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Abstract

Scale effect of city size and cost advantage of railway over automo-
biles are examined in a simple park-and-ride commuter system. The
main results are:

• The unit fare charged by a monopoly railway firm is irrelevant to
the city size.

• The unit fare in a symmetric equilibrium under monopolistic
competition is decreasing in the city size.

• The unit fare in a symmetric zero-profit kinked equilibrium is
increasing in the city size.

• The unit fare in the social optimum is decreasing in the city size.
• The operation constraints are relaxed in a larger city.

1 Introduction

From the view point of global environmental issues (e.g., reduction of CO2,
NOx or so), it is urgent to save energy in transport sector as well. There
have been several ways proposed for saving energy in urban transportation,
such as congestion tax on automobile, utilization of light rail in down towns,
introduction of ITS technology for improving efficiency of transport energy,
and development of battery cars. One of those classic proposals is so-called
”park-and-ride” system that we use automobiles from houses to railway
station nearby and transfer to railways to CBD, that is, working places. By
this way, the private use of automobiles should be reduced so that congestion
as well as negative externality for environment in and around downtown
would be improved much.

In fact, they sometimes try to facilitate parking lots with reasonable
charge around railway stations in suburban areas in several countries. How-
ever, it seems that the system is employed in very limited number of stations
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and there should be much room we could introduce the system for the pur-
pose above.

In the literature of urban economics, there is a stream on related issues
of railway competition (see Kanemoto 1984 among others), yet it lacked for
the environmental view point. While transportation engineers argued the
importance of such system, policy implication of the system has not been
derived enough from economic point of view.

In this paper, we will develop a simple model of park-and-ride system
in urban setting. That is, we suppose a monocentric city where several rail-
ways start from a single CBD to suburb area spoke-wise, and households use
automobiles first from each own house to nearest railway station circumfer-
entially where they transfer to railways bound for CBD, or they may choose
to ride private cars directly through to CBD . Hence, there are competi-
tions between railways as well as between railway and automobiles in this
model. Since direct commuting by automobiles works as ”outside good” in
monopolistic competition among railways those are differentiated in loca-
tion or space, we follow the model by Salop (1979) that analyses the work
of outside good in horizontally differentiated market and obtains perverse
characteristics due to the introduction of kinked demand curve.

In this paper, moreover, we focus in scale effects of city size and cost
advantage of railway over automobiles. Our main results are as follows:
The fare per mile charged by a monopoly railway firm may not be relevant
to the city size; the fare in a symmetric equilibrium under monopolistic
competition is decreasing with the city size; the fare in a symmetric zero-
profit kinked equilibrium is increasing with the city size; the fare of social
optimum is decreasing with the city size.

This paper is organized as follows. Section 2 describes the basic model
and presents the results with market competition. Social optimum is exam-
ined in Section 3 followed by Concluding Remarks in Section 4.

2 Model

2.1 Basic Structure

Spatial configuration of the city

The radius of the city considered is denoted by m. The cetral business
district, so-called CBD, is assumed as a point for simplicity. The distance
from the CBD is denoted by x. Each household lives in a unit interval
circumfentially. The number of households on the concentric circle at x is
2πx.

Total population or the number of households (let us asume each house-
hold consists of one person for simplicity) in the city is
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N = 2πρ

Z m

0
xdx = πρm2 (1)

where ρ denotes population density as a constant. That is, we assume
each household consumes same space of land here.

Each household commutes to an office at CBD everyday, when she chooses
to use solely an automobile or the combination of automobile and railway
(i.e., park-and-ride system) as a commute vehicle.

Automobile
It is asuumed that roads radiate from CBD in all directions. In other

words, each household could drive to her office radially from any residence
in the city. This seems so simplified, yet it is for contrasting the charac-
teristics of automobile and railway. The cost function of automobile from a
residential lot at x is given as

C(x) = cxα (2)

where α > 0 stands for a distance elasticity of the cost of driving automo-
biles. If α > 1, marginal cost of automobile increases as one drives for a
longer distance. It is either because a higher heat makes the engine less
efficient or because a longer driving makes the driver less comfortable.

One-way transportation cost facing to a household who lives at x and
uses solely an automobile is cxα. If all households the city use solely auto-
mobiles, the total transportation costs are 2πc

Rm
0 xαdx = 2π c

α+1m
α+1.

Railway
A railway radiates from CBD in a direction, if exists. The marginal cost

is constant and normalized to zero. A fixed cost F > 0 is required for laying
one unit of railway.

The railway fare for passing through x is denoted by p(x). The cumula-
tive railway fare from CBD to a station at x is given by Px ≡

R x
0 p(x)dx.

If there is a station at x from CBD, households residing at x in any
directions from CBD can use the park-and-ride system.

A household who lives at x from CBD and apart from the station by
y drives circumfentially from her lot to the station, and switches to the
railway. The park-and-ride transportation cost of the agent is C(y) + Px.
She will use the park-and-ride system if and only if

C(y) + Px ≤ C(x). (3)

2.2 Monopoly

Suppose that n railway firms operate in the city yet each market is not
overlapped. Let us call this phase as monopoly. In this subsection, we
focus on this situation while each railway firm in the city lays railroads to z
(1 ≤ z ≤ m).
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Proposition 1 For any x within z, (i) the ratio of the railway fare to the
automobile cost is α/(1 +α), and (ii) the share of the park-and-ride system
is 1/π(1 + α)

1
α .

Proof. A marginal consumer at x, yx, is characterized by

cyαx + Px = cx
α.

The demand for railway at x is given by

dMx = 2yx = 2

µ
xα − Px

c

¶ 1
α

. (4)

Maximization problem for the monopoly is formalized as

ΠM = max
Px

Z z

0
Pxd

M
x − zF, (5)

subject to (4).
The optimality condition for Px is

dMx + Px
∂dMx
∂Px

= 0,

which gives the optimal fare

PMx =
α

1 + α
cxα. (6)

p(x) =
α2

1 + α
cxα−1 (7)

Substituting (6) into (4), the demand for railway at x is given by

dMx =
2

(1 + α)
1
α

x. (8)

The share of park-and-ride system of each firm is

dMx /2πx = 1/π(1 + α)
1
α . (9)

Equation (6) states that the fare charged by a monopoly railway firm is a
fraction α/(1+α) of the transportation cost of automobiles, ckα. The greater
α, the greater the cost advantage of monopolist, and the higher the fare is.
Equation (9) states that the share of park-and-ride system is constant for
any x, and decreasing in α. Note that it is implicitly assumed here that the
maximized profit of a firm is nonnegative, or we assume sufficiently small F
to guarantee for it.
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Lemma 2 Under monopoly, the unit fare is constant if and only if the
transportation cost of automobiles is linear, i.e., α = 1. The unit fare is
given by p = c/2.

Proof. The lemma follows immediately from equation (7).

Lemma 3 If a monopoly firm lays railways to z and gains positive profits,
then it has an incentive to extend the railway to z +∆z.

Proof. Substituting (6) and (8) into (5), the monopoly profit is

ΠM(z) = z
h
2α(1 + α)−

1+α
α cG(z)− F

i
,

where G(.) stands for a measure of city size;

G(m) ≡ 1

m

Z m

0
xα+1dx.

The firm operates if and only if ΠM(z) ≥ 0, i.e.,

F ≤ 2α(1 + α)−
1+α
α cG(z). (10)

The net return from extending the line to the next circle is

ΠM(z +∆z)−ΠM(z) = 2α(1 + α)−
1+α
α c(z +∆z)α+1 − F

≥ 2α(1 + α)−
1+α
α c

£
(z +∆z)α+1 −G(z)¤ .

The inequality comes from equation (10). It follows that (z+∆z)α+1 >
G(z) because xα+1 is convex. Therefore, ΠM(z +∆z) > ΠM(z).

Lemma 2 says that a monopoly railway firm will extend the line to the
edge of the city, if it is profitable. The next lemma follows immediately.

Lemma 4 Railway firms operates in the city if

F ≤ 2α(1 + α)−
1+α
α cG(m) ≡ F̄M . (11)

The maximum number of profitable monopolists is nM = π(1+α)
1
α if we do

not care about integer characteristic of number of firms.

2.3 Competition among railway firms

Suppose that n railway firms operate in the city and that each market is
overlapped. In short run, the number of firms is supposed to be fixed. Let
us call this phase monopolistic competition.
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Proposition 5 In a symmetric equilibrium under monopolistic competition
among railways, (i) the ratio of the railway fare to the automobile cost is
2α(π/n)α. (ii) If α = 1, then the unit fare is constant at 2πc/n.

Proof. Suppose that the neighboring firms charge P̄x. A marginal
consumer at x, yx, is characterized by

Px + cy
α
x = P̄x + c

µ
2πx

n
− yx

¶α

,

which gives demand per firm, dcx = 2yx(Px).
Note that

∂dcx
∂Px

= − 2

αc
h
yα−1
x +

¡
2πx
n − yx

¢α−1
i .

Maximization problem for a monopolistically competitive firm is formal-
ized as

Πc = max
Px

Z m

0
Pxd

c
x −mF. (12)

The optimality condition is dcx+Px
∂dcx
∂Px

= 0. From symmetry, equilibrium
condition is Px = P̄x ≡ P cx. Thus, the optimal fare is as follows:

P cx = 2α
³π
n

´α · cxα.

If α = 1, then the unit fare is given by pcx = 2πc/n.
Profit per firm is

Πc = m

·
4αc

³π
n

´α+1
G(m)− F

¸
.

In long run, the number of railway firms is determined by the free entry
condition, Πc = 0.

In equilibrium,

nc = π

·
4αc

F
G(m)

¸ 1
1+α

, (13)

P cx = (2α)
1

1+α

·
F

2cG(m)

¸ α
1+α

cxα. (14)

The necessary condition that each market is overlapped is

P cx + c
³xπ
nc

´α ≤ cxα.

Substituting (13) and (14), the operation constraint for monopolistic
competition is

F ≤ 4α(1 + 2α)− 1+α
α cG(m) ≡ F̄ c. (15)
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Lemma 6 F̄ c < F̄M for any α > 0.

Proof. From (11) and (15), the condition F̄ c < F̄M is equivalent to

(1 + 2α)
1+α
α > 2(1 + α)

1+α
α ,

or
1 +

α

1 + α
> 2

1+α
α .

Define the difference function by f(t) = 1+ t−2t, where t ≡ α/(1+α) ∈
(0, 1) because α > 0. Observe that f is continuous and differentiable, and
that f(0) = f(1) = 0, and f 00 < 0. Therefore f(t) > 0 for any t ∈ (0, 1).

2.4 Competition between railway firms and automobiles

Salop (1979) examines a zero-profit kinked equilibrium in which the com-
parative statics results are perverse. Let us examine this phase in this sub-
section.

Proposition 7 In a zero-profit kinked equilibrium, (i) the ratio of the rail-
way fare to the automobile cost is 1 − (π/n)α. (ii) If α = 1, then the unit
fare is constant at c(1− π/n).

Proof. There exists a critical fare, P̂x, such that

Px + c

µ
dMx
2

¶α

= cxα if P̂x ≤ Px ≤ cxα,

Px + c

µ
dcx
2

¶α

= P̄x + c

µ
2πx

n
− d

c
x

2

¶α

if Px ≤ P̂x.

The critical fare is derived by setting dMx = dcx = 2πx/n.

P̂x =
h
1−

³π
n

´αi
cxα, (16)

d̂x =
2πx

n
. (17)

If α = 1, then the unit fare is

p̂x = c(1− π

n
). (18)

Profit per firm:

Πk =

Z m

0
P̂xd̂x −mF

= m
nπ

n

h
1−

³π
n

´αi
2cG(m)− F

o
.
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The zero profit condition requires that

π

n

h
1−

³π
n

´αi
=

F

2cG(m)
. (19)

Denote the LHS of (19) by a function f(t) = t(1 − tα), where t ≡
π/n ∈ (0, 1). The maximum is given by f((1 + α)−

1
α ) = α(1 + α)−

1+α
α .

The necessary condition for the existence of the kinked equilibrium is that
α(1 + α)−

1+α
α ≥ F/2cG(m), i.e.,

F ≤ 2α(1 + α)−
1+α
α cG(m) = F̄M . (20)

If equation (20) is satisfied, the number of railway firms is given by
equation (19), and the fare and market share are given by (16) and (17).1

A comparative statics shows that the number of railway firms is decreas-
ing in F , and increasing in m. Thus, the fare in the symmetric zero-profit
kinked equilibrium is increasing in the city size. This seems perverse, yet
intuitive explanation is as follows.

• As the city size becomes greater, more railway firms enter the market.
• The market share per firm shrinks.

• The competitor of railway firms is not the neighboring firms but au-
tomobiles.

• As the market shrinks, a marginal consumer comes closer to a railway
firm.

• Each railway firm can charge a higher fare.

2.5 Social optimum

A planner chooses the number of railways, n, and fares, Px, x ∈ (0,m), to
minimize the total transportation costs under the balanced budget and the
participation constraints.

Is it optimal to allow some households to use only automobiles? In our
model the answer is no because of the assumed cost structure. The following
lemma will be useful.

Lemma 8 At the optimum, all households use the park-and-ride system.
1Equation (19) has two soltions. But the relevant solution is the larger one. To see this

suppose that the fixed cost F goes to zero. By equation (19), π/n must be zero or one.
But the economically relevant soltion is zero, which corresponds to a sufficiently large n.
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Proof. Assume that each market is segmented. As a monopoly case, a
marginal consumer is given by ȳ = (xα − Px/c) 1

α .
The sum of transportation cost for park-and-ride users is

CPR = 2n

Z m

0

Z x̄

0
(Px + cy

α)dydx (21)

The sum of transportation cost for automobile users is

CA =

Z m

0
2n

³πx
n
− ȳ

´
cxαdx. (22)

The budget constraint for the park-and-ride system is

2n

Z m

0
Pxȳdx = mF. (23)

Substituting (23) into (21), the total transportation cost is given by

CPR + CA = m [F + 2πcG(m)]− 2n

1 + α

Z m

0
(Px + αcxα)ȳdx.

As long as each market is segmented, i.e., ȳ < πx/n, the planner can
reduce the sum of transportation costs by increasing n. Therefore, at the
optimum, each market must be overlapped, i.e., all households use the park-
and-ride system.

Proposition 9 At the optimum, the number of railway firms and the rail-
way fair are given by

n∗ = [2(1 + α)]−
1

1+αnc,

P ∗x = [2(1 + α)]−
1

1+αP cx.

Proof. The sum of transportation costs is given by

C =

Z m

0

Ã
2πxPx + 2n

Z πx
n

0
cyαdy

!
dx

=

Z m

0

·
2πxPx +

2nc

1 + α

³πx
n

´α+1
¸
dx. (24)

The budget constraint isZ m

0
2πxPxdx−mnF = 0, (25)

and the participation constraints are

c
³πx
n

´α
+ Px ≤ cxα, (26)
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for x ∈ (0,m).
Substituting (25) into (24),

C = m

·
nF +

2c

1 + α

π1+α

nα
G(m)

¸
. (27)

Minimizing the total costs (27) with respect to n gives the optimal num-
ber of railways:

n∗ = π

·
2αcG(m)

(1 + α)F

¸ 1
1+α

. (28)

Comparing (28) with (13), the ratio is given by [2(1 + α)]−
1

1+α .
Substituting (28) into (25),Z m

0
xPxdx =

mF

2

·
2αcG(m)

(1 + α)F

¸ 1
1+α

.

Infer that Px = Acxα. As the LHS isAcmG(m), A = (α/(1+α))
1

1+α (F/(2cG(m)))
α

1+α .
Therefore,

P ∗x =
µ

α

1 + α

¶ 1
1+α

·
F

2cG(m)

¸ α
1+α

cxα. (29)

Comparing (29) with (14), the ratio is given by [2(1 + α)]−
1

1+α .

Denote the ratio by a function g = [2(1 + α)]
1

1+α . Logarithmic differ-
entiation gives g0/g = [1− ln 2(1 + α)]/(1 + α)2. The ratio is increasing in
α ∈ (0, e/2 − 1), and decreasing in α ∈ (e/2 − 1,∞). Further note that
g(0) = g(1) = 2. To the extent that the marginal cost of automobile is
decreasing (α < 1), the ratio belongs to (2, ee/2). The optimal number of
railway firms is at the most a half of the monopolistically competitive one.
Besides, to the extent that the marginal cost is increasing (α > 1), the ra-
tio belongs to (1, 2) and the optimal number of railway firms is relatively
large. Interestingly, within the range of α ∈ (0, e/2 − 1), the number of
railway firms tends to decrease when the cost performance of automobile is
worsened.

Substituting (28) and (29) into (26), the operation constraint for the
social optimum is

F ≤ 2α(1 + α)
1
α (1 + 2α)−

1+α
α cG(m) ≡ F̄ ∗. (30)

Lemma 10 F̄ ∗ R F̄ c if α S 1.

Proof. Comparing (30) with (15),

F̄ ∗

F̄ c
=
1

2
(1 + α)

1
α .
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The proof completes because the RHS is a decreasing function of α.
A possible commuter system depends on (i) railway cost F , (ii) automo-

bile cost α (and c), and (iii) city size m.

• In a larger city, the operation constraints are relaxed.
• If 0 < α < 1, then F̄ c < F̄ ∗ < F̄m.

• If α > 1, then F̄ ∗ < F̄ c < F̄m.

3 Conclusion

Altough the results are interesting, our model is still a prototype of urban
transportation network. Thus, there are many ways to extend the results
of this paper.

First, though lot size is fixed for simplicity in this paper, endogenizing it
will provide much more flavor of spatial economics as well as reality. Second,
we do not consider congestion in automobile network. Since the congestion
control by tax is important subject recently, it is better to incorporate the
congestion-related phenomena into our park-and-ride setting. Third, we
had better generalize the form of cost functions of transportation, namely
fixed and marginal costs as well. Finally, while we assume a single CBD,
say monocenter, in this model, there are several CBDs in reality, e.g., Tokyo,
Paris, etc. In such multicentric cities, the effects of park-and-ride might be
different from those in monocentric city.
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