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Abstract

The study of possible asymmetric effects of monetary policy at a spatially disag-
gregated scale has recently received increasing attention in the literature due to the
introduction of EMU. Different econometric approaches have been proposed to quan-
tify the differences in monetary policy transmission, ranging from large-scale simul-
taneous equations models to structural vector autoregressions (SVAR). The current
paper mainly builds on the SVAR approach and extends it by incorporating geo-
graphical information in model’s specification, making use of techniques commonly
employed in spatial econometrics. While, to capture spatial interactions it would be
necessary to adopt a VAR specification modelling jointly the given set of regions, this
is generally not feasible using standard VAR models due to the shortage of degrees
of freedom. In the proposed specification, information on spatial proximity is used
to derive parameter constraints that make the joint estimation feasible for panels of
moderate or large dimension. Having introduced the model, with specific reference to
the issue of parameter identification, the paper deals with parameter estimation, that
is complicated by the simultaneous spatial dependence structure and by the need to
impose a complex set of parameter constraints. Finally, to test the model’s empirical
performance, the paper presents an application to the analysis of the differential mon-
etary policy effects on the US states. Based on the estimation results, geographical
heterogeneity in the impulse response function found out in previous studies appears
to be confirmed.

1 Introduction!

The adoption of a single currency by twelve European countries has fostered the attention on
the possibility that, given the diversity in the industrial, legal and financial structures across
the EMU member countries, the common monetary policy shocks can have asymmetric ef-
fects. The measurement of output response to monetary policy decisions has been recently
addressed in a number of cross country studies (see, among others, Dornbush, Favero and

Giavazzi (1998) Carlino and DeFina (2000), Cecchetti (1999)) by means of a variety of
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econometric techniques, ranging from large-scale econometric models to structural vector
autoregressive (SVAR) models (see Guiso et al. (1999) for a review). At a sub-national
scale, Carlino and DeFina (1998, 1999) and Horvath (2000) made use of structural VARs to
measure regional response to monetary policy in U.S. regions and states, while de Lucio and
Izquierdo (1999) conduct a similar exercise on Spanish regions. As noted by Carlino and
DeFina, when modeling regional responses to aggregate shocks, it is important to account
for feedback effects among regions. The simple estimation of a standard macro-type SVAR
model to each region, as done in many cross-country studies, would hence result in serious
misspecification, since indirect effects of policy actions, operating, e.g., through trade and
financial linkages among regions, would be neglected. In Carlino and DeFina’s approach,
interdependence across states is dealt with by allowing the lagged output in remaining re-
gions to enter the VAR equation relating to each region /state. However no contemporaneous
feedback is allowed, i.e., simultaneous propagation of economic disturbances among regions
is excluded. On the contrary, de Lucio and Izquierdo contribution, while ruling out lagged
feedback effects among regions, do allow for contemporaneous correlation among the VAR
model residuals in their preferred specification, consisting of a set of regional macro-type
SVARs jointly estimated using Seemingly Unrelated Regression (SUR) techniques.

The econometric methodology proposed in the paper mainly builds on Carlino and
DeFina contributions, trying to overcome some difficulties implicit in their approach. In
particular, when analyzing the case of the 48 contiguous U.S. states, given the fact that
fitting a single VAR model to large cross-sections data is not feasible due to the rapid
shortage of degrees of freedom, the authors are forced to estimate a separate VAR model
for each state. As a consequence, a different central bank reaction function is identified and
different monetary policy shocks are estimated for each state, while, on theoretical grounds,
monetary policy shocks should be the same for all states.

Another possible shortcoming of the Carlino-DeFina methodology relates to the identifi-
cation scheme adopted, that rules out any contemporaneous interdependence among states
by means of a set of overidentifying restrictions imposed on the contemporaneous VAR
coeflicients matrix. As a consequence, state specific shocks are assumed to affect only the
state of origin contemporaneously, although they are allowed to spill over into other regions
with a one-quarter lag. This assumption, however, is likely to be too restrictive in practice,
especially when no monthly time series are available and the model is fitted using quarterly
data.

In an attempt to overcome these difficulties, the SVAR approach of Carlino and DeFina
(1999) is extended by incorporating information on geographical proximity in model speci-
fication. In particular, based on Tobler’s first law of geography (Tobler, 1979), it is assumed
that information coming from the nearest neighbouring units is the most relevant in pre-
dicting the process at a given location, in the sense that, once it is acquired, the addition of
information from remaining locations does not improve the predictive performance of the
model. Following the standard approach in spatial econometrics (see Anselin, 1988, chapter
3) and on the grounds of earlier contributions in spatial time series analysis (Martin Oeppen
(1975), Pleifer and Deutsch (1980), Pfeifer and Bodily (1990)), a priori information on the
spatial connectivity structure underlying the observed data is made operational within the
VAR model by means of a sequence spatial weights matrices, defined according to a proper
spatial weighting scheme. A related approach is proposed by Lesage and Pan (1995), that
use spatial contiguity information to define Bayesian priors for the parameters of a BVAR



model in a regional forecasting exercise.

Through the sequence of spatial weights matrices, a set of parameter restrictions are
imposed on the VAR coeflicients matrices that, eliminating the degrees of freedom constraint
incurred by VAR models as the cross-sectional dimension of the model increases, allow, on
the one hand, the identification and estimation of a single monetary policy shocks series
for all regions. On the other hand, spatial constraints are used to model contemporaneous
interdependence among regions, while preserving a number of restrictions sufficient for
structural parameters identification.

The remaining part of the paper is structured as follows. Section 2 introduces the model,
with specific reference to the issue of structural parameter identification. Section 3 then
deals with parameter estimation. The simultaneous spatial dependence structure and the
set of overidentifying restrictions on model parameters makes the usual OLS estimators
inappropriate in this case and, following Amisano and Giannini (1997), FIML (Full Infor-
mation Maximum Likelihood) estimators are derived assuming a gaussian distribution. In
section 4 model’s empirical performance is assessed through an empirical application to the
measurement, of monetary policy transmission in the U.S. states. Section 5 concludes with
a brief summary.

2 The model

In this section the proposed structural VAR model is introduced on the basis of the Carlino
and DeFina specification. As already noted, a single VAR model is specified including all
the given geographical units (also referred to as regions in the following). Three sets of
variables enter the VAR system. The first set, denoted as x; = [m1¢, T, ..., Tiy| , Tepresent
K macroeconomic control variables usually entering monetary VAR models, i.e. measures
of inflation, commodity prices and other variables capturing supply or demand shocks that
are relevant for monetary policy analysis.

The second set of variables, denoted as y:= [y1¢, Yat, ..., Unt) 5 includes the stacked values
of the output variable measured on the N regions. The third set is comprised of a single
variable, the monetary policy instrument, denoted as r;. To simplify notation, without loss
of generality, a zero mean data generating process will be assumed throughout.

Setting z;= [}, y},7¢]', the SVAR model has the following expression

C()Zt = Clzt,1 + ...+ sztfp + uy (]_>
where u; = [uf,, ..., u%,, ul,, ..., uk,, uj] 1s an orthogonal multivariate white-noise series,
. . / .

Le. F(u) =0, F(uu,_,) = Q = dmg([021,...,JiK,le,...,ozN,oﬂ) if h =0 and

F (utuéf,) = 0 elsewhere.

It is well known (see., e.g., Hamilton (1994), chapter 11) that, in addition to the orthog-
onality of the structural disturbances, structural parameter identification requires proper
constraints be imposed on the (R x R) matrix Cy, (R = K + N 4+ 1). In Carlino and
Del'ina’s approach, identification is achieved through the following set of assumptions. (1)
Region-specific shocks affect only the region of origin contemporaneously, although they
are allowed to spill over into other regions in future periods. (2) Monetary policy actions
and shocks to macro variables are assumed to affect regional income no sooner that with
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a period lag. (3) Macro control variables are not affected contemporaneously by shocks in
the remaining variables in the model neither affect each other.
With these assumptions the Cy matrix takes the following form

Iin O
Co = [ o € ] 2)
where Iy is the identity matrix of dimension K + N and a is a (1 x K + N) vector
of unrestricted coefficients relating the current value of the monetary instrument to the
contemporaneous values of remaining variables in the model.

Under these assumptions, the number of constraints imposed on matrix Cgy exceeds the
level strictly necessary for structural parameter identification, actually imposing a number
of overidentifying restrictions in model specification. More specifically, while the order
condition requires R(R + 1)/2 restrictions be imposed on coefficients in Cy, with R =
K+N+1), R?—(R—1) constraints are imposed in expression (2), introducing (R?*—3R+2)/2
overidentifying restrictions.

In the present paper, a similar methodological position is taken, by assuming that the
Cy matrix possess the following block triangular structure

Ix 0
Co=|0 ¥ (3)
—Crr —CY 1

where C§" is a (1 X K) vector of unrestricted coefficients relating the policy instrument to
the contemporaneous values of the macro variables x, and where

ClY = ', (4)

In expression (4) a’ is a scalar parameter to be estimated and w is a vector of N fixed
coeflicients representing the average weight, over the time period analyzed, associated to
the each single regional output series in the national aggregate. The restrictions on Cg”
coeflicients, relating the monetary instrument to current values of the regional output series,
although not strictly required for identification, are dictated by the need to keep the number
of free coeflicients in the policy instrument equation fixed as the number of regions increases,
thus making it estimable also for large spatial cross-sections. On theoretical grounds, the
restrictions are motivated by the assumption that only aggregate output enters the central
bank information set and, hence, the monetary instrument response function.

Differently from the reference model, that assumes C§¥=Iy, in the proposed specification
the C§¥ matrix, modeling simultaneous regional interdependence, has the following structure

where ®g, = diag ([¢(1)k, ¢(2)k, - ¢é\2]/) and Wy is the N x N spatial weights matrix of lag

order k (see Anselin and Smirnov (1996) for a proper definition) with typical element wy, (, )
> 0 if locations i and j are contiguous at spatial lag k, and wy(i,7) = 0 elsewhere. The
definition of spatial lags assumes a preliminary hierarchical ordering, based on decreasing
geographical proximity, has been attributed to the given set of spatial units. Such ordering
is usually performed according to one of the two following procedures (see, e.g., Arbia,

1989):



1. in a first step an undirected N-node graph is defined whose nodes represent geograph-
ical units and arcs connect units that are nearest neighbours; subsequently two spatial
units are defined to be k-th order neighbours if the minimal path connecting them on
the graph is composed of k edges;

2. letting d(i, j) denote the distance in space between units i and j, a sequence of non
overlapping distance intervals (0,dy], (dy,ds], ..., (d;—1,d;] is introduced and two units
are defined to be spatial neighbours of order k if dy,_1 < d(i,7) < d.

A common specification in spatial time series analysis (see, e.g., Pleifer and Deutsch,
1980), assumes equal scaled weights, with non zero spatial weights taking the value wy,(i, j) =
N; '(k), and where N;(k) denotes the number of k-th order spatial neighbours of unit i.
As in Clff and Ord (1981), more complex specifications for the weights matrices can be
defined by weighting spatial connections according to the length of the common border or
the geographical distance between locations.

Identification of the simultaneous coefficients matrix will be discussed with reference
to the standard triangular identification scheme, that is well known to provide an exactly
identified structure (see, e.g., Hamilton (1994), chapter 11), by imposing the order condition
that the number of free structural coefficients in C§” does not exceed the number of free
coefficients assuming a recursive structure, that is equal to (N? — N)/2. Given the fact that,
in the proposed specification, the only unrestricted coefficients are the diagonal elements
of the ®g;, matrices, k = 1,..., Ag, the number of free parameters in (5) is equal to N Ag.
Consequently, identification is achieved when the following condition holds

Xo < (N? — N)/2N. (6)

imposing a bound on the upper summation limit Ag in (5), i.e. on the maximum spatial
order entering the simultaneous spatial component of the model. Given that the numerator
dominates the denominator in the RIIS of (6), the constraint becomes progressively less
binding as the number of locations in the sample increases, thus being actually relevant
only for spatial samples of very small size (say N < 10). As a consequence, in most
applications the model will still incorporate a set of overidentifying restrictions, although in
smaller number with respect to the reference model, that allows no free parameter in Cp?,
ruling contemporaneous spatial transmission of region specific disturbances.

At the root of the proposed spatial identification scheme there is the assumption that
the impact of location specific shocks is highest on nearest neighbouring regions and de-
cays progressively as geographical distance increases, eventually vanishing as the distance
separating locations diverges. However, it must be stressed that, although the spatial spill
over effects are assumed to decrease with distance in space, the rate of decay varies ac-
cording to the spatial order of the model and the values of autoregressive coefficients, thus
accommodating a large number of empirical situations.

Two types of restrictions are imposed on Cj, matrices (h = 1,...,p) in expression (1),
motivated by the necessity of reducing the number of free coefficients in the model to make
it estimable as the cross-sectional dimension of the sample increases. More specifically,
the following partition of the C; matrix is introduced, where blocks are singled out with



reference to the three sets of variable entering the model
C CyY Cyr

C,=| C" Cc¥ Cy (7)
cpr CY Cr

and, on the one hand, spatial restrictions are imposed on blocks C}?, that have structure

An

Cl =) W, (8)

k=0

where @y, = diag ([¢ilzk7 ¢f2um s ¢2ﬂ/) .
On the other hand, coeflicients C;° and C;’, relating the control variables and the

monetary instrument to past values of the regional output series, are constrained, as in (4),
to have values

G = ap 9

CY = ' (10)

where ai” and a;” are, respectively, a k-dimensional vector and a scalar to be estimated.
All remaining blocks are left unrestricted, as in the standard VAR specification.

Model’s reduced form, obtained by left multiplying both sides of (1) by C,', has ex-
pression

Zy — (lezt,l — . (ijzt,p + ﬁt (]_]_>

with Cp, = Cy'Cy, (h=1,...,p), and 1, = C; 'u,.

Denoting as C (B) the matrix polynomial (Iy — (leBp — = (ijBp), where B is the usual
Box-Jenkins backward shift operator, stationarity of the process defined by expression (11)
requires that the following condition be satisfied

p
IN — Z ChZh
h=1

When expression (12) holds and F (uju,) < ¢, (t =0,+1,£2,...), for some finite constant
¢, the process

#0 for|z] <1. (12)

Yt = é (B)il ﬁtfh = é (B)il Calut,h = Z\Phut,h (13>

h=1

is well defined, in the sense that the infinite sum exists in mean square (Lutkepohl, 1991,
p. 490) and expression (13) gives the Wold’s representation of the process in terms of the
structural disturbance vector u;.

The N x N matrices ¥, give the coefficients of the impulse response function, i.e. the
dynamic multipliers relating the observed variables to the unobservable random shocks
driving the system.



3 Maximum likelihood estimation

Given the fact that the Cp matrix is not strictly triangular and Cj, matrices, (h = 1,...,p),
must satisfy a set of parameter constraints, the multivariate LS estimator (Lutkepohl, 1991,
pp. 62-65) is not applicable to the proposed specification. Following Amisano and Giannini
(1997), consistent estimators of model parameters will be derived by applying the FIML
method. Under the assumption that z; is jointly normal, the distribution of z;, conditional
on past observations z;_,Z; s, ..., will be gaussian with mean z, = C1z;1 — ... — Cpz¢p
and covariance matrix Q = F (u) = C,'%,C, " and has expression

1
f(ze|ze—1,219,...) = const. — 3 log (|24]) +
1 - N - -
—5 (Zt — Clzt,1 — .. — sztfp) Q (Zt — Clzt,1 — .. sztfp) =

1 1
= const. + log (|Col|) — 3 log (|Q]) — EuQQ’lut

where u; = (Coz; — C124 1 — ... — Cpzt ).

Given the block triangular structure of Cy, it follows that |Co| = |CE*|-|C§Y|-cg" = |C§Y|
and the sample distribution, conditional on p pre-sample values of z; and assuming T’
consecutive observations are collected over time, will have expression

f (Zl, Z9, ..., ZT’ZO, vy Z,p+1) =

T
T 1
= const. + T'log (|C§¥|) — Elog (192]) — 2 Zu;Qflut =
=1

T 1
= const. + T'log (|C¥|) — 3 log (|1Q]) — St (U'a'u). (14)

In the following it will be shown how the sum of squares component in expression (14)
can be computed from the residuals of a properly defined linear regression model. To this

purpose the following set of positions is introduced first

/

Z =|z1,2,...,27|; 2 = vec (Z);

X =X, Xy, ..., X7]; x = vec(X');
Y =[yi,y2, .. y7); ¥y = vee (Y');
r=[r,79,..,77)

U =[uy,uy,...,ur]; u=vec(U');
U,= [umluum% ---;u:cT]; z — vec (Uéz:)v U,y = [u‘ft, ...,u‘;(t] ;
U,=[u,,uys, ..., uy7|; U .
u,= [ul, ... uf]’;

Z =12 ni1, 20,21, -, Z7 1)

X p=[X_nit, X0, X1, -, X7 _1)

Y o= [y nit: Y0, Y15 o Y111

= |1=
I
[
o)
o



/
Ty = [rongt, e, 70,71 e TR

60: _<CO_IK>

Based on the above given positions and given the fact that vec(Z') = vee ([X', Y, 1)),
in the following a linear regression form will be derived separately for the three sets of
variables, and will subsequently be reassembled to obtain the regression system for the

whole model.
__ Letting Cj denote the K X R matrix [Cy* CY,Ci"], h =1,...,p, and considering that
Cg = 0 equations referring to x variables, considering the whole sample period, become

X = CyZ+CiZ 1 +..+CIZ ,+ U,
X =7 ,Cl'+..+7 C/+ U,

and can be written in linear regression form as
x = (Ixg@2Z ) vec(CY) + ...+ (Ixg ©Z ) vec(CY) + 1, =
= (Ixk©[2Z,,..,2Z]) vec ([C“’f, s CZ}/) +u,. (15)

Considering that coefficients C“Zy/ are restricted by the assumption that macro variables
x respond only to aggregate shocks, the system can be conveniently simplified by separating
explanatory variables in the three groups of variables x, ¥ and r, writing

x = (Lo X0 X ) vee ([CF, 0, € }’)
(U@ Y Y] vee ([CF, .., C )

+(Ix @ [r_q,...,r_p]) vec ([C“i”’, .., C] )
Given the fact that C“Zy/ = wa“;’;y’ one obtains
(IK ®Q Yih> vec (C“Zy/) = vec (YLhC“Zy/) = vec (Yihwaiy’> = vec (?7haiy/>

where

— [ — — /
Y = [y7h+17 - Yo, Y15 "'Jnyhi|

and 7 denotes the aggregate output series. As a consequence

(L @ [Y00 0, Y0, ) vee ([CF,., G ) = (I © [0, 5] vee ([af?, .. ap])

and, finally, the regression system for x variables can be written as

X = (IK ® [le,...,ZLPD vec (Ef,...,é;}/) +u, =



where

Zw = [Zonit, 20,2020 0], 7= (X, T 7]
Ch = [Cu;l?lu’l?’aiy’cif]’ h:177p

The sub-system relating to the regional output series can be given the following expression

-y’
Y =ZCy +Z ,CY +..+Z ,C/+ U,

or, in linear regression form,

y = IvoZ) UGC(Eg/) + ..+ (IN ® ZLP> Uec((]g’) +tu, =

= (Ive 2,2 ,,..,2"])vec ([Eg, e Cg}/) +u, (17)
where Cj is the N x R matrix [C}", C}Y,C)], i = 1,...,p, Eg = [O,Egy,ﬂ] and Egy =
Ao
E <I>0kwk
k=1

Separating on the RHS the components relative to the three sets of explanatory variables,
expression (17) becomes

y = (o XX ) vee ([CF, cp]') +

+ (IN © [Y/aY/,l,...,Y’, Dvec( ng7cl{y7“‘7cgy}’) +

p
+ Iy @[ 1,...,r_p]) vec ([Cz‘l”, s Cgr}/) +u,
~ EI8;+E18)+ 5,8, +u,
! ! 7,/ /
- [5.20.5] [8;.8).8;| +u,

Considering the expression for CV¥ | h =1, ..., p, given by (8) one obtains

Ah Ah
vec (C%y/) = vec (Z W;@hk> = Z (In @ W) vee (Dur)
k=0 k=0
and consequently
An
Iy ®Y",) vec (Czy/) = (Iy @Y, W}) vec (D) (18)
k=0

The RHS of (18), involving a matrix of dimensions NT' x N2, can be conveniently reduced
to an NT' X N dimension considering the diagonal structure of matrix ®,;. The product
(IN @Y hW;) vec (Ppy) performs, in fact, a linear combination of the columns of matrix
(IN ® YLhWQ with weights given by the vector wec (®py). Since only to N of the N2
columns is associated non zero weight, the linear combination can be computed only with

9



reference to these columns. Since @y is an N-dimensional diagonal matrix, the only non
zero elements in vee (®y;) will occupy positions (i — 1)« N 44,7 = 1,..., N. Consequently
expression (18) can be written as

An
kZ:O <IN & YLhW;> vece (q)hk) =

A A
_ kzo [(S10Y ,Wis1) ... Sy © Y ,Wisy)] e = kZhOth%k

where ¢, = [¢%k, ISP ¢]2\H/ and, to select the relevant columns in matrix (IN ® YLhWD
the selection operators S; and s; have been employed, with S; an N x N matrix with all
zero elements except the i-th element on the main diagonal that is equal to 1 and s; an
N-dimensional vector with zero entries except the i-th element that is set equal to 1.

At this stage, setting Y, = [Yho, ..., Yay,| and ¢, = [tho, e ¢h>\h} we have

<IN®YLh> vec (Czy/) =Ynep,, h=1.,p.

Following the same argument it can be shown that
Iy @ Y')vec (Egy/) = Yoo,

with Yo = [Yo1, ..., Yor,] and @y = [@oy; .., Poy,] and finally, setting Y = [Yo, ..., Y,] and
¢ = [dg, -, (/5;;]/7 and rearranging the order of the variables, the regression system for y
variables becomes

! ! /
y=[Y.5.5] |¢.67.8;| +u, (19)

To derive the ML estimators it convenient to separate the simultaneous and predetermined
variables. To this purpose we set

Zy = [EyO;Eyl}
~ 0 ~1177
B, = [ y/’ﬁy}
= = o ~1 T
where 2,9 = Yo, =21 = [Yl, v Y, =2 J}, ,32 = ¢y, B, = [qﬁ’l, ...,qb;, , >3, | - With these

) D=y Ty
positions expression (19) becomes

y= :y/By +u, = 52/82 + Eylﬁyl +u, (20>

Since matrix dimensions in (20) can become large when N increases, to facilitate the

computation of ML estimates it is convenient to put matrix Ezl/ in block diagonal form by
reshuffling the columns grouping variables by equation; this can be done by introducing the
regressors matrix for generic equation 1,

i i i i i I I
£, = gl()’”"gl)\l"”7£p07”'7—p)\p7X717'”7X7p’r71"”’r7p



where E;zk = (SZ- @Y. hW%SZ), and corresponding coefficient vector

/

B! = [¢§0,...,¢§A1,..., s By s GV (0, ), o, GV (3,), CY (), ..., V()

where CJ*(i,.) is the i-th row of matrix C}* and C; (i) is the i-th element of C{". With
this positions it is immediate to see that

=~ =l - 1
:yIIBy = ‘:yIIBy

where =, is the block diagonal matrix

&)
Finally, writing 2, = [Z,0,Zy1] and 8, = [,82/, ,811/}/, expression (20) becomes

XZEZNBy_{_Hy 252/82_'_511//811/_'_211 (21)

that in the following will be used to derive the ML estimators.
The regression system for the monetary policy instrument series is straightforward to
derive and has expression

r = [Z/7Z/717‘”7Z/7p} CS’CL’C;}/ —|—u;,

where Eg = [C§", Cy?, 0] and C}, = [C}*,CY,Ci"], h=1,...,p.

To incorporate constraints deriving from the assumption that the central bank sets the
policy instrument on the basis of aggregate output the policy instrument equation can be
written as

r= Z*’)ZLl,,.-.,ZQp} B, +u,=Z.08 +u, (22)

*__ [k pk * * 5=V _ re TY re 7Y rr rT T rrl’
where Z _[Z17Z27"'7ZT]7 z, = [Xtuyt] and /87’ - [CO » Qg 701 » 701 7""7Cp 7a’pyucp} .

Reassembling the three sub-systems, regression equations for the complete model can
be written compactly as

z=ZB+u (23)
where 3 = [8,,8),8,] and
= 0 0
=E=10 Z, 0 (24)
0O 0 =

11



Using (23) the conditional likelihood function of model parameters B and ¥, expression
becomes

T
1(B,Xu|zo, ...,z pi1) = const. + T'log (|C§Y|) — Elog (19]) +
1
— gvec UY (@' @Ir) vec (U') =

T
= const. + T'log (|C¥Y|) — Elog(]Q]) +

1

—5(2-28) (@ olr) (2 28). (25)

Considering the block diagonal structure of = and given the fact that {2 is a diagonal matrix
the log-likelihood function, apart from the constat term, can be expressed as the sum of
three separate components, each function only of a subset of model parameters. More
specifically we have

1(B,%u|20, ..., 2 pt1) = const. + 1, + 1, + 1,
where
T 1 _ ' e _
l, = l(lﬁu’QO’ZO? "'7Z*P+1) = _Elog (’QSCD - 5 (X_ :551613) (Q:c ®IT> (E o :13/8:6)
T
ly =1 </8y79y’Z07 "'JZ*P+1> = TlOg(’ng’) - Elog (’Qy’) +
1 _ I —
-5 @-28) (' o) (y-E8,)

T 1
I, =1 (,6‘7,, a?|zg, ..., z,pﬂ) = —Elog (af) ~ 557 r—2.8,) (r—2.8,)

Q, = diag ([02,,...,02]") and Q, = diag ([051, - U;N}/) :

First order conditions for the maximum of the log-likelihood function have expression

ol
6. = (0, ' 9Ir)u, =0 (26)
ol O (e
3_,30 = g(¢o) + :2 (le & IT> u =0 (27)
Yy
ol VI
28 = Z, (9, @Ir)u, =0 (28)
Yy
ol 1,
818 = ;:TUT =0 (29>

where g (¢py) = — [tr (C§YW1) ..., tr (CHVW,,)].

In the first set of normal equations

= (' oly) =2, (' 0 1) Z.6,
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setting M, = [le, ...,ZLP} it follows that

Ix ©M,) (' 0Iy) IxkoM) = IxoM) (Q'ely) (IxoM)a,
(@ oM)x — (2'6MM,)B,
B, = (oMM, (2, oM))x=
- [IK o (M,M,) " M} x (30)
the last expression stating the well known result from SUR model literature (see Greene
(2000), chapter 15) that ML estimators coincide with OLS estimators applied to each single
equation when the matrix of regressors is the same for all equations.

From the corresponding normal equations, the ML estimator of the 3, vector is also
seen to coincide with the simple OLS estimator

B, = (MM,) 'M,r (31)

where M, = [Z* A 1,,...,7;]

Normal equations relating to the ,311/ parameters have the form

= (Q, o)y = 2V (Q,'ol)E,B, =
- =, on) (B8 +56)

from which the following expression for the ML estimator ensues
By, = [:y/ (Qy ® IT) :y} 2y (Qy ® IT) (X - :yﬁy> : (32)

~1
Given the block diagonal structure of Ezl/ and the diagonal structure of 2, the 3, estimates
can be computed equations by equation (i.e. separately for each region) by means of the

much simpler expression

~1 i i -1 il

B,=(ae) & (v.—) (33)
where y = (s;j @Ir)y and X? = (s; ©Ip) =) 0 , (i=1,...,N), i.e. by the OLS regression
of (Xi — X?) on E;/

Analogously to the case of the mixed regressive-spatial autoregressive model (Ord (1975);
Anselin (1988)), while the normal equations yield a closed form solution for the ML esti-
mator of ,811/, this is not directly usable since it involves the unknown parameters ,32

Due to the inclusion of the term g (¢p,) no closed form solutions for ,32 obtains from first
order conditions and iterative search methods will be required to maximize the log-likelihood
function.

As a first step in the maximization of the [, function with respect to B, one can con-
centrate 2, out of the likelihood by substituting the corresponding ML estimators for

051, e U;N. From first order conditions
oll T, 4.1 1 e 1
902 9 <0yi> + EH;/ (Qy SiQ2, ®IT> u,=
Yyt
T,

L1 B
B _§<0yz‘> 1+§<‘72‘> 2“;1“111‘:0



where uy,; = (S; @ Ir) u,i=1,.., N, the usual ML: variance estimator obtains

1
8@211' = Tu;/z‘uyi (34)

and the concentrated likelihood, apart from a constant, will thus have expression

c 'V, o~
Iy =Tlog (IC')) — 5 Zi log (52,) - (35)

To compute the ML estimates of coefficients 8, the following step-wise optimization routine
can be employed:

e given a starting value for ,32 compute ,311/ using (32);

0.

e with the value obtained for ,311/ maximize (35) with respect to S

e iterate until convergence.

4 An empirical illustration

To assess model performance in empirical applications, an analysis of the regional effects
of monetary policy in the U.S. was conducted, the choice being motivated both by the
availability of spatially disaggregated quarterly output series covering a long time span
and by the willingness to compare model’s predictions with the findings of other authors
that have previously thoroughly analyzed the topic. Particular emphasis will be given to
comparisons with the Carlino and the DeFina (1999) analysis of differential monetary policy
effects in the U.S. states, also referred to as the reference model in the following.

Analogously to the reference specification, the quarterly personal income series by the
Bureau of FEconomic Analysis for the 48 conterminous U.S. states plus the District of
Columbia was used to represent state output while the Federal Funds rate was assumed
as the monetary policy instrument. State income series were deflated using the aggregate
Consumer Price Index (CPI) series.

The period analyzed ranges from the second quarter of 1958 to the fourth quarter of
2000, and, as in the reference model, first differenced data including lags up to order 4 were
used for estimation. In a first specification the set of macro control variables x included
only an energy price variable, defined as the ratio of the Producer Price Index for fuels and
related products to the total Producer Price Index.

Regarding the spatial structure of the model, following a standard approach (see, e.g.,
Rey and Montoury, 1999) the first order spatial weights matrix was defined based on the
existence of a common border. Higher order matrices were then obtained applying the
graph based approach reviewed in section 2. Binary weights matrices were subsequently
row-normalized. As a preliminary choice, subject to possible revision, the spatial lag order
was set to 1 for each temporal lag, (Ao =X = ... =X\ =1).

Based on ML estimates significant contemporaneous feedback effects among states were
detected, with all ¢(i)1 coeflicients significant except in 3 cases and equal on average to 0.57,
with an average standard error of 0.11.
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To evaluate model’s ability in tracking the correlation features of the data, table 1 reports
the space-time autocorrelation function (see Pfeifer and Deutsch (1980) for a definition)
for the growth rate of the state income series and for the corresponding model residuals.
While the original series displays substantial correlation, especially high between spatially
lagged contemporaneous series and decaying progressively as the spatial lag increases, the
residual series appears essentially uncorrelated. (Given the absence of residual correlation
the preliminary lag order specification was accepted and the impulse response function was
computed based on the estimated autoregressive coefficient matrices.

TABLE 1: Space-time autocorrelation function for the state income series and model
residuals.

Growth rate of quarterly state personal income series

Spatial lag

Temporal lag 0 1 2 3 4
0 1.000 0.759 *** 0.692 *** (0635 ** (0613 e
1 0.119 *** 0.151 *** (0.151 *** 0.140 **  (0.137 ***
2 0.130 *** 0.115 *** 0.105 *** 0.095 *¢ 0.097 ***
3 0.190 *** 0.209 *** 0.206 *** 0.197 £ 0.200 HFF*
4 0.080 *** 0.084 *** 0.096 *** 0.088 *Ek (0.079 H*
5) -0.004 -0.014 * -0.024 FFF 0 _0.029 FRE O 0.034 Kx*
6 0.058 *** 0.046 *** 0.037 **  0.027 O (0.023 e
7 0.011 -0.014 * -0.022 *F* 0 _0.030 *FF .0.035 Kx*
8 -0.049 FFR _0.070 FFE O -0.078 KR _0.090 FFE -0.101 Kx*

Model 1 residual series

Spatial lag

Temporal lag | 0 1 2 3 4
0 1.000 0.048 *** 0.007 0.030 *** 0.008
1 -0.018 -0.013  * 0.015 ** -0.010 * 0.015 ***
2 0.019 0.015 ** -0.027 *** -0.005 0.016 ***
3 -0.011 0.003 -0.005 -0.016 ** 0.000
4 -0.004 -0.004 -0.014 ** 0.004 0.007
5) -0.005 0.006 -0.009 -0.006 -0.007
6 -0.001 -0.006 0.021 *** 0.003 0.010 *
7 0.004 -0.007 -0.005 0.005 -0.001
8 -0.014 -0.001 -0.013 **  -0.013 ** -0.014 **

* Significant at the 0.05 level.
**  Significant at the 0.01 level.
***  Significant at the 0.001 level.

15



TABLE 1. Continued
Model 2 residual series

Spatial lag

Temporal lag 0 1 2 3 4
0 1.000 0.021 *** 0.016 *** 0.011 * -0.003
1 -0.024 *  0.015 *  -0.032 FF _0.051 *Fx (.024 Fx*
2 -0.017 -0.006 -0.018 *** .0.012 **  -0.007
3 0.002 0.006 0.014 ** -0.004 0.007
4 -0.016 0.007 0.000 -0.012  ** 0.010 *
5) -0.001 0.003 0.003 -0.003 0.001
6 -0.001 0.010 0.011 * 0.001 0.002
7 0.002 -0.010 -0.001 -0.001 0.005
8 0.004 0.011 * 0.00%8 0.000 -0.013  **

* Significant at the 0.05 level.
**  Significant at the 0.01 level.
***  Significant at the 0.001 level.

The cumulative response of real income to a 1 percentage point shock to the Federal
Funds rate is plotted in Figure 1 separately for the different BEA regions. In each figure the
aggregate response, computed as an income weighted average of the state level responses,
is plotted as a reference value. Average response appears to be well behaved, declining
progressively after the policy shock and reaching a long run level of -0.95 percentage points
after about 12 quarters, a value comparable with the -1.16 found with the reference model.
The dispersion of long run (12 quarters cumulated) state responses, as measured by the
coeflicient of variation (computed as the ratio of the standard deviation to the weighted
average), is equal to 0.50, a value larger than the one obtained based on long run responses
reported by Carlino and Defina (0.40) and confirming the evidence of considerable differ-
ences in regional responses to monetary policy. Moreover, long run responses appear to
be in overall agreement with the corresponding estimates under the reference model, the
correlation coefficient between the two being equal to 0.48.

Among the states Arizona, Florida, Georgia, Oregon and Ohio display the largest re-
sponses while Montana, New Mexico, Texas and Colorado appear the least sensitive. At
the regional level, Southeast and Great Lakes present the majority of states responding
more than the average, while in the Southwest, Rocky Mountain and Plains regions income
response to monetary policy shocks appears generally smaller than average. The Mideast
displays the least variation, with all states responding close to the national aggregate. All
these features appear overall consistent with the findings of Carlino and the DeFina, and,
in particular, the different behaviour between core and non core regions appears to be
confirmed.
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FIGURE 1: Cumulative Impulse Response of the Growth Rate of State Real Personal
Income to Federal Funds Rate shock, grouped by BEA Region (Model 1).
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FIGURE 1: Continued.
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To check the robustness of the empirical findings, a second specification was estimated,
by augmenting the set of variables employed to control for macroeconomic disturbances
affecting state economies and monetary policy decisions. More specifically, following the
reference model, the CPI and a leading indicator (the OECD composite leading indicator
series) were added to the energy price variable. The lag structure and remaining features
of the model were left unchanged.

Residual correlation, displayed in table 1, is still very small and estimated contempora-
neous feedback effects among states appear to be overall unaffected, ¢, coefficients being
significant except in 2 cases, with an average value of 0.56 and an average standard error
of 0.11. Cumulative output responses to a shock to the Federal Funds Rate are plotted in
Figure 2. The average response is still well behaved and reaches the long run level of -0.74
after about 10 quarters, still a reasonable value, although evidencing a milder monetary
policy effect with respect both to the reference model and the baseline specification. The
dispersion of state-level responses appears to be intermediate between Model 1 and the
reference model, the coefficient of variation being equal to 0.45.

Differently from Model 1 individual states response functions display a damped pseudo-
oscillatory pattern, making the graphic evaluation of the responses less immediate. However
the results appear to be in overall agreement with the ones obtained for Model 1.The
correlation of long run responses is, in fact, equal to 0.47 and most qualitative findings
are essentially unchanged, the highest sensitivity still being recorded in states belonging
to the Southeast and Great Lakes regions, while the Mideast and Great Lakes regions still
display responses generally close to the national average. A different result is observed for
the Plains region, where the majority of the states now respond more than the average.
Southwest and Plains continue to display the largest dispersion of state responses around
the aggregate average.
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FIGURE 2: Cumulative Impulse Response of the Growth Rate of State Real Personal
Income to Federal Funds Rate shock, grouped by BEA Region (Model 2).
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FIGURE 2: Continued.
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5 Conclusions

In the paper the structural VAR model specification proposed in the literature for the analy-
sis of regional effects of monetary policy shocks has been extended incorporating information
on geographical proximity by means of techniques developed in fields of spatial time series
analysis and spatial econometrics. A priori constraints deriving from geographical informa-
tion, apart from making possible the estimation of a singe VAR model for moderate or large
spatial cross-sections (the size of the sample being limited only by computational feasibil-
ity), allow for the identification and estimation of simultaneous spatial feedback effects, a
feature generally neglected in regional applications of monetary SVARs.

As an empirical verification of model’s performance an analysis of the differential re-
sponse of real income to monetary policy was conducted using data for the U.S. states.
A baseline specification, controlling for the aggregate supply side shocks stemming from
energy price fluctuations, displayed substantial contemporanecous spatial feedback effects,
thus suggesting the effective need to model this channel of transmission of economic dis-
turbances. The estimated income responses to a 1 percentage point shock to the monetary
policy rate appeared to be generally well behaved and in overall agreement with the findings
of previous studies, with a slightly larger spatial dispersion of long run dynamic multipliers.

Following the formulation proposed by Carlino and DelFina (1999), a second specifica-
tion was estimated by augmenting the set of macroeconomic variables with the Consumer
Price Index and a leading indicator series. While quantitative results present differences,
qualitative findings appear overall confirmed. In particular, the enhanced control for com-
mon macroeconomic shocks does not alter the magnitude of the contemporanecous spatial
interaction coefficients, confirming the importance of simultaneous feedback effects when
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estimation is not carried out on very high frequency data.

Overall, while a larger set of empirical applications is required to fully evaluate the

utility of the proposed methodology, first empirical findings appear to validate the use of
geographical constraints in regional monetary VAR modeling, with respect to both the
plausibility of results and general agreement with the findings of previous studies.
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