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___________________________________________________________________________ 
Abstract 
 
This paper proposes a multivariate statistical approach based on covariance structure analysis 

for assessment of the regional development level with an application to development ranking 

of 545 Croatian municipalities. Municipality-level data ware collected on economic, 

structural, and demographic dimensions and preliminary factor and principal component 

analysis were computed to analyse empirical groupings of the variables. Next, confirmatory 

factor analytic models were estimated with the maximum likelihood technique and 

subsequently their implied structure was formally tested. Testing was extended to a joint 

model including all three dimensions (economic, structural and demographic) and their 

covariance structure was modelled with a recursive structural equation model. Finally, scores 

were estimated for latent variables thereby allowing (i) estimation of the latent development 

level of the territorial units, (ii) ranking of all units on an interval scale in respect to their 

latent development level, and (iii) selection of a given percentage of units for inclusion into 

special state-care subsidy programme.  

 
JEL Classification: R1, C3, C1 
 
Keywords: Regional development; Covariance structure analysis; Multivariate methods; 

Factor analysis; Structural equation modelling; Latent variables 

___________________________________________________________________________ 
 
 
1. Introduction 
 
   Regional development assessment is a methodologically challenging and policy relevant 

issue. Aside from purely academic investigation into geo-economic and social patterns and 

groupings of regional units, there is an important policy requirement for estimating the level 
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of regional development for the purpose of development classification and funding 

considerations. The Structural Funds of the European Union provide one such example where 

the level of economic development (approximated by the GDP per capita), in principle, 

determines the inclusion or exclusion of particular European regions into the regional 

financial schemes allocations. 

   In this paper we present a multivariate statistical framework for assessment of the regional 

development level developed for the purpose of ranking 545 Croatian municipalities. The 

statistical model was needed to identify municipalities lacking in development. A given 

percentage of the most underdeveloped municipalities was planned to be subsequently 

included into a regional funding scheme financed from the national budget. This paper 

presents the results from the second phase of the project “Criteria for the Development Level 

Assessment of the Areas Lagging in Development” that was carried out by the IMO for the 

Croatian Ministry of Public Works (Maleković, 2001). The purpose of the project was to 

provide an analytical base for evaluation of the development level of the Croatian territorial 

units (municipalities) with an aim of widening the span of territorial units which are currrently 

receiving state support under the “Law on Areas of Specific Governmental Concern”. The 

results of the analysis were intended to serve as the basis for changing the approach to 

defining and supporting the development of areas of special state concern. Unlike the former 

approach, whose sole criterion has been whether an area was war-affected (i.e., under Serbian 

occupation in the 1991-1995 war), the new approach defines economic, structural, and 

demographic criteria (dimensions), as well as a combination of indicators and choice 

procedures with an aim of obtaining a better quality development evaluation. 

   There are some important aspects that have substantially influenced our approach. First, the 

unit of analysis is municipality and that fact has resulted in some major problems, mostly 

regarding the availability and a quality of the data. Second is the policy relevance and a 

political sensitivity of the whole project. Namely, in the situation when direct result of the 

project is a list of municipalities eligible to enter “Areas of Special State Concern” which 

results in their privileged status concerning state subsidies, tax deductions, etc., the proposed 

solution needed to be maximally transparent and unambiguous, and a space left for political 

manipulations has to be minimised.  

There are several possible approaches to assess the development level of territorial units, 

most often some form of classification and data reduction techniques is employed. Soares, et 

al. (2002) suggested a combination of factor and cluster analysis (see Everitt, 1993) and 

provided an example of a regional classification for Portugal. Lipshitz and Raveh (1998; 
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1994) proposed the use of a co-plot technique for the study of regional disparities. 

Multidimensional scaling techniques (Borg and Groenen, 1997), metric scaling (Weller and 

Romney, 1990) and correspondence analysis (Greenacre, 1993; Greenacre and Blasius, 1994; 

Blasius and Greenacre, 1998) can be also used to investigate clustering and grouping of 

territorial units. Most of these methods minimise some metric or not metric criteria in respect 

to given variables thereby allowing proximity groupings of units and/or variables. However, it 

is often the case that the applied model selection criteria are to a large degree arbitrary and 

subject to “fine-tuning” and data mining. At best such grouping techniques offer broad 

geographical picture of similarity clusters, i.e., territorial units that are more similar among 

themselves than with the rest of the units. Moreover, clustering and grouping techniques do 

not offer justification for exclusion decision, namely, if an “underdeveloped” cluster is 

defined so to include more units that can be funded from the subsidiary funds, there are no 

grounds for exclusion of some members of that cluster as they do not posses a unique 

“development score”. 

In cases such as ours clear universal criteria and transparent models are needed. 

Furthermore, it is often necessary to estimate the underlying (i.e., latent) development level 

for each territorial unit, not merely classify them into separate clusters and then substantively 

interpret these clusters as more or less developed.  

   To address these problems we propose an inferential multivariate statistical methodology 

framework within the general class of covariance structure analysis to estimate the regional 

development level of territorial units. The formal analysis is preceded by extensive 

descriptive analysis and data screening including principal component and factor analysis 

methods. We then develop a structural equation model with latent variables and subsequently 

compute scores of the underlying latent variables thereby achieving three important goals of 

the project assignment: (i) estimation of the latent development level of the territorial units, 

(ii) ranking of all units on an interval scale in respect to their latent development level, and 

(iii) enable selection of a given percentage of units for inclusion into special state-care 

subsidy programme. The paper is organised as follows. In the second part we give brief 

description of the variables and present the results of preliminary descriptive analysis. The 

third part explains econometric methodology and model building strategy and subsequently 

presents the estimation results. In the fourth part we compute the underlying development 

scores and rank the territorial units. 
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2. Regional development data 
 
   The data for the analysis came from several Croatian sources such as the Ministry of 

finance, the Health Insurance Institute, and the Statistical Bureau. The collected data is on the 

municipality level and presents lowest aggregation level available in Croatia. We were able to 

collect data on 11 indicators, roughly grouped into economic, structural and demographic 

dimensions. These broad categories are defined on substantive grounds and are later analysed 

by the means of exploratory and confirmatory factor analysis to check their empirical 

similarity patterns. The economic indicators generally included income-type variables, 

namely income per capita, share of population earning income and municipality (direct) 

income. The structural indicators were essentially employment measures such as employment 

percentage (we used the 2000 data), unemployment percentage (using 2001 data) and social 

aid per capita. Data from different years were used due to availability of more reliable 

employment indicators for the year 2000. Demographic indicators included the age index 

(defined as the number of people older then 65 divided by the number of people younger then 

20), density (defined as the number of inhabitants per square kilometre), vitality (number of 

live births per 100 births), distance (time in minutes needed to reach the County centre by car) 

and population trend (total municipality population in 2001 over total population in 1991). 

The codes and brief description are shown in Table 1. We also include the LISREL notation 

(see Jöreskog, et al., 2000) that will be used in later analysis in the third column. 

Table 1 
Codes and descriptions of the variables 

Code Description LISREL notation 
INC_PC Income per capita (in thousands HRK) y1 

POP_INC Population share making income (%) y2 
MUN_INC Municipality income per capita (in thousands HRK) y3 

EMP_00 Employment in 2000 (%) y4 
UNEMP_01 Unemployment in 2001 (%) y5 

SOC_AID Social aid per capita (in thousands HRK) y6 
AGEINDEX Age index x1 

DENSITY Density (inhabitants per km2) x2 
VITALITY Vitality index x3 

DISTANCE Distance x4 
POPTREND Population trend x5 

 
   The initial data screening (Table 2 & Fig. 1) showed high degree of skewness and excess 

kurtosis in all variables (the density plots and kernel estimates were created with PcGive 9.1, 

Hendry and Doornik, 1999). An informal look at the standard deviations (column two of table 

2) indicates relatively comparable variances of most variables with noted exception of the 



 5 

DENSITY variable. DENSITY has higher variance because it is expressed in the original 

metric without rescaling while most other variables were expressed either in thousands or in 

percentages. We left the population density variable in people per square kilometre units 

because we could find no meaningful rescaling that could be justified on substantive grounds. 

Consequently, we note that DENSITY has greater relative variance then any other variable in 

the analysis. The issue of removing differences in variances across variables through 

standardisation is a rather debated one. Some authors base their entire analysis on 

standardised variables (e.g., Soares et al., 2002) which amounts to analysing correlation 

matrices instead of covariance matrices in all subsequent econometric models (see Gerbing 

and Anderson, 1984).  

Table 2 
Univariate summary statistics for continuous variables 

Variable  Mean  St. Dev.  Skewness Kurtosis Minimum Maximum 
INC_PC 10.214  3.298  0.260 -0.482 2.744 21.367 

POP_INC 47.862  7.462  -0.279 -0.391 25.949 66.746 
MUN_INC 1.043  1.077  2.892 10.958 0.034 7.827 

EMP_00 53.864  10.482  -0.827 1.477 5.625 79.084 
UNEMP_01 24.825  14.382  1.614 3.944 0.696 95.152 

SOC_AID 0.095  0.111  4.062 21.643 0.015 0.839 
AGEINDEX 107.197  76.186  7.296 83.904 24.408 1164.286 

DENSITY 98.076  220.497  10.150 130.166 1.361 3372.907 
VITALITY 82.434  39.643  1.462 4.133 10.811 308.929 

DISTANCE 31.561  27.960  3.143 13.227 2.700 210.000 
POPTREND -8.790  19.391  -0.297 3.203 -91.328 73.476 

 
   However, our methodology is mainly based on the analysis of covariance rather then 

correlation structures thus we preserve the original metrics of the variables (at least up to the 

point of substantive interpretability).  

   We note that certain multivariate techniques yield identical results regardless of which 

covariance matrix is analysed, however in general the standards errors and overall fit statistics 

can be wrong if the correlation matrix is analysed in place of the covariance matrix (see 

Cudek, 1989; Jöreskog, 2001: 209-214). We proceed with formal univariate and multivariate 

normality tests (D’Agostino, 1986; Doornik and Hansen, 1994; Mardia, 1980). The results of 

the normality tests are shown in Table 3. 

   It is clear that the visible univariate deviations from the Guassian density in Fig. 1 are 

statistically strongly significant for all variables. AGEINDEX and DENSITY have 

particularly large chi-square values (strongly rejecting the null hypothesis that the variable is 

Gaussian or normally distributed). For more information on normality tests see also 
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D’Agustino (1970; 1971), Bowman and Shenton (1975), Shenton and Bowman (1977) and 

Belanger and D’Agostino (1990). 
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Figure 1. Empirical density (Gaussian kernel estimate): original data 

 
 

Table 3 
Tests of univariate normality* 

 Skewness  Kurtosis  Skewness and Kurtosis 
Variable  Z-Score  P-Value Z-Score  P-Value X2 P-Value 
INC_PC 2.484  0.013 -2.985  0.003 15.084  0.001 

POP_INC -2.669  0.008 -2.260  0.024 12.229  0.002 
MUN_INC 27.635  0.000 10.598  0.000 876.035  0.000 

EMP_00 -7.901  0.000 4.446  0.000 82.199  0.000 
UNEMP_01 15.427  0.000 7.429  0.000 293.200  0.000 

SOC_AID 38.822  0.000 12.440  0.000 1661.866  0.000 
AGEINDEX 69.731  0.000 15.261  0.000 5095.250  0.000 

DENSITY 97.004  0.000 15.954  0.000 9664.310  0.000 
VITALITY 13.976  0.000 7.580  0.000 252.776  0.000 

DISTANCE 30.035  0.000 11.135  0.000 1026.094  0.000 
POPTREND -2.839  0.005 6.766  0.000 53.847  0.000 

* The normality tests were computed with PRELIS 2 (Jöreskog and Sörbom, 1996). 
 
   In addition to univariate tests we also compute the multivariate normality test (see Mardia, 

1980) which produced the chi-square of 16462.229 with multivariate skewness of 274.269 (z-

score 123.181) and multivariate kurtosis of 500.210 (z-score 35.896) which strongly rejects 

multivariate normality. These are important findings because we intend to use inferential 
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techniques which are rather sensitive to departures from normality. Consequently, in section 

3.3 we will attempt to normalise these variables using monotonic transformation techniques. 

 
 
3. Econometric methodology 
 
3.1. Multivariate modelling 
 
   Multivariate methods used in regional development research generally fall into variable 

classification (e.g., factor analysis) or classification of cases techniques (e.g. cluster analysis, 

Q-factor analysis). The two classes of techniques could be also combined. For example, 

Soares, et al. (2002) first perform factor analysis on the variables and then they cluster the 

cases (i.e., territorial units) using cluster analysis on the original variables as well as on the 

factor scores. This approach of searching for general patterns of similarities also underlines 

other similar space-proximity methods such as the co-plot technique (Lipshitz and Raveh 

1998; 1994), multidimensional scaling (Borg and Groenen, 1997), metric scaling (Weller and 

Romney, 1990) and correspondence analysis (Greenacre, 1993; Greenacre and Blasius, 1994; 

Blasius and Greenacre, 1998). However, nether of these techniques allows estimation of the 

development level of territorial units on a single scale (preferably interval) nor do they allow 

ranking of all analysed units in respect to some uniquely defined development criteria. The 

trouble is that these criteria are at the heart of the problem we need to solve in the first place. 

Consequently, we need to design an alternative methodological framework within which we 

can achieve given objectives of comparative development evaluation and ranking of all units. 

   Our proposed solution is to model the covariance structure of the municipality socio-

economic and demographic data within the class of general structural equation models  with 

latent variables (Jöreskog, 1973; Hayduk, 1987, 1996; Bollen, 1989; Jöreskog et al. 2000). It 

can be easily shown that factor analysis, errors-in-variables models, classical econometric 

simultaneous models and several other model types are all special cases of the general linear 

structural equation model with latent variables (LISREL).  

   In our approach we propose to start from exploratory techniques (e.g., principal component 

analysis) and then combine these results with theoretically-driven modelling strategies that 

utilise substantive insights from the economic and social theory. 

   Within the LISREL class of (sub)models we initially wish to mention one special case that 

appears particularly appealing for our methodological objectives, namely the second-order 

factor analysis (Buntig, et al., 1987; Gerbing, et al., 1994; Kaplan and Elliott, 1997a, 1997b; 

Mulaik, and Quartetti, 1997). The second-order factor analysis assumes two layers of latent 
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variables which can nicely correspond to our initially assumed economic, structural and 

demographic factors (first layer) and the overall regional development (second layer, i.e., 

second-order factor). The underlying covariance structure of such model would imply that 

there is one common dimension (regional development) that can be measured by separate 

types of development dimensions (economic, structural and demographic) which are 

themselves latent variables measured by the observed development indicators (e.g., our 

municipality variables from Table 1). If such model would fit the data well we could indeed 

argue that we modelled a single “regional development” level, and by computing factor scores 

for the second-order factor (Lawley and Maxwell, 1971; Jöreskog, 2000) we would 

immediately have an indicator that would satisfy all of our project objectives. Unfortunately, 

second-order factor models rarely fit in practice and are highly unlikely to be applicable to 

economic data which, by theoretical assumption, include a wealth of causal (both recursive 

and non-recursive) relationships among variables. Despite these obvious shortcomings many 

applied researchers rely on assumptions very similar to those behind second-order factor 

models by sweeping them under the carpet of non-inferential and informal techniques. It is 

often assumed, without any testing, that the underlying factors are orthogonal and preliminary 

factor analysis solutions are  frequently accepted without confirmatory testing. 

   Our approach, on the contrary, is inferential and it emphasises model testing and evaluation. 

Initially, we perform exploratory analysis but in subsequent stages of data analysis we 

formally test the insights gained from the exploratory analysis. For this purpose we first 

perform principal component factor analysis and then test each implied dimension (factor) for 

specification using maximum likelihood confirmatory factor analysis. Finally, we develop a 

recursive structural equation model with latent variables that includes more complex 

relationships among the analysed variables. 

 

 

3.2. Factor analysis 

 
   First we performed principal component analysis extracting 11 principal components. Three 

components had eigenvalues above one contributing 66% of the variance (see Anderson, 

1984). The Cattell’s scree plot (Fig. 2) levels out after the third eigenvalue and variance 

contributions diminish after the third component (see Tacq, 1998).  

 



 9 

Table 4 
Principal component analysis: Eigenvalues and variance extraction 

  Extraction sums of squared loadings Rotation sums of squared loadings  
Component Total Variance % Cumulative % Total Variance % Cumulative % 

1 4.014 36.487 36.487 2.450 22.274 22.274 
2 1.993 18.121 54.608 1.055 9.590 31.864 
3 1.272 11.560 66.168 1.048 9.529 41.392 
4 0.959 8.718 74.886 1.048 9.526 50.919 
5 0.733 6.664 81.550 1.046 9.506 60.425 
6 0.651 5.914 87.464 1.021 9.282 69.707 
7 0.483 4.392 91.856 1.008 9.165 78.873 
8 0.339 3.086 94.941 1.007 9.157 88.029 
9 0.316 2.870 97.812 1.007 9.153 97.182 

10 0.167 1.518 99.329 0.185 1.683 98.866 
11 0.074 0.671 100.000 0.125 1.134 100.000 

 
 
Keeping also in mind that we conjectured about three dimensions, i.e., factors (economic, 

structural and demographic) we computed factor analysis retaining three factors.  

Component Number
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Figure 2. Cattell’s scree test 

 
   In addition, on the basis of principal component solution and insignificant correlations with 

other variables we dropped DISTANCE variable from further analysis. Un-rotated and rotated 

loadings (for the remaining ten variables) are shown in Table 5. 

   The first factor loads highly on POP_INC, EMP_00, UNEMP_01 and SOC_AID which 

corresponds to our postulated structural dimension. The exception is POP_INC which loads 

ambiguously on two factors. 
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Table 5 
Factor loadings structure 

Component loadings Rotated component loadings 
Variable 1 2 3 1 2 3 

Extracted 
communalities

INC_PC 0.740 −0.138 0.556 0.197 0.113 0.908 0.875 
POP_INC 0.801 −0.413 0.123 0.582 −0.149 0.683 0.828 

MUN_INC 0.704 −0.125 0.480 0.219 0.111 0.825 0.742 
EMP_00 0.849 −0.255 −0.141 0.759 0.005 0.478 0.805 

UNEMP_01 −0.832 0.234 0.297 −0.846 −0.013 −0.347 0.836 
SOC_AID −0.719 0.054 0.425 −0.812 −0.145 −0.139 0.700 

AGEINDEX −0.286 −0.883 −0.050 0.000 −0.930 −0.014 0.864 
DENSITY 0.479 0.664 −0.086 0.273 0.772 0.082 0.678 

VITALITY 0.096 0.851 0.262 −0.271 0.851 0.062 0.802 
POPTREND 0.606 0.526 −0.287 0.525 0.670 0.041 0.726 

Variance total 4.303 2.549 1.004 2.800 2.703 2.353 − 
Variance % 43.030 25.490 10.036 28.000 27.027 23.530 − 

Cumulative % 43.030 68.520 78.557 28.000 55.027 78.557 − 
 
The demographic dimension (AGEINDEX, DENSITY and VITALITY) seem well captured 

with the second factor. The third factor then appears to account for the economic dimension 

and includes INC_POP, POP_INC and MUN_INC with high loadings. However, EMP_00 

appears to also load on this factor. The general impression from this three-factor solution is 

that there does not appear to be a “simple structure” in the data. There are several complex 

loadings, i.e., several variables appear to be indicators of more then one latent variable. Also, 

on theoretical grounds it is highly unlikely that these three underlying dimensions are 

uncorrelated in the population thus the above factor solution can, at best, serve as a starting 

point for more detailed analysis in which these indicative and partly ambiguous findings 

could be statistically tested.  

 
 
3.3. Confirmatory maximum likelihood factor analysis 
 
   Formal testing of factor structures is most conveniently done in the confirmatory factor 

analysis framework using the maximum likelihood technique. Although all of our variables 

are continuous we have found that they are not normally distributed. Normality is, however, 

important in maximum likelihood estimation based on multivariate normal likelihood. We 

proceed by transforming the variables closer to the Gaussian distribution and this way try to 

avoid potential problems with the analysis of non-normal variables (see Babakus, et al., 1987; 

Curran, et al., 1996; West, et al., 1995). For this purpose we apply the normal scores 

technique (Jöreskog et al., 2000, Jöreskog, 1999). The technique can be summarised as 
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follows. Given a sample of N observations on the jth variable, xj = { xj1, xj2, …, xjN} , the normal 

scores transformation is computed in the following way. First define a vector of k distinct 

sample values, xj
k = { xj1', xj2', …, xjk'}  where k ≤ N thus xk ⊆  x. Let fi be the frequency of 

occurrence of the value xji in xj so that fji ≥ 1 and. Then normal scores xji
NS are computed as 

xji
NS = (N/fji){φ(α  j,i-1) - φ(αji)}  where φ is the standard Gaussian density function, α is defined 

as     
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and Φ-1 is the inverse of the standard Gaussian distribution function. The normal scores are 

further scaled to have the same mean and variance as the original variables. 

   The transformation of the variables resulted in insignificant normality chi-square statistics. 

The mean and variances remained unaltered, though some values became negative (note the 

minimums) due to rescaling (Table 6).  

Table 6 
Univariate Summary Statistics for Continuous Variables 

Variable  Mean  St. Dev.  Skewness Kurtosis  Minimum  Maximum 
INC_PC 10.214  3.298 0.000 -0.007  -0.316  20.745 

POP_INC 47.862  7.462 0.000 -0.007  24.037  71.687 
MUN_INC 1.043  1.077 0.000 -0.007  -2.395  4.480 

EMP_00 53.864  10.482 0.000 -0.007  20.399  87.330 
UNEMP_01 24.825  14.382 0.000 -0.007  -21.091  70.742 

SOC_AID 0.095  0.111 0.003 -0.096  -0.186  0.387 
AGEINDEX 107.197  76.186 0.000 -0.007  -136.043  350.438 

DENSITY 98.076  220.497 0.000 -0.007  -605.911  802.063 
VITALITY 82.434  39.643 0.000 -0.007  -44.137  209.005 

DISTANCE 31.561  27.960 0.000 -0.035  -51.982  120.885 
POPTREND -8.790  19.391 0.000 -0.007  -70.700  53.119 

 
Fig. 3 shows close fit between empirical densities of all variables and the theoretical Gaussian 

curve. Formal normality tests (Table 7) no longer reject univariate normality null for any of 

the variables. Having transformed the data we perform maximum-likelihood based tests for 

the number of factors (Table 8) which reject simple multi-factor solutions up to 6 factors. This 

is another indication that the covariance structure of these data is too complex to be explained 

by simple multi-factor solutions. 
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Figure 3. Empirical density (Gaussian kernel estimate): normalised data 

 
 

Table 7 
Test of Univariate Normality for Continuous Variables: Normalised data 

 Skewness Kurtosis  Skewness and Kurtosis 
Variable  Z-Score  P-Value Z-Score P-Value Chi-Square  P-Value 
INC_PC 0.000  1.000 0.065 0.948 0.004 0.998 

POP_INC 0.000  1.000 0.065 0.948 0.004 0.998 
MUN_INC 0.000  1.000 0.065 0.948 0.004 0.998 

EMP_00 0.000  1.000 0.065 0.948 0.004 0.998 
UNEMP_01 0.000  1.000 0.065 0.948 0.004 0.998 

SOC_AID 0.030  0.976 -0.388 0.698 0.151 0.927 
AGEINDEX 0.000  1.000 0.065 0.948 0.004 0.998 

DENSITY 0.000  1.000 0.065 0.948 0.004 0.998 
VITALITY 0.000  1.000 0.065 0.948 0.004 0.998 

DISTANCE -0.004  0.997 -0.074 0.941 0.005 0.997 
POPTREND 0.000  1.000 0.065 0.948 0.004 0.998 

 
It is therefore likely that the underlying factors have complex rather then simple structure and 

it is also likely that they are correlated (for more details on modelling strategies and testing 

for number of factors see Bollen, 2001 and Bai and Ng, 2002).  
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Table 8 
Maximum likelihood decision table for the number of factors 

Factors X2 d.f. P X2 difference d.f. PD RMSEA 
0 4081.480 55 0.000    0.367 
1 2066.900 44 0.000 2014.590 11 0.000 0.290 
2 886.070 34 0.000 1180.830 10 0.000 0.214 
3 460.080 25 0.000 425.980   9 0.000 0.179 
4 276.740 17 0.000 183.350   8 0.000 0.167 
5 71.260 10 0.000 205.470   7 0.000 0.106 
6 30.260   4 0.000 41.000   6 0.000 0.110 

RMSEA = root mean square error of approximation 
 
   In the following analysis we test separate measurement models for three implied dimensions 

starting from the indicative factor analysis results. Our purpose here is to statistically evaluate 

validity of single dimensions separately.  

   The confirmatory measurement models as well as later structural models are estimated 

within the class of general linear structural equation models (Jöreskog, 1973; Hayduk, 1987; 

Bollen, 1989; Hayduk, 1996; Jöreskog, et al., 2000). Denoting the latent endogenous 

variables by η and latent exogenous variables by ξ and their respective observed indicators by 

y and x, the structural part of the model is given by 

 
(1)                                                       η = Bη + Гξ + ζ 
 
The measurement models are given in form of standard factor analytic models as 
 
(2)                                                           y = Λyη + є, 
 
for latent endogenous and 
 
(3)                                                           x = Λxξ + δ, 
 
for latent exogenous variables. Using Jöreskog’s LISREL notation we also define the 

following second moment matrices: E(ξξT) = Φ, E(ζζT) = Ψ, E(єєT) = Θє, E(δδT) = Θδ, and 

E(єδT) = Θδє. The covariance matrix implied by the model is comprised from three separate 

covariance matrices, covariance matrix of the observed indicators of the latent endogenous 

variables 

 
(4)                                     Σyy = E(yyT)  
                                                = E[(Λyη + є)( Λyη + є)T]  
                                                = ΛyE(ηηT)Λy

T + Θє   
                                                = Λy(I − B)-1(ΓΦΓT + Ψ)[(I − B)-1]TΛy

T + Θє,  
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the covariances between the indicators of latent endogenous and indicators of latent 

exogenous variables 

 
(5)                                     Σyx = E(yxT)  
                                                = E[(Λyη + є)(Λxξ + δ)T]  
                                                = ΛyE(ηξT)Λx

T + Θδє
T 

                                                = Λy(I − B)-1ΓΦΛx
T + Θδє

T,  
 
and finally, the covariance matrix of the indicators of the latent exogenous variables 
 
(6)                                     Σxx = E(xxT)  
                                                = E[(Λxξ + δ)(Λxξ + δ)T]  
                                                = ΛxE(ξξT)Λx

T + Θδ 
                                                = ΛxΦΛx

T + Θδ. 
 
Arranging the above three matrices together (noting that the lower left block is just a 

transpose of the upper right block we get the joint covariance matrix implied by the model, 

i.e., 

(7)                                                      







=

xxxy

yxyy

ΣΣ
ΣΣ

Σ . 

 
Using Eq. 4-7 the implied covariance matrix can be written in terms of model parameters as 
 

(8)  










++−
+−+−+−

= −

−−−−

δεδ

δεε

ΘΦΛΛΘΛBIΦΓΛ
ΘΓΦΛBIΛΘΛBIΨΓΦΓBIΛ

Σ T
xx

T
y

TT
x

TT
xy

T
y

T
y

])[(
)(]))[(()(

1

1111

. 

 
  The maximum likelihood estimates of the model parameters, given the model is identified, 

can be obtained by numerical maximisation of the multivariate Gaussian log-likelihood 

function 

 
(9)                                         { } )(lnln 1 qptrF +−−+= − SSΣΣ , 
 
where p and q are the numbers of the observed indicators of latent endogenous and latent 

exogenous variables, respectively. 

   The model building approach, given such a complex structure (measurement and structural 

parts), can take several routes and there is no agreement in the literature of the unique best 

approach (see Bollen, 2001). An approach of initially fitting separate measurement models 

and then, in the second stage, estimating a pooled model (with all measurement models 

together) is most appropriate for our purposes as it simultaneously allows testing of the 

underlying latent structures in each initially conjectured dimension (economic, structural and 



 15 

demographic). Table 9 shows conceptual path diagrams for the three hypothetical latent 

dimensions including complex loadings suggested from the factor solution in Table 5. Note 

that due to simplicity we use the LISREL notation defined in Table 1.  

 

Table 9 
Measurement models for the development dimensions 

Economic Structural  Demographic  

  
 
 The “economic” measurement model is given in matrix notation as 
 
(10)                                                       y1 = Λyη1 + є, 
 
or equivalently, in terms of scalar elements of the matrices as 
 

(11)                                             ( )
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. 

 
The model (11) includes three economic criteria variables (y1, y2 and y3), however y4 

(EMP_00) was also included because it had an ambiguous loading on this factor (see Table 

5). The maximum likelihood estimates of the coefficients, their accompanying standard errors 

and the chi-square for overall fit are given in Table 10 (we term the model “M1”). The chi-

square is 76.18 with 2 degrees of freedom which does not indicate good fit. In an attempt to 

improve the model, based on the largest modification index (see Sörbom, 1989) we re-

estimated the model with the error covariance between y2 and y4 (POP_INC and EMP_00) set 

free (for a discussion on the meaning of error covariances see Gerbing and Anderson, 1984). 

In terms of the model notation this amounts to freeing the (4, 2) element of the Θє residual 

covariance matrix, which is thus no longer constrained to be diagonal. Therefore, we estimate 

this modified model (“M2”) with the Θє matrix specified as 
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(12)                                     
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   The estimation results are shown in Table 10. It can be seen that the chi-square dropped to 

4.6 with 1 degree of freedom, which is no longer significant, thus the modified model M2 now 

fits the data. 

 
Table 10 

Maximum likelihood estimates (Economic model) 
 M1 M2 
Parameter  Estimate (S.E.) Estimate (S.E.) 

λ11 0.71 (0.04)  0.94 (0.04) 
λ21 0.99 (0.03)  0.75 (0.04) 
λ31 0.45 (0.04)  0.57 (0.04) 
λ41 0.82 (0.04)  0.57 (0.04) 
θ11 0.49 (0.03)  0.12 (0.05) 
θ22 0.03 (0.03)  0.44 (0.04) 
θ33 0.80 (0.05)  0.67 (0.05) 
θ44 0.33 (0.03)  0.67 (0.05) 
θ42 −     − 0.38  (0.04)  
X2      76.18    4.60 
d.f.   2 1 

 

    A similar procedure is used to assess the measurement model for the second hypothesised 

dimension (structural). Building a measurement model with three structural indicators (y4, y5, 

y6) and also including y2 and x5 which had moderate loadings on this factor in the exploratory 

factor analysis we get  

 
(13)                                                            y2 = Λyη2 + є, 
 
or in full matrix notation 
 

(14)                                                  ( )
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The inclusion of y2 (POP_INC) makes sense from the economic point of view, while the 

inclusion of x5 (POPTREND) is less clear. Its inclusion was based on its moderately high 

loading on the structural factor (Table 5) and now it can be formally tested. Table 11 gives 

estimates for model M1 and M2, the later one excluding x5. Though neither model has good 

fit, the chi-square difference between the two models is 176.34 which strongly rejects M2 in 

favour of M1, that is, the inclusion of the ambiguous variable (POPTREND) into the structural 

factor is rejected.  

Table 11 
Maximum likelihood estimates (Structural model) 

 M1 M2 M3 
Parameter  Estimate (S.E.) Estimate (S.E.) Estimate (S.E.) 

λ11 0.81 (0.04) 0.81 (0.04) 0.79 (0.04) 
λ21 0.99 (0.03) 1.01 (0.03) 1.03 (0.03) 
λ31 −0.86 (0.03) −0.84 (0.04) −0.82 (0.04) 
λ41 −0.49 (0.04) −0.47 (0.04) −0.47 (0.04) 
λ51 0.39 (0.04) − − − − 
θ11 0.34  (0.02)  0.35  (0.02) 0.38 (0.03) 
θ22 0.02  (0.02) −0.01  (0.02)  −0.06 (0.02) 
θ33 0.27  (0.02)  0.29  (0.02)  0.32 (0.02) 
θ44 0.76  (0.05)  0.78 (0.05) 0.78 (0.05) 
θ55 0.85 (0.05) − − − − 
θ43 − − − − 0.22  (0.02)  
X2 312.51 136.17 13.21 
d.f. 5 2 1 

 
The fit of the model, however, is still not good enough, and we again modify it on the bases of 

the largest modification index by freeing the (4, 3) element of the Θє matrix, i.e.,  
 

(15)                                   
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which results in model M3 with the chi-square of 13.21 with 1 degree of freedom indicating 

acceptable fit of the model. 

   Finally, we estimate the confirmatory model for the demographic dimension noting that this 

was the only “simple-structured” factor, i.e., without any ambiguous loadings. The model is 

specified as 
 
(16)                                                         x = Λxξ + δ, 
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where the x-ξ notation indicates that this factor is treated as exogenous. This assumption will 

be clarified in the context of the full LISREL model in section 3.4. Remembering that we 

dropped the DISTANCE variable from further analysis on the basis of its low loading in 

principal component analysis and insignificant correlations with other variables, we are now 

in position to formally test its exclusion from the demographic measurement model. The 

model that includes the DISTANCE variable (x4) is given as 
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We term this model M1. Model M2 sets λ41 to zero. The estimation results are shown in Table 

12. M1 has a chi-square of 189.96 with 5 degrees of freedom and M2 has a chi-square of 97.89 

with 2 degrees of freedom thus the chi-square difference is 92.07 which is highly significant. 

Therefore, we can reject the inclusion of x4 into the model. 

 
Table 12 

Maximum likelihood estimates (Demographic model) 
 M1  M2  M3 
Parameter     Estimate (S.E.) Estimate (S.E.) Estimate (S.E.) 

λ11 0.98  (0.03) 1.00 (0.03) 1.06 (0.04) 
λ21 -0.65  (0.04) -0.64 (0.04) -0.59 (0.04) 
λ31 -0.79  (0.04) -0.78 (0.04) -0.73 (0.04) 
λ41 0.30  (0.04) - - - - 
λ51 -0.57  (0.04) -0.56 (0.04) -0.53 (0.04) 
θ11 0.04 (0.03) 0.00 (0.03) -0.13 (0.05) 
θ22 0.57  (0.04) 0.60 (0.04) 0.65 (0.04) 
θ33 0.38  (0.03) 0.39 (0.03) 0.46 (0.04) 
θ44 0.91  (0.06) - - - - 
θ55 0.68  (0.04) 0.69 (0.04) 0.72 (0.04) 
θ52 - - - - 0.28  (0.03)  
X2 189.96 97.89 5.27 
d.f. 5 2 1 

 
 

Once again, the fit can be improved by adding an error covariance between POPTREND (x5) 

and AGEINDEX (x2) where the Θδ matrix is specified by freeing the (5, 2) element of 
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(18)                              























=Θ

)(
55

)(
52

)(
44

)(
33

)(
22

)(
11

000
000

00
0

δδ

δ

δ

δ

δ

δ

θθ
θ

θ
θ

θ

. 

 

The modified model (M3) had chi-square of 5.27 with 1 degree of freedom, which now 

indicates acceptably good fit. 

 
 
3.4. The structural equation model 
 
   Having estimated the three measurement models separately, we now estimate a joint model 

that includes all three dimensions simultaneously. We conducted some preliminary 

confirmatory analysis, using chi-square difference approach in ML estimation of restricted 

and unrestricted models, to test for the significance of correlations between factors finding 

that these are highly significant (detailed results are omitted for brevity).  

 
Figure 5. Conceptual path diagram for the structural model  

   

   We note that this is strong evidence against orthogonal solutions and orthogonality 

assumptions in exploratory factor analysis with this type of regional development data. In 

order to explain the found correlations we postulate a structural model in which the economic 

development is simultaneously determined by structural and demographic factors and 



 20 

measured by its observed indicators. Furthermore we conjecture that the structural dimension 

is causally affected by the demographic factor. In terms of model types, this would be a linear 

recursive (we assume unidirectional causality) structural equation model with latent variables. 

Putting it all together we arrive at the model shown in Fig. 5.

   Note that due to consistency with the notation defined in Table 1 we keep the symbol x5 for 

the POPTREND variable and drop x4 (DISTANCE) from the model. Also, on the basis of the 

above estimated separate measurement (factor) models and modification indices from 

preliminary estimation we add the suggested error covariance and complex loadings, but now 

we put the three measurement models together and add structural relationships among the 

three latent variables. In matrix notation the endogenous measurement model corresponding 

to path diagram shown in Fig. 5. is given by 
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Similarly, the exogenous measurement model is given by 
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Finally, the structural part of the model is specified as follows 
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with the error covariance matrices specified as 
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(for the y-measurement model) and as  
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for the x-measurement model. The parameter estimates are shown in Table 6  and Table 7. 

The model chi-square (normal-theory weighted) is 209.41 with 26 degrees of freedom which 

is appears not well fitting.  

 
Table 6 

Maximum likelihood estimates of the coefficient matrices 
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   The model modification indices suggested a number of ways to modify the model. A 

generalisation of the model that would allow correlations between the uniquenesses of the y 

and x indicators requires estimation of the Θδє matrix (see in particular Gerbing and 

Anderson, 1984).  

   We thus estimated some non-zero elements in this matrix following the specification 

implied by the model modification indices. The specific form of the matrix is given by 
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Table 7 
Maximum likelihood estimates of the error covariances 
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The estimation of the modified model (Table 8) produced very similar results to the previous 

model. 

Table 8 
Maximum likelihood estimates of the coefficient matrices (modified model) 
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The chi-square of the overall fit has dropped to 27.66 with 21 degrees of freedom which is 

insignificant (p-value = 0.15). Thus we conclude, on statistical grounds, that the estimated 

model has acceptable fit. Note that now an additional matrix (Θδє) is estimated (see Table 9). 

 
Table 9 

Maximum likelihood estimates of the error covariances (modified model) 
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4. Estimation of latent regional development score 
 
   Using the parameters of the estimated LISREL model (Tables 8 and 9) we compute scores 

for the latent variables following the approach of Jöreskog, 2000. Such methods also allow 

structural recursive and simultaneous relationships among latent variables. Estimation of 

factor scores in the pure measurement (factor) models is just a special case of the general 

procedure (see Lawley and Maxwell, 1971).  

   We describe a technique capable of computing scores of the latent variables based on the 

maximum likelihood solution of the Eqs. (1-3) following Jöreskog (2000). Writing Eqs. (2) 

and (3) in a system 

 

(28)                                           






+






⋅







=








δ
ε

ξ
η

Λ0
0Λ

x
y

x

y , 



 24 

 
and using the following notation 
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the latent scores for the latent variables in the model can be computed using the formula 
 
(30)                                        aa xΘΛUDVVLUDξ TT1/2T1/21/2

a
1−−= , 

 
where UDUT is the singular varlue decomposition of Φa = E(ξaξa

T), and VLVT is the singular 

value decomposition of the matrix D1/2UTBUD1/2, while Θa is the error covariance matrix of 

the observed variables. Derivation of the Eq. (30) follows the approach of Jöreskog (2000) 

and Lawley and Maxwell (1971). The latent scores ξai can be computed for each observation 

xij in the (10 × N) sample matrix whose rows are observations on each of our 10 observed 

variables and N = 545, i.e., 
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   Having computed the latent scores for η1, η2 and ξ1 we can use the information from the 

model to rank and compare development level for all territorial units. The model in Fig. 5 

implies an underlying economic development level that is simultaneously determined by the 

structural and demographic factors and measured by several observed indicators. It is clear 

that such model, in principle, extracts far more information about the development level then 

using a single observed indicator of latent economic development such as the GDP per capita 

(the EU methodology for Structural Funds allocation). With latent scores it is now possible to 

estimate a simple linear equation (using OLS) with η1 as endogenous variable. This produces 

the following result 

       
)006.0()033.0()291.2(

087.0102.1170.74 211 ηξη +−=
, 
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with R2 = 0.825 and the Wald test of 1281.7 which indicates very good fit and well 

determined coefficients. What the above equation suggests is that η1 is a linear function of η2 

and ξ1 and thus the territorial units can be ranked either on the grounds of η1 or by  

−.102ξ1 + .087η2 (ignoring the constant). Using 100 least developed municipalities (18%) 

ranked on the bases of −.102ξ1 + .087η2 and η1 we can compare how many of them entered 

the first 100 in each of the two cases. The cross-tabulations in Table 10 shows that 70 

municipalities were ranked within 100 least developed by both methods (about 13%). The 

most likely funding allocation given constraints to the national budget will include 5-10% of 

least developed municipalities, thus this type of summary statistics shows a clear comparative 

picture regarding classification and ranking performance of the alternative criteria.  

 
Table 10 

Crosstabulation count 
Criteria −.102ξ1 + .087η2 η1  

 Group < 100 > 100 Total 
−.102ξ1 + .087η2 < 100 70   29   99 

η1 > 100 29 417 446 
 Total 99 446 545 

 
   Similarly, we can use latent scores from alternative models and subsequently cross-tabulate 

the results checking how many units enter some predefined cut-off criteria such as least 

developed group of municipalities. 

 

 
5. Conclusion 

 
   A multivariate statistical approach based on covariance structure analysis for assessment of 

regional development level was suggested and applied to regional development analysis of 

545 Croatian municipalities. The commonly used techniques such as factor and principal 

component analysis were used only in the preliminary data analysis stage and their initial 

findings as well as hypothesised data structures were then tested with confirmatory factor 

analytic models estimated with the maximum likelihood technique. We then estimated a 

recursive structural equation model making explicit assumptions about causality and 

simultaneity among the latent variables. The final ranking and estimation of the underlying 

development level was carried out on the grounds of computed latent scores which allowed 

fulfilment of the project objectives, namely (i) estimation of the latent development level of 

the territorial units, (ii) ranking of all units on an interval scale in respect to their latent 
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development level, and (iii) selection of a given percentage of units for inclusion into a 

national subsidy programme. 
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