

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Kucukmehmetoglu, Mehmet; Guldmann, Jean-Michel

Conference Paper International water resources allocation and conflicts - the case of the Euphrates and the Tigris

42nd Congress of the European Regional Science Association: "From Industry to Advanced Services - Perspectives of European Metropolitan Regions", August 27th - 31st, 2002, Dortmund, Germany

Provided in Cooperation with:

European Regional Science Association (ERSA)

Suggested Citation: Kucukmehmetoglu, Mehmet; Guldmann, Jean-Michel (2002) : International water resources allocation and conflicts - the case of the Euphrates and the Tigris, 42nd Congress of the European Regional Science Association: "From Industry to Advanced Services - Perspectives of European Metropolitan Regions", August 27th - 31st, 2002, Dortmund, Germany, European Regional Science Association (ERSA), Louvain-la-Neuve

This Version is available at: https://hdl.handle.net/10419/115649

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

INTERNATIONAL WATER RESOURCES ALLOCATION AND CONFLICTS The Case of the Euphrates and the Tigris¹

Mehmet Kucukmehmetoglu Gebze Yuksek Teknoloji Enstitutsu Kocaeli, Turkey

Jean-Michel Guldmann² Department of City and Regional Planning The Ohio State University Columbus, Ohio 43210, U.S.A.

 ¹ Paper prepared for presentation at the 42nd European Congress of the Regional Science Association, August 27-31, 2002, in Dortmund, Germany.
 ² Correspondence to: Professor Jean-Michel Guldmann, Department of City and Regional Planning, The Ohio State University, 190 W 17th Avenue, Columbus, Ohio, 43210, USA. Tel.: 614-2922257, Fax: 614-2927106, Email: Guldmann.1@osu.edu.

Abstract. This paper presents a linear programming model that allocates the waters of the Euphrates and Tigris rivers to agricultural and urban uses in the three riparian countries – Turkey, Syria, and Iraq – while maximizing the net aggregate benefits from these activities while accounting for water conveyance costs. Cooperative game theory concepts (core, Shapley value) are used to identify stable water allocations, under which all three countries find it beneficial to cooperate.

1. INTRODUCTION

The Mesopotamia region, within the boundaries of Turkey, Iraq, and Syria, is populated by different ethnic, national, and religious groups, which have long fought over the control of its fertile lands. Since the early 1970's, there has been an increase in tension among these countries regarding the sharing of the waters of the Euphrates and Tigris rivers. In particular, Turkey's development of Southeastern Anatolia, with water needed for agricultural and energy production projects, has been viewed as a threat to Syria and Iraq. This water problem is likely to be exacerbated in the future because of high population growth and urban development. To help analyze these issues, this paper formulates a water allocation optimization model, that represents, in network form, the system made of the two rivers and their various consumption (agriculture, urban centers, hydropower plants) and transshipment nodes, including the possibility of transferring water from the Euphrates to the Tigris. This model maximizes the aggregate net benefits of the three countries, including the gross benefits from water uses in agriculture, urban functions, and hydroelectricity, minus the costs of water conveyance. Cooperative game theory concepts (core, Shapley value) are used to identify stable water allocations, under which all three countries find it beneficial to cooperate. These analyses are carried out under different scenarios related to future energy prices, agricultural production efficiency, and total water availability.

The remainder of the paper is organized as follows. The structure of the model is described in Section 2. The results of a benchmark application are presented in Section 3. Cooperative game theory applications are analyzed in Section 4. Section 5 concludes the paper.

2. STRUCTURE OF THE EUPHRATES AND TIGRIS RIVER BASIN MODEL (ETRBM)

The existing literature on the Euphrates and the Tigris focuses on water politics, legal analyses, and water balances, but does not provide any model for the overall optimal utilization of the basin resources. In the general water resources literature, only a few studies focus on their optimum allocation at the national and international levels. Among them, four bear connections to the ETRBM: Booker & Young (1994), Dinar &

1

Wolf (1994a, 1994b), and Rogers (1969, 1993). With regard to the river basin system structure, the ETRBM is similar to the model developed by Booker and Young (1994) for the Colorado river (CRIM - Colorado River Institutional Model). They use a nonlinear framework and account for salinity. Their goal is to allocate scarce water resources among states by creating a water market. In contrast, the ETRBM is designed as a linear program where water is allocated to agricultural and urban demand nodes in the three countries, subject to upper and lower limits to nodal water allocations. Rogers (1969) uses linear programming to compute the optimum benefits of different coalitions in the international setting of the Ganges, and then evaluates the results in a nonzero-sum game for two countries (East Pakistan and India). Incorporating Nepal into his analysis, Rogers (1994) outlines the applicability of cooperative game theory and Pareto frontier analyses to water resources allocation problems. The ETRBM, on the other hand, involves extensive applications of core and Shapley value analyses to the ETRB. Dinar & Wolf (1994) and Wolf and Dinar (1994) illustrate the potential of water trading among Middle East countries (mainly Egypt and Israel), accounting for political constraints. They consider coalition alternatives but do not search for core solutions.

2.1. Spatial Structure of the ETRBM

The ETRBM includes 63 demand (*i*) and 45 supply (*j*) nodes (Figures 1). The supply nodes provide water for both urban and agricultural uses, and each demand node is served by only one supply node, taken as the most accessible node. Out of the 45 ETRBM *supply* nodes, 17 are in the Euphrates basin, and 28 in the Tigris basin. Turkey has 15 supply nodes: 5 in the Euphrates and 10 in the Tigris basins. Syria has 7 supply nodes, all in the Euphrates basin. Iraq has 22 supply nodes, 4 in the Euphrates and 18 in the Tigris basins. Node 45 represents the Gulf, which is assigned to Iraq, and represents the end point of all flows downstream There are three inter-basin links, all from the Tigris to the Euphrates, with one already built (from j=31 to j=16, the Tharthar Canal – see Bilen, 1994). While one link connects Turkey to Syria (from j=21 to j=12), the other two links are located within the borders of Iraq (from j=28 to j=14 and from j=31 to j=16). Of the 63 *demand* nodes, 37 are in the Euphrates basin: 16 for urban uses and 21 for agricultural uses. Of the 26 *demand* nodes in the Tigris basin, 10 are for urban uses and

16 for agriculture uses. Syria has 16 demand nodes, all of which are in the Euphrates basin, whereas Turkey and Iraq have 13 and 8 demand nodes in the Euphrates basin, and 11 and 15 demand nodes in the Tigris basin, respectively.

Figure 1: The Euphrates and Tigris River Basin Diagram

2.2. Mathematical Structure of the ETRBM

We first present the model equations, followed by the definitions of all the indices, variables, and parameters, and by a discussion of the objective function and constraints. The basic mode is made of Equations (1) - (10):

Maximize

$$NEB = \sum_{agr} VALAG \cdot WT_{i} - \sum_{j,agr} W_{j,i} \cdot DSD_{j,i} \cdot AGRTC + \sum_{urb} VALUR \cdot WT_{i} - \sum_{j,urb} W_{j,i} \cdot DSD_{j,i} \cdot URBTC + \sum_{j,l} EPR \cdot EG_{j} \cdot PQ_{j,l} - \left[(PQ_{28,14} \cdot CTSS \cdot DSS_{28,14}) + (PQ_{31,16} \cdot CTSS \cdot DSS_{31,16}) + (PQ_{21,12} \cdot CTSS \cdot DSS_{21,12}) \right]$$
(1)

Subject to:

$$\sum_{i} W_{i,j} + Q_j + REL_j = \sum_{i} RFR_{i,j} \cdot WT_i + TF_j + \sum_{l} PQ_{l,j} \quad j=1,...,45$$
(3)

$$WT_i \ge SIZE_i \cdot MINAGR \qquad \forall i \in agr \qquad (4)$$

$$WT_{i} \leq SIZE_{i} \cdot MAXAGR \qquad \forall i \in agr \qquad (5)$$

$$WT \geq SIZE_{i} \cdot MINURB \qquad \forall i \in urb \qquad (6)$$

$$\begin{split} WT_i &\geq SIZE_i \cdot MINURB & \forall i \in urb \quad (6) \\ WT_i &\leq SIZE_i \cdot MAXURB & \forall i \in urb \quad (7) \\ \sum_l PQ_{j,l} &= Q_j & \forall j \in inc \quad (8) \\ PQ_{j,l} &\leq M \cdot FTRNSS_{j,l} & \forall j and l \quad (9) \end{split}$$

$$W_{j,i} \le M \cdot FTRNSD_{j,i} \qquad \forall \ j \ and \ i \qquad (10)$$

Indices

<i>i</i> :	demand nodes (1 to 63)
j & l:	supply nodes (1 to 45)
agr:	set of agricultural demand nodes
urb:	set of urban demand nodes
inc:	all supply nodes, except the Gulf

Variables

NEB:	total benefit net of transportation costs	(\$)
$PQ_{j,l}$:	internodal flow (node j to node l)	(Mm^3)
$PQ_{21,12}$:	total water transfer from Turkey to Syria through the link project 21 to 12	(Mm^3)
PQ _{28,14} :	total water transfer from Turkey to Iraq through the link project 28 to 14	(Mm^3)
PQ _{31,16} :	total water transfer from Turkey to Iraq through the link project 31 to 16	(Mm^3)
Q_j :	total water flowing out of node j towards downstream nodes	(Mm^3)
$W_{j,i}$:	water transferred from supply node j to demand node i	(Mm^3)
WT_i :	total water consumption at node i	(Mm^3)

Parameters

agricultural water transport unit cost	(\$ per Mm ³ -km)
urban water transport unit cost	(\$ per Mm ³ -km)
agriculture water unit value	$(\$ \text{ per Mm}^3)$
urban water unit value	$(\$ \text{ per Mm}^3)$
internodal water transport unit cost	(\$ per Mm ³ -km)
distance from supply node j to demand node i	(km)
distance from supply node j to supply node l	(km)
energy price for electricity	(\$ per MWh)
electric generation capacities for the dam at supply node j	$(MWh per Mm^3)$
minimum agricultural consumption rate	(Mm ³ per ha)
maximum agricultural consumption rate	(Mm ³ per ha)
minimum urban consumption rate	(Mm ³ per inhabitant)
maximum urban consumption rate	(Mm ³ per inhabitant)
reservoir evaporation loss at supply node j	(Mm^3)
return flow rates from demand node i to supply node j	
size of demand node i (hectare for agricultural nodes, inhabitat	nts for urban nodes)
tributary and groundwater inflows at node j	(Mm^3)
feasibility of the link from node j to 1 (if feasible 1, otherwise	0)
feasibility of the link from node $j\ to\ i\ $ (if feasible 1, otherwise	0)
very large number	
	agricultural water transport unit cost urban water transport unit cost agriculture water unit value urban water unit value internodal water transport unit cost distance from supply node j to demand node i distance from supply node j to supply node l energy price for electricity electric generation capacities for the dam at supply node j minimum agricultural consumption rate maximum agricultural consumption rate maximum urban consumption rate reservoir evaporation loss at supply node j return flow rates from demand node i to supply node j size of demand node i (hectare for agricultural nodes, inhabitat tributary and groundwater inflows at node j feasibility of the link from node j to 1 (if feasible 1, otherwise feasibility of the link from node j to i (if feasible 1, otherwise very large number

Let *VALAG* be the unit value of water to agriculture, and let WT_i be the water consumption at agricultural node *i*. Then the total value of the water at *i* is *VALAG*·*WT_i*, and the total value of the water to all agricultural nodes is $\sum_{i \in agr} VALAG \cdot WT_i$. If W_{ji} is the amount of water transferred from node *j* to node *i*, DSD_{ji} the distance between the nodes, and *AGRTC* the transportation unit cost per unit distance (assumed to be spatially invariant), then the total water transport cost of getting water to node *i* is $\sum_j W_{ji} \cdot DSD_{ji} \cdot AGRTC$, and the total water transportation cost to all agricultural nodes is

 $\sum_{i \in agr} \sum_{j} W_{ji} \cdot DSD_{ji} \cdot AGRTC$. Hence the net benefits of water usage to agriculture is

$$\sum_{agr} VALAG \cdot WT_i - \sum_{j,agr} W_{j,i} \cdot DSD_{j,i} \cdot AGRTC$$
(11)

Similarly to water used in agriculture, let *VALUR* be the unit value of water to urban uses, and let WT_i be the water consumption at urban node *i*. Then the total value of the water at *i* is *VALUR·WT_i*, and the total value of the water to all urban nodes is $\sum_{i \in urb} VALAG \cdot WT_i$. If W_{ji} is the amount of water transferred from node *j* to node *i*, DSD_{ji} the distance between the nodes, and *URBTC* the transportation unit cost per unit distance (assumed to be spatially invariant), then the total water transport cost of getting water to node *i* is $\sum_{j} W_{ji} \cdot DSD_{ji} \cdot AGRTC$, and the total water transportation cost to all urban nodes is $\sum_{i \in urb} \sum_{j} W_{ji} \cdot DSD_{ji} \cdot AGRTC$. Hence the net benefits of water usage to urban centers is

$$\sum_{urb} VALUR \cdot WT_i - \sum_{j,urb} W_{j,i} \cdot DSD_{j,i} \cdot URBTC$$
(12)

Energy benefits are measured by the market value of the energy generated by the downstream flow of water. Let *EPR* be the unit market price of water-generated energy, EG_j the quantity of energy generated at node *j* per unit of water flow, and PQ_{jl} the flow of water into downstream node *l* from node *j*. Then the value of the energy generated at *j* by releasing water to downstream node *l* is $EPR \cdot EG_j \cdot PQ_{jl}$. The total value of energy generated in the basin is then

$$\sum_{j,l} EPR \cdot EG_j \cdot PQ_{j,l} \tag{13}$$

In the cases of interbasin water transfer links, let PQ_{jl} be the flow of water from node *j* into downstream node *l*, DSS_{jl} the distance between the supply nodes, and CTSSthe transportation unit cost per unit distance (assumed to be spatially invariant) between the two river basins for those links. Because there are only three links, they are explicitly represented by their indices. The costs are assumed born by the country receiving the water. Let $PQ_{2l,12}$ be the water flowing from Turkey to Syria, and $PQ_{28,14}$ and $PQ_{31,16}$ the water flows within Iraq. The transportation cost for link *j*-*l* is then PQ_{jl} ·*CTSS*·*DSS*_{jl}. The total interbasin link costs are then calculated as follows:

 $(PQ_{28,14} \cdot CTSS \cdot DSS_{28,14}) + (PQ_{31,16} \cdot CTSS \cdot DSS_{31,16}) + (PQ_{21,12} \cdot CTSS \cdot DSS_{21,12})$ (14) Combining the benefits and costs in Equations (11) – (14) yields the objective function represented by Equation (1). Equation (2) computes the total water delivery to demand node *i*, WT_{i} , as the sum of the deliveries W_{ji} from all *supply* nodes *j* to node *i*. The water inputs to supply node *j* are the tributary inflows TF_j , the return flows from the upstream withdrawals $TRFN_j$, taken as the sum of the products of return flow rates and withdrawals at node *i*, $\sum_i RFR_{ij}WT_i$, and water from upstream nodes *l* to *j*, $\sum_i PQ_{ij}$. The total input at node *j* is

$$\sum_{i} RFR_{i,j} \cdot WT_i + TF_j + \sum_{l} PQ_{l,j}$$
(15)

On the other hand, water leaving node *j* is allocated to reservoir evaporation REL_j , water withdrawal for agricultural and urban uses $W_{j,i}$, and water release to downstream nodes Q_j . Then the total amount of water leaving node *j* is

$$\sum_{i} W_{i,j} + Q_j + REL_j \tag{16}$$

Combining Equations (15) and (16) leads to the water balance constraint (3) at node *j*. The parameter *SIZE_i* is a measure of the size of demand node *i* (either urban or agriculture), and *MINAGR*, *MINURB*, *MAXAGR*, *MAXURB* represent minimum usage rates – to sustain agricultural and urban activities – and maximum usage rates – to prevent excessive withdrawals. The total water consumption at node *i*, $\sum_{j} W_{ji}$, is noted WT_i , and is constrained by Equations (4) – (7). In Equation (8), Q_j is expressed as the sum of all water flows released from node *j* to downstream nodes *l*, equal to $\sum_{l} PQ_{jl}$. Equations (9) and (10) eliminates infeasible supply-to-supply and supply-to-demand node linkages by using the 0-1 parameters *FTRNSS_{il a}* and *FTRNSD_{jl}*.

The procedures for estimating the model input parameters are fully described in Kucukmehmetoglu (2002). They involve regional and general data sources. Supply data, including tributary and return flows, and evaporation rates, were drawn from Kolars (1986, 1992, 1994), Kliot (1994), Bagis (1989), and Altinbilek (1997). Demand data were drawn from Kolars (1992), Kliot (1994), Altinbilek (1997), the CIA (1998), Dinar and Wolf (1994), Wolf and Dinar (1994), Howitt, Mann, and Vaux (1982), and Howe and Easter (1971). Finally, transportation cost and energy data were drawn from Hirshleifer et al. (1969), Gibbons (1986), and Bilen (1994).

3. BENCHMARK MODEL APPLICATION

We assume that all three countries have the same agricultural efficiency (VALAG = $$25,000 / \text{Mm}^3$), the same energy price (EPR = \$25/Mwh), and that total tributary flows are average (TTF = 81.9 Billion M^3). Table 1 presents the net overall system benefit (NEB), the gross benefits form water use (TECBW) and from energy generation (TECBE), the total water transportation costs for urban uses (TTCURB) and for agricultural uses (TTCAGR), and the cost of interbasin transfer (TTRSS). The table also includes the total tributary flows (TFT), the total reserve evaporation (RELT), the water released to the Gulf (GULF), the total water withdrawal (TWT), the total return flow (FRET), the total in-out balance (TOTBAL), the total agricultural water withdrawal (TWAGR), the minimum required total water withdrawal for agriculture (TWAGRMIN), the maximum total water withdrawal for agriculture (TWAGRMAX), the total urban water withdrawal (TWURB), the minimum required total water withdrawal for urban use (TWURBMIN), and the maximum total water withdrawal for urban use (TWURBMAX). We observe that (1) energy benefits constitute nearly 50% of overall returns, (2) return flows make up almost 50% of the water input from tributaries, and are available for reuse, and (3) total water withdrawal is very close to the total tributary flow input, whereas water released to the Gulf makes up to 35% of the total tributary inflow.

NEB	\$ 2,407,731,200	TFT	81,920	Mm ³	TWAGR	77,505	Mm ³
TECBW	\$ 2,091,003,000	RELT	17,750	Mm ³	TWAGRMIN	-	Mm ³
TECBE	\$ 1,175,087,800	GULF	28,225	Mm ³	TWAGRMAX	122,519	Mm ³
TTCURB	\$ 32,145,138	TWT	78,528	Mm ³	TWURB	1,022	Mm ³
TTCAGR	\$ 826,214,547	FRET	42,582	Mm ³	TWURBMIN	-	Mm ³
TTRSS	\$ -	TOTBAL	-	Mm ³	TWURBMAX	1,881	Mm ³

Table 1: General Summary of the Benchmark Solution

Table 2 presents the benefits for the overall system and each country, and includes total economic benefits (TECB), total transportation costs (TTC), net economic benefits (NBEN), the ratios of economic benefits to transportation costs (R), the percentage of economic benefits by category (PTECBW: all withdrawals; PTECBE: energy; PTECBWU: withdrawals for urban uses; PTECBWA: withdrawals for agricultural uses), and the percentages of transportation costs by use (PTTCURB: urban; PTTCAGR:

agriculture; PTTRSS: inter-basin). Although the net benefits of Turkey and Iraq are close, Turkey derives most of her benefits (75%) from energy generation, and Iraq from agriculture (90%). The overall system optimization involves, first, the utilization of the energy generation potential at the upstream nodes, and then the utilization of the agricultural potential at the downstream nodes. The opportunity cost of withdrawing water at the upstream nodes is higher than that of withdrawing water at the downstream nodes. In Syria, the benefits are almost equally shared (56% for water withdrawals and 44% for energy generation). The ratios of benefits to costs show that Turkey has the lowest transport cost related to water withdrawal, and Iraq the highest. Urban transportation costs constitute a small share of total transportation costs in the whole system and in each county.

All Co	ountries	Tu	rkey	Syr	ia	Iraq		
TECB	\$ 3,266,090,800	TECBt	\$ 1,161,095,600	TECBs	\$ 294,048,029	ТЕСВі	\$ 1,810,947,300	
TTC	\$ 858,359,685	TTCt	\$ 144,065,122	TTCs	\$ 60,237,792	TTCi	\$ 654,056,771	
NBEN	\$ 2,407,731,200	NBENt	\$ 1,017,030,400	NBENs	\$ 233,810,237	NBENi	\$ 1,156,890,500	
R	3.81	Rt	8.06	Rs	4.88	Ri	2.77	
PTECBW	64.0%	PTECBWt	24.6%	PTECBWs	56.3%	PTECBWi	90.5%	
PTECBE	36.0%	PTECBEt	75.4%	PTECBEs	43.7%	PTECBEi	9.5%	
PTECBWU	4.7%	PTECBWUt	3.0%	PTECBWUs	2.9%	PTECBWUi	6.1%	
PTECBWA	59.3%	PTECBWAt	21.6%	PTECBWAs	53.3%	PTECBWAi	84.5%	
PTTCURB	3.7%	PTTCURBt	7.6%	PTTCURBs	4.7%	PTTCURBi	2.8%	
PTTCAGR	96.3%	PTTCAGRt	92.4%	PTTCAGRs	95.3%	PTTCAGRi	97.2%	
PTTRSS	0.0%	PTTRSSt	0.0%	PTTRSSs	0.0%	PTTRSSi	0.0%	

Table 2: Summary of the Components of Country Benefits

Tables 3 and 4 present the optimum water allocations by country (t=Turkey, s=Syria, i=Iraq), basin (e=Euphrates, t=Tigris), and use (a=agriculture, u=urban). The highest withdrawal (61,934 Mm³) is for agriculture in Iraq. Turkey, with the second largest agricultural land (nearly two thirds of Iraqi land), withdraws only one sixth of Iraqi withdrawal (10,263 Mm³). Urban withdrawals (1,022 Mm³) are significantly lower than agricultural withdrawal (77,505 Mm³).

4. COOPERATION AND CONFLICT: GAME – THEORETIC ANALYSES

4.1. Individual and Coalition Strategies

Figure 2 illustrates country interactions under the different possible configurations of coalition/cooperation. Figure 2.a illustrates the case of independent, individual action

Country, Dashi, and Osc										
WTteu	45									
WTtea	3,402	WTte	3,447							
WTttu	190									
WTtta	6,626	WTtt	6,816	WTt	10,263					
WTseu	58									
WTsea	6,273	WTse	6,331	WTs	6,331					
WTieu	78									
WTiea	25,800	WTie	25,878							
WTitu	652									
WTita	35,405	WTit	36,057	WTi	61,934					

Table 3: Water Resources Allocation by Country, Basin, and Use

Table 4: Water Resources Allocation by Country and Use

1.4	5	5		
	WTtu	235		
	WTsu	58		
	WTiu	730	WTu	1,022
	WTta	10,028		
	WTsa	6,273		
	WTia	61,205	WTa	77,505

by each country. In Step 1, Turkey optimally utilizes the resources in its border. Next, in Step 2, Syria, taking the return flows and released water from Turkey as exogenously determined (in Step 1), optimally utilizes this exogenous input and the resources within its border. Finally, in Step 3, Iraq optimally utilizes its internal resources and the water inputs from Turkey and Syria (released and return flow waters), as determined in Steps 1 and 2. The step sequence clearly reflects the dominance of upstream countries over downstream countries. In Figure 4.b, the various two-country coalitions are presented. The first diagram displays the Turkish and Syrian coalition, with Iraq acting independently. In Step 1, Turkey and Syria utilizes the resources available within their territories jointly and optimally. In Step 2, Iraq optimizes the use of the resources available within its territory, together with the exogenous input from Turkey and Syria. The second diagram presents the Syrian and Iraqi coalition, with Turkey acting independently. In Step 1, Turkey optimally uses the available resources within its territory, and releases the unused water for the Syrian and Iraqi coalition, which takes this input as exogenous, and optimally uses all its available resources. The *last diagram* explains the interactions between the Turkey-Iraq coalition, and Syria acting independently. Because both the coalition and Syria are affected by each other's decisions and output, a stable solution is represented by a Nash equilibrium, which is reached when the sequential optimizations stop because there is no longer any change in Figure 4.c illustrates the grand coalition, which is equivalent to the their solutions. benchmark model.

The ETRBM is appropriately adjusted to reflect the optimization decisions of individual countries and coalitions of countries. The derived optimal benefits are defined below:

NEBt	net economic benefit of Turkey
NEBs	net economic benefit of Syria
NEBi	net economic benefit of Iraq
NEBts	net economic benefit of Turkey and Syria
NEBiTS	net economic benefit of Iraq given the TS coalition
NEBtiS	net economic benefit of Turkey and Iraq given Syria's action
NEBsTI	net economic benefit of Syria given the TI coalition
NEBsi	net economic benefit of Syria and Iraq
NEBtsi	net economic benefit of Turkey, Syria, and Iraq

4.2. Core, Shapley Value, and Subsidy Determination

Consider the total benefits of the grand coalition, *NEBtsi*. This is clearly the maximum aggregate benefit achievable by the three countries. The problem is to allocate this aggregate benefit among the three countries in a way that will persuade them to accept this allocation. Let X_t , X_s , and X_i be the benefits allocated to Turkey, Syria, and Iraq, respectively. This allocation should then verify that

$$X_t + X_s + X_i = NEBtsi \tag{17}$$

This allocation, to be sustainable, should verify both individual and coalition rationality constraints, so that no country acting alone or within a coalition, has an incentive to reject the allocation. The three coalition constraints are straightforwardly represented by Equations (22) - (24). The case of the individual rationality constraints is a little more complicated. Indeed, a given country c may act individually under two situations: (a) the other two countries also act individually, and (b) they act as a coalition. The benefits to country c under these two situations need not be the same. We assume that country c aims at guaranteeing to itself the minimum of these two benefits, hence the formulation of the constraints (19) – (21).

The equality (17) and inequalities (19) – (24) may or may not have a solution. In order to find out, the standard approach is to transform this system of inequalities/equality into a linear program (LP), by maximizing or minimizing any linear function of the variables (X_t , X_s , X_i). If the LP has no solution, then the system of in inequalities/equality has no solution, and the core is empty. A variation on this approach is to modify Equation (17) by introducing a new variable, Z, leading to Equation (25), and to use as the LP objective function Z. Hence, the LP is represented by Equations (18) – (25):

Maximize

$$F = Z \tag{18}$$

subject to

$$X_{t} \ge \min(NEBt, NEBtSI) = NEBt^{\min}$$
⁽¹⁹⁾

$$X_{s} \ge \min(NEBs, NEBsTI) = NEBs^{\min}$$
⁽²⁰⁾

$$X_{i} \ge \min(NEBi, NEBiTS) = NEBi^{\min}$$
(21)

$$X_t + X_s \ge NEBts \tag{22}$$

$$X_{t} + X_{i} \ge NEBti \tag{23}$$

$$X_s + X_i \ge NEBsi \tag{24}$$

$$X_t + X_s + X_i + Z = NEBtsi$$
(25)

If the optimal Z^* is strictly equal to zero, then the core exists but is reduced to only one point, i.e., only one allocation is acceptable. If Z^* is positive, the core is nonempty and made of an infinite number of feasible allocations. The allocation obtained with Z^* is sustainable and allows a supra-governmental authority to extract the maximum benefits from the three countries for saving for future use. In this case, Z^* can be viewed as the maximum tax. If Z^* is negative, then the core is empty. However, if a benefit subsidy in the amount (absolute value) of Z^* were added to *NEBtsi*, then a sustainable allocation would be obtained. Hence, Z^* can be viewed as the minimum subsidy to obtain a sustainable benefit allocation.

To illustrate the application of the Shapley method, consider the case of Iraq as the player joining other coalitions. The first case is that of Iraq joining the "empty" coalitions, with the incremental benefit

$$IB_{i/\phi} = NEBi^{\min} \tag{26}$$

Next, Iraq can join either Turkey or Syria, with the incremental benefits:

$$IB_{i/t} = NEBti - NEBt^{\min}$$
⁽²⁷⁾

$$IB_{i/s} = NEBsi - NEBs^{\min}$$
⁽²⁸⁾

Finally, Iraq can join the Turkey-Syria coalition, with the incremental benefits:

$$IB_{i/ts} = NEBtsi - NEBts^{\min}$$
⁽²⁹⁾

These incremental benefits are then weighted by the corresponding probabilities of occurrence, and the result is the Shapley allocation of benefits to Iraq.

4.3. Benefits Under Different Cooperation Scenarios

The modeling approach presented in the previous sections has been applied under each of 27 parameter scenarios, which are defined as combinations of assumptions regarding energy prices, agricultural productivities, and total water resources. These scenarios are presented in Table 5.

Ener	gy Price	es (EPR)	$\mathbf{EPR} = \$0$	EPR = \$25	EPR = \$100					
	Water	Resources	Agricultural Productivity (VALAG) Weights							
	(TT)	$\mathbf{F}=\mathbf{Bm}^{3}$	Turkey: 1.1	Syria: 1.0	Iraq: 0.9					
	59.8	Minimum	A11	A12	A13					
	81.9	Average	A21	A22	A23					
	92.6	Maximum	A31	A32	A33					
	Water	Resources	Agricultural Pr	Agricultural Productivity (VALAG) Weights						
	(TT	F=Bm ³)	Turkey: 1.0	Syria: 1.0	Iraq: 1.0					
	59.8	Minimum	B11	B12	B13					
К	81.9	Average	B21	B22	B23					
	92.6	Maximum	B31	B32	B33					
	Water	Resources	Agricultural Pr	oductivity (VAI	LAG) Weights					
	(TTF=Bm ³)		Turkey: 0.9	Syria: 1.0	Iraq: 1.1					
	59.8	Minimum	C11	C12	C13					
	81.9	Average	C21	C22	C23					
	92.6	Maximum	C31	C32	C33					

 Table 5: Parameter Scenarios

The country benefits are presented in Table 6, which is organized along the model Table 5. Table 6 presents the benefits for each country and the total benefit (column) for each cooperation scenario: all countries making individual choices (IND) and countries making choices within coalitions (TS, TI, SI, TSI - row). In the cases of two-country coalitions, Table 6 also provides the benefits for the remaining country (which are marked with an underline in the table). The cases where the benefits are the same for all cooperation scenarios (IND, TS, TI, SI, TSI) are bold-typed. Italic types are used in the total benefit column to indicate cooperation scenarios where a country achieves less than 95% of its maximum possible benefits are highlighted, pointing to significant adverse effects. For instance, under parameter scenarios A32, Syria achieves a benefit of \$ 239,928,000 under coalition TI, which represents about 93% of its maximum benefit of \$ 258,236,000 under the grand coalition (TSI). As expected, Table 6 points to benefits increasing with (a)

increasing energy prices (EPR= $\$0 \rightarrow \$25 \rightarrow \$100$), (b) increasing resources availability (TTF=59.8 $\rightarrow \$1.9 \rightarrow 92.6 \text{ Bm}^3$), and (c) a shift of agricultural productivity from Turkey (case A) to Iraq (case C). For instance, the maximum benefit under scenario A11 of \$1,139,167,000 increases to \$7,004,740,000 under scenario C33. The scenarios A31 and B31, corresponding to zero energy price and highest resources availability, lead to the same solution under all five cooperation scenarios (IND, TS, TI, SI, TSI), of course implying a core made of one point only. When EPR=\$0, the difference between the 5 cooperation scenarios (for each parametric scenario) are very small in terms of total benefits, except in the case C11 (\$1,280,585 vs. \$1,301,699,000). Larger differences take place, for individual countries (Syria and Iraq) and in total, when EPR=\$25.

4.4. Core Analyses and Shapley Allocations

This section presents the results obtained by (1) solving the linear program, and (2) applying the Shapley formula. For each of the 27 different parameter scenarios, we first find out whether the core exists, and, if it does, whether it is reduced to a unique allocation. If it does not, we measure the minimum subsidy needed to create a core. Finally, we check whether the Shapley allocations are in the core. Tables 7-12 present the results.

In Table 7 the highlighted cells indicate the cases where there is no core. Out of the 27 cases, 6 have no core (B22, B32, C22, C32, C23, C33), 12 have a single-allocation core, and 9 have a multiple-allocation core (i.e., there is an infinite number of allocations in the core). A core always exists under (1) EPR=\$0, and (2) agricultural productivity case A (Turkey is more productive). Most of the non-core cases take place when Iraq is more productive (case C), when EPR=\$25 or \$100, and when resources are more abundant. This is not surprising, as these situations allow individual countries to achieve higher benefits on their own (agriculture for Iraq, energy for Turkey), making it more difficult to achieve a sustainable allocation.

Table 8 presents the optimal values of the Z variable in the linear program. Positive Z values characterize multiple-allocation cores, and present the maximum extractable taxes leading to a residual single-allocation core. Negative Z values

					<u> </u>				<u> </u>			
Coalition	Turkey	Syria	Iraq	Total	Turkey	Syria	Iraq	Total	Turkey	Syria	Iraq	Total
IND	254,509	98,918	784,656	1,138,083	775,635	176,124	889,146	1,840,906	2,642,012	457,449	1,231,575	4,331,037
TS	254,509	98,918	784,656	1,138,083	773,714	183,244	896,653	1,853,611	2,640,174	469,890	1,206,183	4,316,247
т	254,509	98.918	784.656	1.138.083	771.297	164,937	894.049	1.830.282	2.632.618	457,449	1.253.120	4.343.187
SI	254 509	98 721	785 937	1 139 167	775.635	176 124	889 146	1 840 906	2 642 012	457 449	1 231 575	4 331 037
TSI	254,500	08 721	785.027	1,139,167	772 714	192 244	806 652	1,040,000	2,642,612	457,440	1,251,575	4 242 197
151	254,509	98,721	183,931	1,139,107	775,714	165,244	890,033	1,655,011	2,032,018	437,449	1,235,120	4,545,187
IND	255,532	105,423	830,594	1,191,550	1,044,020	226,690	1,002,314	2,273,025	3,712,484	640,196	1,568,091	5,920,771
18	255,532	105,423	830,594	1,191,550	1,042,099	233,810	1,003,879	2,279,789	3,710,646	652,638	1,542,133	5,905,417
ТІ	255,532	105,423	830,594	1,191,550	1,039,682	215,502	1,008,804	2,263,988	3,703,090	640,196	1,589,636	5,932,922
SI	255,532	105,226	831,490	1,192,248	1,044,020	226,690	1,002,314	2,273,025	3,712,484	640,196	1,568,091	5,920,771
TSI	255,532	105,226	831,490	1,192,248	1,042,099	233,810	1,003,879	2,279,789	3,703,090	640,196	1,589,636	5,932,922
IND	256.024	108.570	834.049	1,198,643	1.173.617	251.116	1.043.653	2.468.385	4,229,395	728.459	1.728.899	6.686.753
TS	256.024	108,570	834.049	1.198.643	1.171.696	258,236	1.045.218	2,475,149	4.227.557	740,901	1.702.942	6.671.399
т	256.024	108.570	834.049	1 198 643	1 169 278	239 928	1 050 142	2 459 349	4 220 000	728 459	1 750 444	6 698 904
ST	256.024	108 570	834 049	1 108 643	1,173,617	251,116	1,030,112	2,169,315	4 229 395	728,159	1 728 800	6 686 753
TSI	256,024	108,570	834.040	1,170,045	1,173,017	251,110	1,045,055	2,400,303	4,220,000	728,450	1,720,077	6,608,004
151	230,024	100,570	034,049	1,198,045	1,171,090	238,230	1,045,218	2,475,149	4,220,000	728,439	1,750,444	0,098,904
IND	212,941	98,918	904,815	1,216,675	749,007	172,056	1,033,616	1,954,679	2,635,033	457,449	1,366,866	4,459,348
TS	212,941	98,918	904,815	1,216,675	748,895	183,244	1,030,162	1,962,301	2,628,745	469,890	1,342,690	4,441,326
TI	212,941	98,918	904,815	1,216,675	749,007	172,056	1,033,616	1,954,679	2,629,855	457,449	1,390,718	4,478,022
SI	212,941	98,721	907,023	1,218,684	749,007	172,056	1,033,616	1,954,679	2,635,033	453,986	1,370,392	4,459,411
TSI	212,941	98,721	907,023	1,218,684	741,320	187,752	1,038,348	1,967,419	2,629,855	453,986	1,394,244	4,478,085
IND	213,715	105.423	982,204	1.301.342	1.017.142	222.622	1.163.380	2,403,145	3,705,255	640,196	1.721.102	6.066.553
TS	213,715	105,423	982,204	1,301,342	1,017,030	233,810	1,156,891	2,407,731	3,698,967	652,638	1,695,145	6,046,749
TI	213,715	105,423	982,204	1,301,342	1,017,142	222,622	1,163,380	2,403,145	3,699,303	640,196	1,745,808	6,085,308
SI	213,715	105,226	983,746	1,302,687	1,017,142	222,622	1,163,380	2,403,145	3,705,255	640,196	1,721,102	6,066,553
TSI	213,715	105.226	983,746	1.302.687	1.017.030	233,810	1.156.891	2,407,731	3,699,303	640,196	1.745.808	6.085.308
IND	214 086	109 570	097 220	1 200 076	1 146 610	247.049	1 204 078	2 508 645	4 222 046	729 450	1 002 171	6 922 675
TS	214,080	108,570	987,320	1,309,970	1,140,019	247,046	1,204,978	2,598,045	4,222,040	740.901	1,002,171	6 812 871
15	214,000	100,570	087,320	1,309,976	1,140,507	230,230	1,170,407	2,005,252	4,215,750	790,701	1,007,297	6 851 460
II GT	214,080	108,570	987,320	1,309,976	1,140,019	247,048	1,204,978	2,598,645	4,215,725	728,459	1,907,287	0,851,409
51	214,086	108,570	987,320	1,309,976	1,146,619	247,048	1,204,978	2,598,645	4,222,046	/28,459	1,882,171	6,832,675
181	214,086	108,570	987,320	1,309,976	1,146,507	258,236	1,198,489	2,603,232	4,215,723	728,459	1,907,287	6,851,469
IND	173,876	88,148	1,018,560	1,280,585	728,713	172,056	1,167,286	2,068,056	2,631,268	457,449	1,526,771	4,615,487
TS	171,373	98,918	1,024,975	1,295,266	721,211	187,752	1,176,901	2,085,863	2,620,530	469,890	1,504,043	4,594,463
TI	173,876	88,148	1,018,560	1,280,585	728,713	172,056	1,167,286	2,068,056	2,629,855	457,449	1,529,077	4,616,381
SI	173,876	87,951	1,023,206	1,285,033	728,713	172,056	1,167,286	2,068,056	2,631,268	453,986	1,531,775	4,617,029
TSI	153,629	98,721	1,049,350	1,301,699	721,211	187,752	1,176,901	2,085,863	2,629,855	453,986	1,534,082	4,617,923
IND	174 400	94 653	1 130 390	1 399 443	996 598	222 622	1 318 002	2 537 222	3 701 240	640 196	1 895 658	6 237 094
TS	171,897	105.423	1,133,814	1,411,135	989.096	238,318	1.312.503	2,539,917	3,690,502	652.638	1.869.701	6,212,840
TI	174 400	94 653	1 130 390	1 399 443	996 598	222 622	1 318 002	2 537 222	3 699 303	640 196	1 898 820	6 238 319
SI	174 400	94 456	1 132 570	1 401 434	996 598	222,022	1 318 002	2,537,222	3 701 240	640 196	1 895 658	6 237 094
TSI	171 807	105 224	1 126 002	1 112 126	080.004	222,022	1 212 502	2,531,222	2 600 202	640 104	1,000,000	6 228 210
1.51	1/1,09/	105,220	1,150,005	1,415,120	707,090	230,318	1,312,303	2,339,917	3,077,303	040,190	1,070,020	0,230,319
IND	174,651	97,800	1,140,591	1,413,043	1,125,954	247,048	1,359,860	2,732,863	4,217,910	728,459	2,056,987	7,003,356
15	172,148	108,570	1,140,591	1,421,310	1,118,452	262,744	1,354,361	2,735,557	4,207,172	740,901	2,031,030	6,979,102
TI	174,651	97,800	1,140,591	1,413,043	1,125,954	247,048	1,359,860	2,732,863	4,215,723	728,459	2,060,558	7,004,740
SI	174,651	97,800	1,140,591	1,413,043	1,125,954	247,048	1,359,860	2,732,863	4,217,910	728,459	2,056,987	7,003,356
TSI	172,148	108,570	1,140,591	1,421,310	1,118,452	262,744	1,354,361	2,735,557	4,215,723	728,459	2,060,558	7,004,740

Table 6: Benefits Under Different Cooperation Scenarios (\$1000)

characterize non-existing core, and represent the minimum subsidies that would have to be added to the grand coalition benefits to create a single-allocation core. Finally, zero Z values characterize single-allocation cores. Table 8 shows that positive Z values vary between 0.00% and 0.99% of the grand coalition benefits, whereas negative Z values vary between 0.00% and 0.06% of these benefits.

Table 7 also indicates whether the Shapley allocation is in the core or not. When energy is not a factor (EPR=\$0), all Shapley allocations are in the core. On the other hand, in the third column (EPR=\$100) none of the Shapley allocations are in core. This is

so because, under high energy prices, the Shapley method assigns more power to Turkey and Syria, and less to Iraq, hence assigns more benefits to Turkey and Syria, thus putting the allocation out of the core.

	Core Existence	Single or Multiple Core	Shapley in or out of the Core		Core Existence	Single or Multiple Core	Shapley in or out of the Core		Core Existence	Single or Multiple Core	Shapley in or out of the Core
A11	YES	Single	IN	A12	YES	Multiple	IN	A13	YES	Single	NOT IN
A21	YES	Single	IN	A22	YES	Multiple	NOT IN	A23	YES	Single	NOT IN
A31	YES	Single	IN	A32	YES	Multiple	NOT IN	A33	YES	Single	NOT IN
B11	YES	Single	IN	B12	YES	Multiple	IN	B13	YES	Multiple	NOT IN
B21	YES	Single	IN	B22	NO			B23	YES	Single	NOT IN
B31	YES	Single	IN	B32	NO			B33	YES	Single	NOT IN
C11	YES	Multiple	IN	C12	YES	Multiple	IN	C13	YES	Multiple	NOT IN
C21	YES	Multiple	IN	C22	NO			C23	NO		
C31	YES	Single	IN	C32	NO			C33	NO		

Table 7: Core Analysis Summary

The highlighted areas show the cases without a core.

Table 8: Core Analyses: Taxes versus Subsidies (in Parenthesis) and their Percentages of the Grand Coalition Benefits (\$1000)

			Grand Coalition				Grand Coalition				Grand Coalition
Scenario	Tax/Subsidy Z	Z/B (%)	Benefit (B)	Scenario	Tax/Subsidy Z	Z/B (%)	Benefit (B)	Scenario	Tax/Subsidy Z	Z/B (%)	Benefit (B)
A11	0	0.00	1,139,167	A12	7,507	0.40	1,853,611	A13	0	0.00	4,343,187
A21	0	0.00	1,192,248	A22	1,565	0.07	2,279,789	A23	0	0.00	5,932,922
A31	0	0.00	1,198,643	A32	1,565	0.06	2,475,149	A33	0	0.00	6,698,904
D14		0.00	1 210 (01	D 44	6.110	0.04	1.077.410	P (1)	(2)	0.00	1 150 005
R11	0	0.00	1,218,684	B12	5,118	0.26	1,967,419	B13	63	0.00	4,478,085
B21	0	0.00	1,302,687	B22	(951)	-0.04	2,407,731	B23	0	0.00	6,085,308
B31	0	0.00	1,309,976	B32	(951)	-0.04	2,603,232	B33	0	0.00	6,851,469
C11	12,847	0.99	1,301,699	C12	9,614	0.46	2,085,863	C13	366	0.01	4,617,923
C21	5,416	0.38	1,413,126	C22	(1,402)	-0.06	2,539,917	C23	(239)	0.00	6,238,319
C31	0	0.00	1,421,310	C32	(1,402)	-0.05	2,735,557	C33	(160)	0.00	7,004,740

Table 9 presents the allocations corresponding to (1) the minimum country benefits, (2) the single core solution (possibly with subsidies), and (3) the Shapley method. Tables 10 and 11 point to the incremental benefits derived by each country joining the grand coalition or accepting the Shapley allocation, respectively, over the minimum benefits derived from individual action. It is clear that Iraq is the major beneficiary of these allocations when the energy price is highest (EPR=\$100), with Turkey as a significant secondary beneficiary when Turkey's agricultural productivity is also highest (case A). However, Turkey's incremental benefits are strongly reduced under Iraq's strong agricultural productivity (case C). The incremental benefits to Syria are strong when all productivities are equal (case B) and EPR=\$25.

Allocation	Turkey	Svria	Iraq	Turkey	Svria	Iraq	Turkey	Svria	Iraq
Minimum	254,509	98,918	784.656	775,635	164,937	889.146	2.642.012	457,449	1.206.183
Core	254,509	100,002	784,656	776,199	180,759	889,146	2,652,616	457,449	1,233,123
Shapley	254,509	99,460	785,198	782,695	177,309	893,607	2,654,087	463,448	1,225,652
Z	0	0	0	3,170	718	3,619	0	0	0
Minimum	255,532	105,423	830,594	1,044,020	215,502	1,002,314	3,712,484	640,196	1,542,133
Core	255,532	106,121	830,594	1,046,172	229,738	1,002,314	3,723,087	640,196	1,569,638
Shapley	255,532	105,772	830,943	1,049,365	225,365	1,005,059	3,724,653	646,290	1,561,979
Z	0	0	0	720	155	690	0	0	0
Minimum	256,024	108,570	834,049	1,173,617	239,928	1,043,653	4,229,395	728,459	1,702,942
Core	256,024	108,570	834,049	1,175,768	254,164	1,043,653	4,239,998	728,459	1,730,447
Shapley	256,024	108,570	834,049	1,178,961	249,791	1,046,398	4,241,564	734,552	1,722,788
Z	0	0	0	745	158	662	0	0	0
Minimum	212,941	98,918	904,815	749,007	172,056	1,030,162	2,635,033	457,449	1,342,690
Core	212,941	100,928	904,815	752,461	179,678	1,030,162	2,641,187	457,449	1,379,386
Shapley	212,941	99,923	905,820	755,675	178,725	1,033,019	2,649,425	462,535	1,366,125
Z	0	0	0	1,966	465	2,687	37	6	19
Minimum	213,715	105,423	982,204	1,017,142	222,622	1,156,891	3,705,255	640,196	1,695,145
Core	213,715	106,768	982,204	1,022,680	228,160	1,157,842	3,711,408	640,196	1,733,703
Shapley	213,715	106,096	982,877	1,021,599	227,079	1,159,054	3,719,984	645,548	1,719,776
Z	0	0	0				0	0	0
Minimum	214,086	108,570	987,320	1,146,619	247,048	1,198,489	4,222,046	728,459	1,856,213
Core	214,086	108,570	987,320	1,152,157	252,586	1,199,440	4,228,199	728,459	1,894,810
Shapley	214,086	108,570	987,320	1,151,075	251,505	1,200,652	4,236,794	733,811	1,880,864
Z	0	0	0				0	0	0
Minimum	173,876	88,148	1,018,560	728,713	172,056	1,167,286	2,631,268	457,449	1,504,043
Core	177,695	92,596	1,018,560	728,713	180,250	1,167,286	2,631,796	458,625	1,527,137
Shapley	180,810	97,305	1,023,584	736,014	179,358	1,170,491	2,635,787	462,291	1,519,845
Z	1,785	960	10,103	3,392	827	5,395	209	37	120
Minimum	174,400	94,653	1,130,390	996,598	222,622	1,312,503	3,701,240	640,196	1,869,701
Core	180,675	96,645	1,130,390	1,000,695	226,719	1,313,905	3,702,704	640,436	1,895,419
Shapley	179,675	100,924	1,132,527	999,778	225,802	1,314,336	3,706,462	644,807	1,887,050
Z	689	387	4,341						
Minimum	174,651	97,800	1,140,591	1,125,954	247,048	1,354,361	4,217,910	728,459	2,031,030
Core	174,651	106,067	1,140,591	1,130,051	251,145	1,355,764	4,219,454	728,619	2,056,827
Shapley	178,785	101,934	1,140,591	1,129,135	250,228	1,356,194	4,223,212	733,069	2,048,458
Z	0	0	0						

Table 9: Minimum Benefit, Core, Shapley, and Tax Allocations (\$1000)

Z shows the allocation of the tax, using as weights the Shapley values, and provides additional country benefits, which may be added to the core allocations.

Scenario	Turkey	Syria	Iraq	Scenario	Turkey	Syria	Iraq	Scenario	Turkey	Syria	Iraq
A11	0	1,084	0	A12	565	15,822	0	A13	10,604	0	26,940
A21	0	698	0	A22	2,151	14,236	0	A23	10,603	0	27,505
A31	0	0	0	A32	2,151	14,236	0	A33	10,603	0	27,505
B11	0	2,010	0	B12	3,454	7,622	0	B13	6,154	0	36,696
B21	0	1,345	0	B22	5,538	5,538	951	B23	6,153	0	38,558
B31	0	0	0	B32	5,538	5,538	951	B33	6,153	0	38,597
C11	3,819	4,448	0	C12	0	8,193	0	C13	528	1,176	23,094
C21	6,275	1,992	0	C22	4,097	4,097	1,402	C23	1,464	239	25,718
C31	0	8.267	0	C32	4.097	4.097	1.402	C33	1.544	160	25,798

The highlighted area shows where the side payments go.

6. CONCLUSION

The major contribution of this paper is, first, the development of the ETRBM as a backbone model, and, second, its application, using the best available data, to analyses of whether it is possible to find a distribution of the total ETRBM benefits to the three riparian countries – Turkey, Syria, and Iraq – that will provide them incentives to join the

Scenario	Turkey	Syria	Iraq	Scenario	Turkey	Syria	Iraq	Scenario	Turkey	Syria	Iraq
A11	0	542	542	A12	7,060	12,372	4,461	A13	12,075	5,999	19,469
A21	0	349	349	A22	5,344	9,863	2,745	A23	12,169	6,093	19,846
A31	0	0	0	A32	5,344	9,863	2,745	A33	12,169	6,094	19,846
B11	0	1.005	1.005	B12	6 668	6 668	2 858	B13	14 392	5.086	23 434
B21	0	672	672	B22	4,457	4,456	2,163	B23	14,729	5,352	24,631
B31	0	0	0	B32	4,456	4,456	2,163	B33	14,748	5,352	24,650
C11	6.022	0.157	5.024	012	7 201	7 201	2.005	C12	4.510	4.042	15,000
CII	6,933	9,157	5,024	CIZ	/,301	7,301	3,205	CIS	4,519	4,843	15,802
C21	5,275	6,271	2,137	C22	3,180	3,180	1,833	C23	5,223	4,610	17,350
C31	4,133	4,133	0	C32	3,180	3,180	1,833	C33	5,302	4,610	17,429

 Table 11: Shapley Allocations Minus Minimum Country Benefits (\$1000)

water allocation plan that provides the maximum aggregate benefits. This assessment has required an in-depth analysis of the decision-making processes of the three countries and any of their coalitions, through extensive adaptations of the ETRBM. Using concepts and methods of cooperative game theory, we find that, out of the 27 parameter scenarios considered, 21 were characterized by a non-empty core, where such cooperation can be rationally induced. The 6 empty-core cases can be transformed into core cases with a small subsidy, at most 0.06% of the total joint benefit. These cases correspond to high energy prices and high Iraqi agricultural productivity, which clearly strongly benefit Turkey and Iraq acting independently. The Shapley allocation, which is based on the incremental economic power of the participants, also reflects these energy and agricultural productivity effects.

REFERENCES

Altinbilek, H. D. (1997). Water and Land Resources Development in Southeastern Turkey. <u>Water Resources Development, 13(3)</u>, 311-332.

Bagis, A. I. (1989) The Cradle of Civilization. Istanbul: Gelisim Yayinlari A. S.

Bilen, O. (1994). <u>Prospect for Technical Cooperation in the Euphrates – Tigris Basin</u> in eds. Biswas, A. K. (1994) <u>International Waters of the Middle East: From Euphrates-</u> <u>Tigris to Nile</u>. Bombay: Oxford University Press.

Booker, J. F. & Young, R. A. (1994). Modeling Intrastate and Interstate Markets for Colorado River Water Resources. <u>Journal of Environmental Economics and Management</u>, 26, 66-87.

CIA (1998) Homepage: http://www.odci.gov/cia/publications/factbook/index.html

Dinar, A. & Letey, J. (1991). Agricultural Water Marketing, Allocative Efficiency, and Drainage Reduction. Journal of Environmental Economics and Management, 20, 210-223.

Dinar, A. & Wolf A. (1994) Middle East Hydropolitics and Equity Measures for Water-Sharing Agreements. Journal of Social, Political & Economic Studies, 19(1), 69-93.

Dinar, A. & Wolf, A. (1994). International Markets for Water and Potential for Regional Cooperation: Economic and Political Perspectives in the Western Middle East. <u>Economic Development and Cultural Change</u>, 43, 43-66.

Gibbons, D. C. (1986). <u>The Economic Value of Water</u>. Washington, DC: The Johns Hopkins Press.

Hirshleifer, J., De Haven, J. C., & Milliman, J. W. (1969). <u>Water Supply: Economics</u>, <u>Technology</u>, and Policy. Chicago: The University of Chicago Press.

Howe, C. W. & Easter, K. W. (1971). <u>Interbasin Transfer of Water: Economic Issues and</u> <u>Impacts</u>. Baltimore, Maryland: The Johns Hopkins Press.

Howitt, R. E., Mann, D. E., & Vaux, H. J. Jr. (1982). The Economics of Water Allocation. In Engelbert E. A. & Scheuring, A. F. (Eds.), <u>Competition for California</u> <u>Water Alternative Resolutions</u>. Berkeley: University of California Press.

Kliot, N. (1994). Water resources and conflict in the Middle East. London: Roudledge.

Kolars, J. F. (1986). Hydro-geographic background to the utilization of international rivers in the Middle East. <u>American Society of International Law Proceedings</u>, 80, 250-258

Kolars, J. F. (1992). Water Resources of the Middle East. <u>Canadian Journal of Development</u> <u>Studies</u>, Special Issue.

Kolars, J. F. (1994). Problems of International River Management, in eds. Biswas, A. K. (1994) <u>International Waters of the Middle East: From Euphrates-Tigris to Nile</u>. Bombay: Oxford University Press.

Kolars, J. F. & Mitchell, W. A. (1991). <u>The Euphrates River and the Southeast Anatolia</u> <u>Development Project</u>. Carbondale and Edwardsville: Southern Illinois University Press

Kucukmehmetoglu, M (2002). Water Resources Allocation and Conflicts – The Case of the Euphrates and the Tigris. Ph.D. Dissertation, The Ohio State University, Columbus, Ohio.

Roger, P. (1969). A Game Theory Approach to the Problems of International River Basin. <u>Water</u> <u>Resources Research</u>, 5, 749-760.

Roger, P. (1993). The Value of Cooperation Resolving International River Basin Disputes. Natural Resources Forum, May, 117-131.

Wolf, A. T. & Dinar, A. (1994). Middle East Hydropolitics and Equity Measures for Water-Sharing Agreements. <u>The Journal of Social, Political & Economic Studies, 19</u>(1), 69-93.