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Regions of Time and Internet: Modelling: An Application of the Space-timeTrip
(RASTT) model to the USA Internet Market
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Fax: 61-2-67733030
Email: rbakerl@metz.une.edu.au

ABSTRACT

The mathematical andlysis of the Internet and World Wide Web (WWW) is distinctly aspetia

a present, with the transaction flows defined specificaly by time-dependent indices (such as,
the Internet Wegther Report). How should the Internet and WWW be viewed as a
geographicd system where both space and time are fundamenta to interaction? The retal

aggregate space-time (RASTT) modd has been developed previoudy to study trips to and
from shopping mdls and thismodel may provide some ingghts into the framing of this question.
The RASTT modd can be developed from a time-dependent random walk from an ensemble
of home-based computers sending and recelving transactions through a network of sites. The
gpatid solution forms very week gravity interactions and the time-dependent solutions are
demand waves circumnavigating the Earth. Recent experimenta results from Microsoft
Research support these conclusons. These flows have the interesting property of moving
ether forwards or backwards through regions of time relative to the rotation of the Earth. The
mode can be developed to show biasin flowsto USA Stes.

A paper to be presented at the European Regional Sciecne Conferenece, Dortmund Germany. A version of
this paper is appearing in "Modelling Geographical Systems: Statistical and Computational Applications’
edited by Barry Boots, Atsuyuki Okabe, and Richard Thomas and the journal Geojournal both to be
published by Kluwer Academic Publishers B.V., Dordrecht, Netherlands. (the copyright remains with
Kluwer Academic Publishers B.V)



1. Introduction

The mathematical description of the Internet is anew challenge facing applied modellers.
There are now new spatial and temporal accessibilitiesto consider and new concepts
emerging, such as,’ e-tailing’, where commercial transactions can take place globally and
amost instantaneously. This freedom of access into the Internet for consumers means
issues of physical location, travel time or market area may be less relevant and the research
frontier hasto deal with such things as ‘virtual distance’ and unrestricted shopping
opportunities between countries. There even appears to be some sort of time substitution
for spatial interaction (particularly from time-poor affluent households). A key theoretical
guestion iswhether cyberspaceis a product of what Marx described as ‘ time annihilating

space’ .

The Internet forms the physical network of connectivity (such as, optical cables and phone
wires), where there are nodes or ‘routers’ that navigate packets of data from one computer
to another (Barabasi, 2001). The Internet istherefore spatially specific in that flows occur
through physical space. Conversely, in the World Wide Web (WWW) or the Web, links
can be easily established arbitrarily as virtual connections between any two computers
independent of spatial co-ordinates. Theidea of the WWW originated from a hypertext
technique where a considerable amount of multimediais interconnected (Jiang and
Ormeling, 2000). It is more content-specific and its properties are analysed by ‘maps’ that
tell how the pages are linked together.

Both the Internet and the Web can be regarded as a network of nodes and links forming a
complex graph defining what is known as ‘ cyberspace’ . Cyberspace is a computer
generated landscape which integrates these networks into avirtual space. An important
guestion therefore emerges. how does this new landscape affect the flows of information
and the importance of distance? What isincreasingly becoming apparent is that we have
to try to understand the rel ationship between cyberspace and geographic space and how
to develop models that recognise their distinctiveness.

Much of the current Internet research involves the application of graph theory to the study
of the Internet and the Web (for example, Barabasi and Albert 1999, Albert et al. 2000;
Cohen et al. 2000). Itisinteresting that this connectivity and itstheoretical descriptions are
expressed in terms of time and that there islittle recognition of the spatial domain. For
example, The Internet Traffic Report (2001) uses atime-based index describing the round
trip travel time of major paths on the Internet (also termed ‘latency’). The distance factor is
replaced by how much timeit takesto transfer data. Further, the so-called maps plot
connectivity and are essentially aspatial. Within ageographical context thisis not
satisfactory, because the flows of time-dependent Internet traffic around the world are
passing through countries and time zones relative to a 24-hour boundary (Figure 1). This
isin contrast to an aspatial view of Web traffic and connectivity using graph theory
(Figure 2). Theaim of thisreview isto look at the Internet as a geographical systemin
space and time and endeavour to set amodelling context for future research.

A second question concerns how retailing fitsinto amodel of the Internet. Thisis not the
aim of thisreview. However, despite the considerable euphoria and a stock market boomin
the late 1990sin technology stock and ‘dot com’ companies, there are very few retail
success stories from marketing on the Internet. Even such an e-tail ‘ success' story as
Amazon.com recorded a $390 million lossin 1999. Why isthisthe case? Thereisthe
possibility that the structure of central places (particularly in terms of cities as points of
distribution) are different fundamentally to the evolution of connectivity within the Internet
and the Web. Much of the efficiency of cyberspaceis seen in time minimisation, but there
still could be a place for distance minimisation strategies (and the gravity model) for the
distribution of goods and services. The failure to understand this difference and its



geographical underpinnings, could be a major barrier to successful marketing and
profitability for Internet retailing. This suggests that there is much research needed to
understand the operation of the Internet as a geographical system and asaway of
receiving and distributing commercial and retail transactions.

2. Modelling Background

2.1 Introduction

The application of random graph theory to define the connectivity of the Internet and the
Web isagrowing research area at present in the physical sciences. Thiswork will be
briefly reviewed. An alternative isto view random processes of connectivity along atime
line through differential equations. One such application is the retail aggregate space time
trip (RASTT) model (for example, Baker 1994; 2000). It has been applied extensively to
study tripsto and from point densities (shopping malls) along atime line, where itstime-
dependent solutions relative to a periodic boundary, suggests some fruitful insightsinto
how the Internet can be modelled. Its underpinnings will also be summarised to set the
context for its application to cyberspace.

2.2 Graph network models of the Internet

The analysis of complex networks can be divided into two major classes based on their
connectivity distribution P(m) which defines the probability that a nodein the networksis
connected to mother nodes (Albert et al. 2000).

() Thefirst type of networksis characterised by a P(m) that peaks at an average (m)

and decays exponentially for large m. These networks are homogeneous in that each
node has approximately the same number of links. Exponential networks (such asthe
random graph model of Erdos and Renyi, 1960) have a connectivity that followsa

Poisson distribution peaked at (m) which decays for m>>(m).

(2) The second type belongs to inhomogeneous networks (or ‘ scale-free’ networks)
where P(m) decays as apower law (or P(m) ~m™) free of the characteristics of scale.
This network has amajority of nodes with only one or two links, but afew large nodes
of links guaranteeing that the system is fully connected. An example of this type of
network is the World Wide Web and this type of model can be visualised by the
Internet tree smulated by Chiswell (1999) (Figure 2).

Barabasi (2001) uses geographical examples to distinguish both types of networks and
these are pertinent to the development of an Internet model. An exponential network isa
road map that has cities as nodes and expressways as links, because most cities are central
places located at the intersection of the motorways. Conversely, an airlineroute mapisa
Type 2 network, because although most airports are served by a small number of carriers,
they have afew hubs (such as, London) from which links emerge to almost all other US or
European airports. The WWW is seen as an exampl e of the latter because a majority of
documents have only afew links. It appearsthat Type 2 networks are also hierarchical.
They are also preferential, since they contain nodes that have a high probability of being
connected to another node with alarge number of links. For example, anew Web pageis
more likely to be linked to the most popular documents on the Web, since these pages are
the ones we know about. Research by Faloutsoset al. (1999) have shown that the network
behind the Internet also appearsto follow the power-law distribution of inhomogeneous
networks. This means that the physical wiring of the Internet is a'so dominated by several
highly connected hubs. As Barabasi (2001) states: why do systems as different as the
Internet, which is aphysical network, and the Web, which isvirtual network, develop
scale-free networks with a power-law decline in connectivity?

Thisanalysisisdistinctly aspatial, but is still imbedded in time-dependent variables for the
transfer of information. How should the Internet and WWW be viewed as a geographical
system where both space and time are fundamental to interaction? The RASTT model may
provide some insights into the framing of this question.



2.3 Theretail aggregate spacetimetrip (RASTT) model

The RASTT model defines‘when’ and ‘where’ consumers enact aggregate shopping
behaviour and is underpinned by the so-called ‘ supermarket’ equation (Baker 1994, 2000).
It is constructed around a differential equation of spatial and temporal operators acting on
apopulation functionf (whichis standardised tof ., the equivalent calibration function
per hundred shoppers divided by the size of the aggregation unit). A mathematical
operator describes what hasto be done on afunction much like averb does within a
sentence. The ‘supermarket’ equation is different to classical diffusion, becausetimeis
differentiated twice and space once. This second order time operator is of immediate
interest to theoretical geography, because when thisis made equivalent to afirst order
spatial operator, the solution involves agravity model of trip distributionsin space and a
periodic function of time-based demand. Thisrelevant differential equation takes the usual
form of:

AP BT
™ M qt2

@

where x defines the spatial coordinate, t, the trip time and M a transport constant for a
calibrated population density of f, of shoppers. Thislinear equation (with the transport
coefficient M constant) can only apply to one shopping centre, but the operators (d/ ck
and d / dt®) can apply equally for individual or group shopping. Equation (1) is stating
there is atrade-off between trip operators through space and time. In other words, ‘ where’
aconsumer shops is dependent on the shopping cycle (time of the day or day of the week).
In the particular solution, the gravity model of trip distance D isthe spatial solution
between residences (aggregated in concentric one kilometre bands) and the shopping
centre (or X - %, where X, = 0 defines the location of the shopping centre). The underlying
behavioural assumption is distance minimisation in trip assignment. The corollary in the
time solution of Equation (1) isthat such shoppers make regular time-based trips to and
from a shopping centre at x,= 0. A population density of shoppersf ,inthismodel
therefore assumes populations regularly select trips that minimise distance (through
exponential decay) to and from a shopping centre. A socio-economic group that best
approximates this assumption are ‘over 65 years', whilst for trip purpose, the weekly food
and grocery trip fits this model well (Baker 1994; 1996). Mathematically, this statement can
be expressed as a particular solution of Equation (1) for one centre as:

_ psin( kt)a
f,=Aexp(-b D)%COS( kt)% @

where bisthe gravity coefficient and k, the interlocational trip frequency (ITF) defines how
many trips are made by individuals or groups to the shopping centre. The ITF is
introduced arbitrarily as the separation constant to solve the differential equation. This
solution is stating that the undertaking of regular or periodic trips (sin kX to a shopping
centreis discounted by how far away we are to a centre (exp - kD), since there are
increasing opportunities to shop elsewhere the further they live from this centre.

Implicit in this approach is that destinations are located along atime line of shopping
opportunities. The advantage of this method is that time boundaries can be introduced as
part of solving the differential equation and thiswill affect spatial patterns of the gravity
model of tripsto and from the centre. The policy corollary isthat the shopping hours amall
trades will affect the extent of the surrounding market area (Baker 2000). The RASTT model
therefore deal s with shopping trip distributions from a particular centre where time
boundaries on atime line of destinations can change the spatial distributions. Other
methods have specific problems dealing with time. For example, entropy maximising can
also derive gravity spatial interaction by optimising the assignment of trip originsto



destinations through statistical laws of large numbers (Wilson, 1967; Roy and L esse, 1981).
However, this method has problems dealing with time in maximising the assignment
problem to and from a shopping centre. The increase in entropy only occurs between
opening and closing times: when the shopping centre is shut, the complexity of the trip
assignment problem disentangles and trips approach zero (contrary to the physical
analogue which approach infinity). The RASTT model does not suffer from this difficulty
because the solution is defined by the hours that the centreis open (0to T) and all other
possibilities are zero.

3. TheRASTT Modd and Internet Transactions

The operators of the RASTT model (d/ dx and o/ dt?) are not affected by the numbers
involved in interaction (applying equally to individuals or populations of billions) and are
therefore classified as scale invariant. These operators are defined relative to time
boundaries for movement through physical space. Y et are these mathematical operators
applicable to the Internet, where thereis still areal time boundary (the 24 hour rotation of
the Earth) defining the movement of transactions? Consumers can also make virtual rather
than real tripsto retail sites and the RASTT model therefore offers the scope to explore the
movement of demand through virtual space aswell as physical space.

Theimmediate problem in the RASTT model is that relative time functions to the boundary
can be either positive or negative. In previous work, the idea of negative timein the context
of the process of shopping trips was thought initially to be meaningless and the time
boundaries were only applied from O to T (and the 0 to—T range discarded; see Baker,
2000). However, the idea of negative values relative to the direction from the boundary for
Internet transactionsis not as nonsensical asit first appears. Rather than framing the
problem over 168 hours per week, we set it for trips or transactions through space over a
24-hour period (the daily cycle). The spatial origin could be located at a computer at an
arbitrary location and the consumer can either go forward or backward along atimeline
relative to this 24-hour boundary. For example, if theindividual islocated at Sydney (33° S
Lat and 161° E Long), that person can either go two hours forward in time to asitein
Auckland (37°S Lat and 175° E Long) or two hours backwards in time to Perth (32° S Lat
and 116° E Long). The RASTT model can be derived for physical tripsto amall and such
trips are only viewed positively along time lines. Conversely, virtual trips on the WWW
can be defined as either moving backwards or forwards rel ative to the 24-hour time
boundary. Thisisaradical statement because it gives a plausible example of how relative
time can exist asacorollary of virtual distance and have different properties to physical
time. Boulding (1985) states that in the physical sciences, time is assumed to approach
infinity in order to focus on spatially specific solutions. Alternatively here, we assume
initial spatial locations and produce time-specific solutions, including solutions that can be
negative. The study of the Internet as a geographical system therefore provides an
opportunity to introduce a new concept and to seeif it has any further properties of
interest.

Thereisapossihility of aconvergence of virtual distance into afixed point (the computer
screen) at any time. Animportant question is. can relative time influence the patterns of
virtual space? It returnsto a concept of adynamic convergence of locations found in the
geographical literature of the late 1960s, where the evolution of spatial reorganisation
changes in space-time connectivity, particularly from improvements in transportation and
technology (Janelle, 1968, 1969; Forer, 1978; Gatrell, 1983). The Internet is perhaps the next
stagein the evolution of this space-time connectivity. Blaut (1961) argued that every
empirical concept of space must be reducible by a chain of definitions to a process and
Janelle (1969) statesthat inherent in Blaut’s view isthe implicit existence of atemporal
pattern in each and every spatial pattern. Inthe RASTT model, this processis summarised
as asecond order time differential (or operator) that can yield positive and negative time-



based solutions. This means that unlike physical time, relative time can lead to reversible
time-based processes, atruly remarkable possibility. For example, it meansthat in the
election of aUS president, polling booths can be closed in the east, yet the proportion of
votes counted and reported on TV can feedback simultaneously to voters on the west
coast who are still voting (and can change their votes based on the east coast trends).
Reversibility of aresult is possible within the boundaries of relativetime. It is possible to
have two simultaneous sites connected by virtual distance on acomputer screen in
different time zones. The Internet presents a new horizon to geographical systems because
we have to now distinguish between relative time (to arotating boundary) and physical
time (to infinity) and real trips (where people change their spatial co-ordinates) and virtual
trips on the Internet (where the location is still at the initial spatial co-ordinate). Asthis
stage we can only make guesses as to how this evolution in space-time connectivity
develops, but there are some clues already discernible from the nature of the RASTT
mode.

Wheat features could be expected from a RASTT model representation of Internet
transaction? There are two areas of immediate interest.

3.1 The condition for spacetime convergence

The condition for space-time convergence in the solution of the supermarket equation
(Equation 1) when a 24-hour boundary is applied, yields the same relationship between the
gravity coefficient b and the square of the mean interlocational trip frequency k divided by
the transfer constant M, namely:

k2
™M

b
©)

Theinterlocational trip frequency (ITF) defines the average number of trips or transactions
undertaken per day by users and because it is squared it can be applied to virtual trips
either forwards or backwards through relative time. The RASTT model suggests that there
would still be gravity interaction of physical distance for Internet patronage, but thiswould
be at least one order of magnitude lower than gravity coefficients computed from shopping
trips to malls using concentric aggregation. Y et we would expect that it would vary for the
type of transaction. For example, weekly food orders would have (with k higher) greater b
values, indicating the distribution of food would be more localised than for alower
frequency consumption item such as compact disks. We would therefore expect that one
feature of the Internet as a geographical system would be ‘very weak’ gravity interactions,
but thiswould still be relative to the type of transaction and the limits of the distribution
system.

If b isassumed to be very small and the frequency of patronage the same order of
magnitude as shopping trips to malls (one visit to asite per day), the transfer coefficient M
for Internet usage would have to be very large compared to its value for physical tripsto a
mall. Thisisnot hard to visualise, with Internet traffic at least one order of magnitude
higher than the physical tripsto particular shopping malls. The other key question is
whether M remains a constant, or avariable, making the differential equation non-linesar.

3.2 Space-timedistributions of internet demand

The type of space-time distributions that could apply to Internet patronage are simulated in
Figure 3for b =0.0001, T=24 hours, X o = 0to %= 10,000 km and an arbitrary population
density f, = 10 for a sequence of k valueswhere k = 0.1, 0.2, 0.3, 0.4, 0.5....1.0. The simplest
distribution of spatial demand for Internet patronage at a site, receiving both positive and
negative flows of transactions, is a gaussian—type distribution between k=0.1and 0.2
(Figure 3). Thisisnot surprising since a gaussian distribution is an equally valid solution
to Equation (1) for atime-based random walk problem. The solution has some advantages



in this probabilistic form, because variables can be expressed as average quantities, such
as, ‘distance’ and ‘ number destinations per visit’. A gaussian distribution can be
expressed as probability distribution P(t,x) for adensity of web transactions at asite f ,=

f o If thissite receives n, transactions per unit distance d, with total transactionsF =n,d
, the probability distribution is defined as:

To _pt x)= exp(— t2/4Mx) (4)

1
fos 2
where tisequal to the time for each transaction to travel to the site. The transfer coefficient
M can be defined alternatively as:

— 1 2
M 5 nt (5)
The transfer constant is then the number of transactions per unit distance multiplied by the
relative timet taken to reach the site. Equation (4) is the type of distribution that has been
simulated inthek = 0.1to k = 0.2 rangein Figure 3. It is an unbounded gaussian time
distribution, where transaction densities can be plotted for Inf versus t* and the slope of
the straight lineis (4MX)™. The average time taken by the transaction is defined by the

mean square displacement (Dt ?), namely:
Dt 2 =2Mx. (6)

The RASTT model can therefore define the possibility of anumber of distinctive features
of Internet patronage relative to traditional spatial interaction modelling:

(1) thegravity model of spatial interaction would have very small b coefficients
compared to aregional shopping mall;

(2) technology allowsfor a space-time convergence to occur on the computer screen
rather than shopping malls and virtual distance allows for the possibility of
simultaneous connections both forwards or backwards in relative time;

(3) such connections can have implications for activitiesin different time zones, such
asthe US presidential elections or stock market activity; and

(4) transactionsto sites should be represented in their simplest form as time-based
gaussian distributions.

Thistype of model (and differential equation) isnot found in traditional applications of
applied mathematics because of the problem of dealing with positive and negative time-
based functions. In the case of the Internet, such difficulty is an advantage because
transaction flows can be modelled globally relative to atime boundary. It means that time
has to be viewed differently at this particular scale (defined by the rotation) and has
different propertiesto physical time (such asreversibility).

The next step isto look more formally at the derivation of the ‘ supermarket’ equation in this
Internet context for transaction interaction between a number of web sites.

4. Derivingthe RASTT Mode for Internet Transactions (after Ghez, 1988)

Consider anetwork of web siteslinked by atime line with an arbitrary origin at W, where
these sites are designated through integersi = 0, 1, +2, +3,.......... For example, a
household at Sydney could have a choice of other sitesat i = £1 at Auckland or Perth
(Figure 4). Each web site serves anumber of households at a particular locality and there
areF; householdslinked to each sitei. Assume that each of these households can jump
to adjacent web sites with afrequency G that does not depend on the characteristics of i .
These househol ds can access sites forward in time or backwardsin time. Itisassumed the
movement forwards or backwards are equally likely. Therefore, movement from sitei to site



i +1 per unit distance occurs at arate of 2GF ;. Likewise a household or web page at site i
+1 can reply to the household or web page ati at arate of “2GF .. Theresulting rate of
exchangeis:

1
Ei+]/2 :EG(Fi - Fi+1) @)
and for i-1into the sitei, theflux is

1
Ei.ye :EG(Fi—l'Fi) ®

The change in web traffic into and out of thei "site at an origin or hub (such as Sydney) is
given by adefinition of all possible transitions:

drF 1 1 1 1
d—XIZ-EGFi+EGFi+l-EGFi+EGFi_1 9
The space discounting equation (or rate equation) in terms of the distribution of usersin
and out of thei th siteis (by collecting terms)

da=, 1
d_XIZEG(FHlH:i-l'ZFi) (10
This exchange rate of web or Internet traffic is between nearest-neighbour destinations on
the time line around sitei and this can be expressed in terms of the exchange rate between
sites (using Equation 1 and 2)

% =" (Ei+1/2 - Ei-llz) =

The change in the web site content is defined by the difference between flowsin and flows
out of transactions within the connectivity.

Comments

(1) The jump frequency of transactions between Sitesis constant and it is assumed independent of the
Steindexi and itslocation in space.
The data signal should not change its frequency within the network and does not depend

on the location of the computers. This appears a reasonabl e assumption and agrees with
the aspatial nature of the graph theory approach.

(2) Thisfrequency of movement does not depend on the digtribution of households or usersin the
neighbourhood of thei th Ste.

The distribution does not have to be homogeneous. This also appears to be a good
approximation and parallels the assumptions of graph theory.

(3) Thetime distance between sites and the type of transfer network does not influence the process, the
only thing that isimportant is the time-based ordering of the points.

The receipt of transaction does not depend on physical location, but on atime-dependent
ordering of site hits. Once again thisis a reasonable assumption for the Internet or Web.

Equations (7 to 11) define atime line between sites where the distance between points and
the hierarchical network of sitesis not relevant, rather, what countsis the ordering of hits
to the site. Equation (11) states a conservation law where the transactions in and out
defines the content of aweb site. The time distance p between web sites is assumed to be
equal between the origin (such as Sydney) and thei " site and has the co-ordinate of t, = i p
on thetime line of transaction flows. The transaction density f, (xt) is assumed to
interpolate the previous function at site i, with the co-ordinate i f ,(x) by the following
assumption:



fo(t.x)=F,(x) (12)

at destinations located at t =t;. but is arbitrary elsewhere. The assignment of this
transaction density function around thisweb site att; can be expanded by a Taylor series:

1,
It
and using the condition in Equation (12), the expansion becomes when substituted into

Equation (10) (noting that we are interested in both forward and backward motion relative
to the 24-hour cycle):

2 ﬂzfo
it

—

folt.,)=f(t)+p It +1p It, + terms of order p? (13)

1:0 - % op? 1‘?20 + termsof order p* (4
X t
Comment

The condition for this approximationisthat p” k <<1, or in other words, the time distance between
sitesisvery much smaller than the smallest significant wavelength and the A amplitude of the demand
wave (A sin kt) must be insgnificant outside Y .v2

With the definition of latency between sites expressed in milliseconds, such acondition
appears reasonable for the Internet of Web traffic.

The continuous exchange function between sites with transaction densities can be written
as:

1_1f
E(xt)=- =Gp—= 1
(t)=- e (15
and the conservation law can be rewritten from Equation (10) as:
Mo . pE +terms of order p* (16)
x It

Now the average transaction density & isequal tof& =f ,/p wherep isequal to the

average transaction time between sitesand Gequal to the average number of web sites
visited per unit trip distance. The transport constant M to the centreis defined in the
previous context as:

M = Gp? (17)

Therate of exchange, the conservation law and supermarket equation for web traffic on the
Internet becomes, respectively:

197,

E(x,t)=-— 18
(x,t) Mt (18)
fo E

W )
T, _ 1 TF,

x M g2 @)

Equation (18) defines acondition for the conservation of information on the Internet. The
minus sign in Equation (18) isapoint of debate, because it implies that information flows
from sites of high densitiesto low densities (akin to classical diffusion) with the analogy to
graph theory that the high point densities are the hubsin the network. Thisis areasonable



assumption in the context of inhomogeneous scal e-free networks in graph theory with a
power-law decline in connectivity.

5. Empirical Evidencefor aRASTT Mode for Internet Transactions

There are anumber of hypotheses that are consequence of the application of the RASTT
model to Internet transactions. These will be briefly reviewed in the context of recent
geographic-specific Internet experiments and data sites (Padmanabhan and Subramanian,
2001; Internet Weather Report, 2001).

5.1 Isweak gravity interaction afeature of I nternet flows?

The spatial solution to Equation (2) would suggest that gravity spatial interactionis still
relevant to Internet traffic flows. Padmanabhan and Subramanian (2001) show an example
of the gravity relationship between client and proxy sites for the America On-line network.
The cumulative probability for clients follows the gravity distribution of aregional
shopping mall except thereis adifferencein the order of magnitude for distance (Figure 5a
and Figure 5b). This strongly suggests that the Internet exhibits very weak gravity
interactions.

5.2 Ispausetime (Dt) and surrogate measurefor distance?

In Equation (2), one of the predictions of atime-based gaussian distribution isthat the
average transaction time (or delay or latency) taken by the transaction is defined by the

mean square displacement Dt? =2Mx. In other words, one of the conditions of space-time
convergenceisthat the transaction time (to and from a client from a site) isafunction of
the distance from the site. Padmanabhan and Subramanian (2001) undertook an experiment
with aprobe machine at Seattle, USA, measuring transaction delay in four categories (5-
15ms; 25-35ms; 45-55ms; 65-75ms) relative to geographic distance (Figure 5¢). The results
support the prediction of alinear relationship between latency and distance (as suggested
by Equation 6). Over 90% of small delay values (under 10ms) come within 300km from the
source. The RASTT model therefore provides a clear mathematical relationship to test
these experiments and suggest the existence of time-based gaussians.

5.3Isthetransport coefficient M ameasure of congestion?

Congestion in the network is one of the problemsin using time delay as a surrogate
measure for distance. Padmanabhan and Subramanian (2001) overcome this problem by
selecting minimumsin delay samples (10 to 15 samples) between hosts to eliminate the
effect of congestion. Equation (5) from the time-based gaussian suggests that the transfer
constant M will be afunction of the number of web sites and the transaction time. This
transaction time can vary and so M can be avariable and the differential equation non-
linear. What we could do isto seek M,,;,, from a substantial sample size and set thisasa
constant in the differential equation and M- M,,;, would then represent a measure of
congestion in the system.

5.4 Are spatial demand waves of internet traffic observable?

Equation (2) predictsthat thereisaspatial demand wave circumnavigating the globe on a
24-hour cycle which, in our simulation (Figure 3), would most probably take the form of a
time-based gaussian between k ~ 0.1 and k ~ 0.2. The Internet Weather Report (2001)
provides an animation of thistype of event, where variables of latency (the bigger the
circle, the slower the return time trip) and the number of hosts at a given location (defined
by a colour spectrum) varies over a24-hour cycle.. The slowness of the latency (the time
taken for areturn trip between a host and a client) may be afunction of demand and if this
isthe case, then the arrival of the Internet demand wave can be visualised in the USA. For
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example, on October 1, 2001 a 1.00am (CDT), there are few congestion nodes and smaller
latencies compared to 4.00 pm (CDT) when there are peak demand times for both east and
west coast interactions (Figure 6). The latency changes through a 24-hour cycle, where
there are afew small guassian-type distributionsin the early morning, but as the demand
wave envelops, these grow in the peak afternoon period when the network comes under
heavy |oad.

5.5 Isthe nearest neighbourhood assumption justifiable?

In the derivation of atime-based random walk for Internet traffic (Equations 7 to 11), the
exchange rate assumes nearest neighbour sites within the jumping between hosts. Is
thisjustifiable? The WWW is a small-world network, which is a sparse network where
nodes are connected to other nodes in their neighbourhood but otherwise the average
distance between nodes is high (Watts and Strogatz,1998). Padmanabhan and Subramanian
(2001) in their experiments found their geographic clustering algorithm (GeoCluster)
produced the best results over varied data sets. This would be expected if time-dependent
guassian distributions are generated at different scales (either for countries or individual
hosts such as a university campus). This nearest neighbour assumption appears to have
some credence, at least in mapping information generated from Web traffic.

6. Some Further Theoretical Thoughts

One of the basic assumptions in the time-dependent random walk isthat it is equally likely
that atransaction can move either forwards or backwardsin relative time. This might be a
satisfactory assumption for the internal USA situation or the Sydney-Perth-Auckland
domain, but for aglobal model, thereisgoing to be ahigher probability of movingin either
direction towards the high connectivity of USA sites. The jump frequencies can no longer
be assumed to be isotropic (namely, the jump probabilities to the right or left have the same
value 1/2G). Therefore, the jumps forwards or backwards in time are therefore not equal for

Internet sites because of the influence of USA hubs. In the derivation, the exchanges now
do not vanish because of the asymmetry in jump frequencies between sites. A constant
distribution is no longer a necessary condition for equilibrium, but the conservation law
remains, as well as other assumptions in the derivation (such as, nearest neighbour and
data ordering; Ghez,1988). This global Internet equation that can account for the
asymmetry in transaction flows can be defined if the jump time distance is now

ti.y, = (i*1/2)aand thereisintroduced what is termed a drift velocity v= Dainto the

model. Equations (18-20) can now be rewritten:

19f
E(X,t):'vﬂ 0"'\/1:0
(21
f E
Mo - I @
x It

2
ﬂf_o = i& - Vﬂf_0 (23)
x M 92 it

The drift velocity v through the network is proportional to the differencein the jump
frequency between sites and is thus a measure in the bias that the USA sitesintroduce into
the system, even if the households are evenly distributed among the sites. This drift
velocity could simply beinterpreted as the Internet’s mean velocity field (which can
fluctuate depending on the congestion or distance between sites within the network).
Equation (23) represents anew differential equation which describes the Internet, where
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the first term may describe the hub exchange of transaction flow (the reverse diffusion),
whilst the second is the overall movement throughout the network. It now appearsto be
non-linear and its solutions are beyond the current scope. Nevertheless, it allows a global
view of the Internet and data flows.

Thereis an interesting connection with this Internet equation to the telegrapher’s
equation:

iﬂ +LnE: Rﬂ+s£ (24)

M t2 M Tt x2 X

wherea, m, R and s are appropriate constants. In the early days of telegraphy, the signal
diffusion reduced the datarate in long cables such as the early Atlantic cables (Montroll
and West, 1979). The wave propagation over time was replaced by adiffusion packet. For
the Internet equation, the time operators are the same as the telegrapher’ s equation (apart
from the sign of the first time operator). However, in the Internet equation, thereisno

second order space operator (/1 x?) and spatial interaction is exclusively defined by the
gravity operator (11/91 x) . The mathematical relationship between both differential
equationsisalso an areafor future inquiry.

7. Concluding Remarks

The application of a RAST T-type model (time-dependent differential equationswith a
second order time operator) to Internet transactions is explored and the results suggest
that this type of model has some relevance to understanding the dynamics of the Internet
and WWW as a geographical system. Such amodel has a number of implications that
warrant further consideration.

Firstly, this model involvesthe idea of relative time where flows of data can go either
forwards or backwards in time relative to the rotation of the Earth. Such second order time
operatorsin the RASTT model are a peculiarity and there isacorollary of the possibility of
reversibility within time functions. The example of this processisin the USA elections
where votersin California (because of different time zones) can changetheir vote
according to events broadcast after the closure of polling in the eastern states. Relative
time, therefore, has different characteristicsto physical time where events areirreversible
and assumed positively to infinity.

Secondly, in the graph network model of the Internet, the power-law evolution of the
structure is not the same as arandomwalk generation of linkages, wherein the latter, the
gaussian distribution (and negative exponential functions) is an integral part of the
solutions of the evolution of connectivity. Perhaps this difference is significant, because
the evolution of supply points might still follow randomwalk generation and the gravity
model might limit the physical accessibility of much of the power-law evolution of the
WWW or Internet. It might be easy to get connected to the WWW, but to receive goods
and services from e-tailers still relies on central places and points of distribution. This
might be one reason for the difficulty of e-tailersin making profits from their WWW
networks.

There are anumber of encouraging results empirically that support predictions from the
RASTT mode.

1. Thereisan example of very weak gravity interaction in the relationship between the
distance between client and proxy sites for the America On-line network.
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2. Theprediction from a guassian random walk that pause time isafunction of distance
to the site has been replicated in experiments by Padmanabhan and Subramanian (2001).

3. The postulated spatial demand wave can be observed across the USA and globally in
the Internet Weather Report (2001).

Such results should provide motivation for further experimental work. The RASTT model
provides amathematical framework to look at the dynamics of the Internet and WWW. The
bias from USA sites can beintroduced into the model and this form has some similarity to
the telegrapher’ s differential equation, which itself isan interesting areafor further inquiry.
Theideaof amean velocity field of Internet traffic flows has immediate applicability to
geographical information systems and visual representations of the Internet.

The RASTT model has been successful at looking at distance trip behaviour to spatial
centres of demand (shopping malls) between 10° and 10* orders of magnitude. Thereis
also someindication that virtual trips with physical distances at 10° and 10* orders of
magnitude through the Internet can be described by the same operatorsin the RASTT
model. Theimplication isthat these operators are scale invariant and supports the idea that
operator-based modelling is away to overcome problems of scale.

Finally, modelling the Internet is anew frontier for spatial interaction modelling. The
equations from the RASTT model have no physical analogy. They are essentially
geographic, where time zones and distance decay are fundamental to the dynamics.
Operators are the key to this view of space-time processes. They allow 1960s concepts,
such as, the space-time convergence at central places, to be equally applicable to the
computer screen in the 2000s. Such opportunities occur because of the mathematical
tractability of using partial differential equationsto describe geographic processes.
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Figure 1 An example of the Internet as a geographic system isillustrated for UUNet (with
27% of the global market) and shows the dominance of the USA in site traffic (Source:
UUNET Website, www.uu.net)

Figure 2 The generation of an Internet Web tree showing the aspatial connectivity from
100,000 Internet routers and the hierarchial structures that develop from afew highly
connected nodes (Source: Cheswick, 1999).

Figure 3 (a) A range of possible space-time distributions that could apply to Internet
demand are simulated for b = 0.0001, T=24 hours, X =0to x = 10,000 km and ascaled f
max = 10 for asequence of k valueswherek =0.1, 0.2, 0.3, 0.4, 0.5....1.0. (b) A three
dimensional plot visualising alikely form of the demand wave for k=0.1.

Figure4 The equa likelihood of jumping forwardsin timeto sitesin Auckland or
backwards to Perth from the i"" Sydney site defines the underpinnings of the type of
differential equationsin Equations (18) to (20).

Figure 5(a) The cumulative probability for agravity-type distribution for the distance
between client and proxy for America-Online (Source: Padmanabhan and Subramanian,
2001); (b) The cumulative probability for a gravity-type distribution for aregional shopping
mall (Bankstown Square, 1998 afternoon distribution; Baker 2000); (c) The resultsof a
probe machine at Seattle, USA, measuring transaction delay in four categories (5-15ms; 25-
35ms; 45-55ms 65-75ms) relative to geographic distance. The results support the prediction
of alinear relationship between latency and distance suggested by Equation 7. (Source:
Padmanabhan and Subramanian , 2001)

Figure 6 Internet demand wave can be visualised in the USA on October 1, 2001, when at
1.00am (CDT) there are few congestion nodes and smaller |atencies compared to 4.00 pm
(CDT) when there are peak demand times for both east and west coast interactions.
(Source: Internet Weather Report; 2001)

15



