
neighbor distances in Figure 6 shows a (nearly) constant value of λ =3.676.   

Unfortunately, such a simple test to distinguish between a clustered and a 
uniform pattern does not exist. However, when fitting a Weibull distribution to 
observed nearest neighbor distances, a negative duration dependence (i.e., a shape 
parameter 0 < β < 1) gives rise to exponentially declining probability density function 
for the nearest neighbor distances and is thus a sufficient albeit not necessary 
condition for clustering.  Furthermore, the fitted distributions can be used to assess the 
relative degree of clustering by comparing the estimated medians and survivor 
functions.  Survivor functions with a small median nearest neighbor distance are 
indicative of a higher degree of clustering than survivor functions with a larger 
median.  
 
3.2 Process-oriented Conceptualization of Spatial Point Patterns 

The Odland and Ellis (1992) study suggests an East-West trend with a 
tendency of regular spacing of settlements. Given that the settlement process in the 
midwestern and prairie states of the U.S. by and large advanced from East to West, 
this result can also be interpreted as a time trend, with younger settlements being 
further apart than older settlements.  As such, the results allude to the necessity of 
analyzing spatial point patterns as the outcomes of processes.  

Spatial point patterns do not emerge instantaneously but evolve over time. 
This switch in perspective from patterns to processes is of particular importance in the 
analysis of diffusions or the spread of an epidemic.  For example, high hazards at 
small distances, given small values of time, will be indicative of a highly contagious 
disease. The importance of time in the longitudinal analysis of a spatial point pattern 
was also mentioned, albeit not accounted for, in the diffusion study by Pellegrini and 
Reader (1996).  

The advantage of accommodating the time dimension in a spatial duration 
model is that it does not require us to dissect and separately analyze the point pattern 
at different points in time.  Formally, let j denote a point (e.g., settlement, location of 
an infected person) in space that is generated at time t.  The spacing of j can only be 
evaluated relative to the already existing points at time t, and the random variable of 
interest becomes the nearest neighbor distance at time t, djt.  Note that djt may differ 
from the typically used djt*, where t* denotes present time. Time T becomes an 
exogenous variable measured for each point and it can be entered in the linear 
predictor of both the partially and fully parameterized duration models: 

)exp()()|( βzz dhdh o=  
where d measures the nearest neighbor distance at the time of emergence, and the 
vector of exogenous variables z includes the time of a point’s emergence.14    

                                                 
14 Note that this model specifies distance D as the endogenous variables and time T as 

the exogenous variable.  It is, of course, possible to reverse the assignment and specify a 
model in which time (e.g., in the form of duration since the beginning of the process) is the 
endogenous variable of interest and the spatial dimension becomes the exogenous variable.  
When conceptualizing both the spatial and temporal dimensions as endogenous, a proper 
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Figure 7: Trajectory towards Random Pattern and Nearest Neighbor Distances dit and dit* 
 

Figure 7 shows one possible trajectory towards the random pattern represented 
in Figure 3, the resulting time-dependent nearest neighbor distance djt for a point j at 
the time of its emergence, t. For comparative purposes, Figure 7 also shows the 
nearest neighbor distances at the end of the point generating process, djt*.  Note that djt 
≤ djt*.  Adding the temporal component necessitates not only a specification of the 
trajectory, but also of the speed of the process.  The estimated hazards shown in 
Figure 8 assume that the process occurs at a constant speed, with one point added in 
                                                                                                                                            
model needs to specify the joint probabilities )),(),(( dcTbaDP ∈∩∈ and the associated 
joint hazard function h(d,t). However, joint hazard functions can only be handled under rather 
restrictive assumptions (Heckman and Honoré 1989). 
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each time period, t = 0 …14.  The baseline hazard increases with increasing distance.  
But, this monotonic behavior is disturbed by the time covariate: the positive15 
parameter suggests that, for points generated late in the process, the estimated hazard 
exceeds the baseline hazard.  For points generated late in the process, the estimated 
hazard is smaller than the baseline hazard.   
 
Figure 8: Estimated Hazard Function of dit 
 

Table 2: Parameter Estimates (Standard Errors in Parentheses) of Distance Hazards for a Point 
Generation Trajectory 
 

 Constant 
Speed 

Acceleration Slowing-
down 

Constant 
βo 

.299 
(.219) 

.189 
(.303) 

.363 
(.184) 

Time 
Parameter 

β1 

.015 
(.026) 

.068 
(.076) 

.004 
(.015) 

 
Scale: λ 

 
 

 
1.514 
(.189) 

 
1.523 
(.186) 

 
1.511 
(.194) 

Shape:  β 
 
 

2.402 
(.993) 

2.457 
(.987) 

2.365 
(.959) 

 
Table 2 provides the estimates for three scenarios that differ with respect to 

the speed of the process but share the same trajectory as shown in Figure 7.  Keeping 
the trajectory of point generation constant but altering the speed of the process will 
lead to changes in the magnitudes of the deviations from the baseline hazard, but not 
affect the baseline hazard or affect the overall shape of the estimated hazard function. 
Compared to the scenario of constant speed, acceleration increases the time parameter 
                                                 
15 The parameter estimates reported in this paper refer to h(d) = ho(d) exp(βo + β1d) rather 
than the more awkward specification h(d) = ho(d) exp(-βo - β1d) used by Greene (1998).  
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and thus increases the deviations from the baseline hazard, whereas a slowing-down 
of the process leads to a smaller effect of time on the distance hazard and thus 
decreases the deviations from the baseline hazard.  It should be noted that changing 
the trajectory rather than the speed of the process possibly leads to a new set of 
observed nearest neighbor distance, dit, and thus will affect the baseline hazard. 
 
3.3 Movement in ‘Medium Time’ versus ‘Medium Space’ 

The longitudinal framework focuses on modeling the conditional probability 
or hazard rate of an event happing in [t, t+δ], given that it has not yet happened at 
time t. Since every observation inevitably moves through the medium time, these 
conditional probabilities and hazards have a “natural” interpretation. For example, a 
hazard model simply shifts the focus from the probability of a person finding 
employment at time t, to the conditional probability of finding employment at time [t, 
t+δ] given that the job search was unsuccessful up to time t.   

When hazard models are applied to distances between points rather than the 
duration of a spell, transferring the concept of ‘passing through time’ to a concept of 
‘moving through space’ is not straightforward.  Consequently, going beyond the 
description of a distance distribution and assigning explanatory value to the estimated 
models is rather problematic since the conceptual meaning of conditional probabilities 
and hazards becomes questionable. 
 
Figure 9: Collapsing two-dimensional space into one-dimensional distance space 
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Two issues are particularly troublesome. The first deals with the identifiability 

of the ‘ending point’. Space is measured via distance.  Distance, however, is a 
projection of two-dimensional space to one-dimensional space and thus distance 
hazards actually refer to an infinite (and uncountable) set of points arranged in a circle 
around the observation, rather than just a specific point in space (Figure 9).  

In order to deal effectively with this ambiguity of the ‘medium space’, one 
needs to uniquely identify the ending point on the circle with radius d (e.g., via the 
angle from a fixed reference point).  Odland and Ellis (1992) take this approach even 
further.  Very elegantly they utilize one of the advantages of spatial duration models, 
i.e., the models’ ability to incorporate spatially varying covariates. Specifically, they 
use all spatial coordinates along the shortest line separating two nearest neighbor 
settlements and incorporate the coordinates as spatially varying covariates (i.e., as a 
function of distance) in a proportional hazard model. The disadvantage of this more 
sophisticated approach is, of course, that the parameters of spatially varying 
covariates are not easily interpreted beyond sign and significance.  
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Second, the transfer from the ‘medium time’ to the ‘medium space’ is also 
problematic because observations (points, settlements, firms, households) do not 
necessarily ‘move’ or ‘search’ through space. Even if one can conceptualize distances 
as a realization of some movement or search in space, the movements may be non-
continuous and multi-directional.  When analyzing spatial linkages (e.g., trade 
distances, moving distances) between a randomly selected point (e.g., firm, 
household) and a related point (client, new residence) the transfer from ‘passing 
through time’ to ‘moving in space’ requires assumptions about the nature of the 
underlying selection of a point (new client, new residence).   

For example, suppose that a spatial hazard model is used to analyze distances 
between households’ old and new residences.  Assigning a meaningful interpretation 
to the conditional probability of the new residence being located at [9km, 9+δkm] 
given that it is at least 9 km away, presupposes that the residential search proceeds 
from the old residence in concentric circles of monotonically increasing radii. Such an 
interpretation is, however, not consistent with models of residential search behavior 
(e.g., Huff 1987).16  

The concept of conditional probabilities or hazard rates for distances within 
spatial point patterns is even more problematic, if not impossible.  A point pattern can 
be interpreted as one outcome of a point-generating process.  Once the pattern is 
generated, nearest neighbor distances are “fixed” within the spatial structure.  That is, 
once a point (be it part of the point pattern or randomly selected from anywhere in the 
study area17) is selected, the nearest neighbor distance is “predetermined” within the 
(exogenously given) spatial pattern, and the conditional probability of finding the 
nearest neighbor at distance d is either one or zero.  In a temporal setting, this is of 
course not the case.  For example, a randomly selected individual is not confronted 
with an exogenously given exit time but the exit can happen at any time. Thus, 
conceptually it makes sense to estimate the conditional probabilities in a temporal 
setting, whereas assigning a meaningful interpretation to hazards rates for nearest 
neighbor distances in a spatial point pattern is pointless.  

Indicative for these conceptual differences is the kind of data that are being 
used for temporal versus spatial hazard models.  For the temporal setting, the data are 
(ideally) panel data where randomly selected individuals are observed over time and 
their status (e.g., unemployed, not unemployed) is recorded through time.  A spatial 
equivalent of this sort of data collection does not exist for the types of applications 
presented in the literature.  There are, however, situations of spatial processes where 
data collection in a ‘spatial panel’ is appropriate and for which, consequently, the 
concept of a distance hazard has a natural interpretation.  

These situations refer to processes characterized by a continuous expansion 
from a fixed source (the spatial analogue of the beginning of the “at-risk-period”; see 
Figure 1). At distance D=0, a state s1 is observed, and at some distance away, a switch 
occurs to a state s2 (the spatial analogue of the terminating event). The distance D=d 
at which the switch occurs (i.e., the terminating event) becomes the endogenous 
variable of interest. 

                                                 
16 Residential search is an example where a hazard model can be meaningfully applied to the 
non-negative variable area, rather than distances.  
  
17 This distinction refers to the difference between nearest neighbor distance and point-
individual distance (Cliff and Ord 1981). 
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For example, for the spread of a forest fire it is meaningful to determine the 
probability that, along a linear transsect, the fire will cease at distance [d, d+ δ] from 
its origin, given that it already approached to distance d.  Urbanization and urban 
sprawl is another example of a continuous spread in space, and the data collection can 
indeed be thought of as a ‘spatial panel’ data collection.  That is, for a randomly 
selected city and a randomly selected transsect originating at the city center, two 
states are recorded along the transsect: s1 = urban land use, and s2 = non-urban land 
use.  Analyzing the distance at which the switch from s1 to s2 occurs is not only 
mathematically but also conceptually equivalent to analyzing the time at which a 
switch from one state to another occurs. Thus, the conditional probability or hazard of 
urban land use ending at distance  [d, d+ δ] given that it persists at least until distance 
d has a meaningful interpretation.  Since the concept of conditional probabilities and 
hazards has a meaningful interpretation in such situations, it will also be meaningful 
to estimate proportional hazard models that focus on factors that increase or decrease 
a baseline hazard.  

The continuous spatial expansion –characteristic of the fire and urban sprawl 
examples–  is not compatible with point patterns. The conceptual differences between 
the ‘medium time’ and the ‘medium space’ thus confine the use of spatial longitudinal 
models for point patterns to description, rather extend towards than explanation.  

 
4. Summary and Conclusions 

Over the last decade, the transfer of longitudinal models to spatial settings has 
entered the literature in the form of spatial hazard models.  At the core of this transfer 
is a switch from ‘duration’ to ‘distance’ as the endogenous variable.  The 
mathematical equivalence of duration and distance –both are non-negative continuous 
variables– has been used as justification to apply the rich methodological tool kit of 
longitudinal models to the analysis of distances in space.   

This paper critically evaluates the literature on spatial hazard models and 
augments this literature by outlining the limitations as well as the as yet unexplored 
potential of longitudinal modeling in a spatial setting.  Four main conclusions can be 
drawn.  First, all existing applications of spatial duration models refer to distances 
measured between points, either in a point pattern (e.g., settlement pattern) or between 
points representing a spatial linkage (e.g., locations of firm and client).  Other non-
negative continuous variables that can describe space, such as area, have not been 
analyzed in a spatial hazard model.   

Second, spatial hazard models can be nicely utilized to compare and to fit 
theoretical distributions to empirically observed distances.  In the case of distances in 
a point pattern, spatial duration models also offer the advantage of dealing with edge 
effects via censoring.  In the case of nearest neighbor distances, spatial duration 
models can be used to distinguish random from non-random (clustered or uniform) 
patterns by testing for a constant hazard of the squared nearest neighbor distances.  

Third, since spatial hazard models allow us to control for exogenous variables, 
they can in particular account for the temporal component in the process that 
generates a spatial point pattern.  The literature has not yet taken advantage of this 
opportunity and instead described distance hazards and survivor rates for completed 
point patterns only.  

Fourth, the literature has also gone beyond describing distances in a spatial 
hazard framework and estimated explanatory models in the form of proportional 
hazard models for distances between points in a point pattern.  Doing so presupposes 
that there is a conceptual meaning of spatial conditional probabilities and spatial 
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hazards.  This paper argues that a meaningful interpretation of hazards is problematic 
if the distances represent spatial linkages, and impossible if the distances refer to 
points in a point pattern.  Instead, it is argued that a spatial hazard can only be 
meaningfully interpreted for spatial phenomena that spread continuously through 
space, i.e., phenomena for which a switch from one state to another can be observed 
as one proceeds away from the spatial origin. It is hoped that future research will 
provide empirical examples in this unexplored realm and thus make spatial hazard 
models part of the methodological tool kit of spatial scientists. 
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