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A General Spatial ARMA Model: Theory and Application

René van der Kruk

Tinbergen Institute and Vrije Universiteit Amsterdam, department of Spatial Economics

http://www.renevdkruk.com

Abstract: In this paper the theoretical framework of a general spatial auto-regressive moving-average
model is presented together with a hedonic pricing application. There is a close relationship between
univerate auto-regressive and moving average (ARMA) time series models on the one hand and
univerate spatial auto-regressive and moving average (SARMA) models on the other hand. The
SARMA model is the spatial analogue of the well-known class of ARMA models that is developed to
model time-series processes. While ARMA models relate observations in time using so-called time link
matrices, in SARMA models observations in space are related using spatial link matrices. The idea
behind both types of link matrices is that a certain structure is imposed on the data before the actual
parameters are estimated. The advantage of the general SARMA model is that the scale of spatial
processes can be modeled explicitly: a separate spatial link parameter can be estimated for each (higher

order) spatial link.

1 Introduction

In this paper the theoretical framework of a general spatial auto-regressive moving-
average model is presented together with a hedonic pricing application. There is a
close relationship between univerate auto-regressive and moving average (ARMA)
time series models on the one hand and univerate spatial auto-regressive and moving
average (SARMA) models on the other hand. The SARMA model is the spatial
analogue of the well-known class of ARMA models that is developed to model time-
series processes. While ARMA models relate observations in time using so-called
time link matrices, in SARMA models observations in space are related using spatial
link matrices. The idea behind both types of link matrices is that a certain structure is
imposed on the data before the actual parameters are estimated. The advantage of the
general SARMA model is that the scale of spatial processes can be modeled
explicitly: a separate spatial link parameter can be estimated for each (higher order)

spatial link.


mailto:wetlands@renevdkruk.com

This paper is organized as follows. In section 2 the univariate ARMA time series
model is formulated in terms of time link matrices. In section 3 the univariate spatial
SARMA model is formulated using spatial link matrices. In section 4 an example is
used to clarify some issues related to the use of spatial link matrices. In section 5 the
maximum likelihood estimation procedure for the SARMA model is treated. Most
theoretical results on the SARMA model are collected in the appendix of this paper.
In section 6 the spatial autocorrelation function is introduced. In section 7 the
likelihood ratio test for (residual) spatial autocorrelation in the general SARMA
model is described. In section. In section 8 the data are described that are used in
section 9 to apply the theoretical results presented in this paper. Section 10 gives a

short summary of the main results and findings.

2 The univariate ARMA time series model

The general auto-regressive and moving average (ARMA) time series model is used
to describe a process that evolves over time. In this time series context values of a
variable at a certain point in time are related to past values. Consider the most

commonly used (linear) functional form of the ARMA(p,g) model:

v, =60y, +--~+0pyt_p +e ta g, +taE, =

q%t-q
(1) D q
= zeiyt—i &+ zaigt—i
i=1 i=1

In the equation above p is the order of the auto-regressive part and ¢ denotes the order

of the moving average part of the time series.

The time structure of the ARMA model in equation (1) can easily be revealed:

(2) y:ieiﬂy+g+iai];8
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In this equation:

3) y=0r ¥ o ow)
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The matrix 7; represents the relations between all time series observations in the
sample and can therefore be called a time link matrix. The key role of the time link
matrices is to impose some structure on the time units that is necessary to estimate the
model. For example, the first order time link matrix 77 relates time units that are
closest in terms of time. In general, the p-th order time link matrix 7, relates time
units that are p steps away in time space. Note that 7; = (7;) and that 7} equals the
zero matrix if i > T, where T + 1 is the total number of time series observations. This

is the reason why the condition max{p,q} < T is usually imposed.

In order to illuminate the notation used above a special case of the ARMA model is

presented here as an example.

Example: the univariate AR(p) time series model

The AR(p) time series model is usually expressed as:
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This equation can also be expressed in terms of time link matrices (assuming 7> 2p):
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What this example shows is that time link matrices impose a structure on the time
series observations. This structure does not seem to be entirely arbitrary. For example,
it seems reasonable to assume that y, is influenced by y,; and not the other way
around. Moreover, one presupposes that the impact of y, on y,; is the same as the
effect of y;5 on y;s5;, namely €;. In other words, in the standard ARMA model the
parameters are assumed to be constant over time. This assumption arises from the fact
that, by definition, the time period between ¢ = 14 and ¢ = 14 - i equals the time lag
between t =15and ¢t =15 - i.

In the next section the link matrix concept introduced in this section is generalized in
order to be able to construct a new class of ARMA models, which can be used to

describe spatial processes.




3 The univariate spatial ARMA model
The spatial analogue of the time link matrix introduced in the previous section is the
spatial link matrix. The general univariate spatial auto-regressive moving average,

SARMA(p,q), model can be formulated as follows:

0.Sy+e
)
aSe+u

p
y=2
i=1
q
e=)y.
i=1
Note that the disturbance structure of the spatial ARMA model is different from the

one used in time series ARMA models. In equation (9):

(10) Si ={Si,jk}

1 if spatial units j and & are i — th order neighbors
(l 1) Sl Jk =

0 elsewhere
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The matrix §; encloses the relations between all spatial observations in the sample. S;
is the first order spatial link matrix that is commonly used in spatial literature. It
defines the first order spatial relation between adjacent spatial units. Sp is the highest
order spatial link matrix, i.e. it represents the highest order spatial contiguity. Note
that it is usually not the case that S; = (S;)" and that S; equals the zero matrix if i > D,
where D is the diameter of the graph depicting all spatial relations (see figure 1). It

seems useful to choose p and ¢ such that that max {p,q} < D.



The advantage of the SARMA model is that the order of contiguity of spatial units
can be modeled explicitly: a separate spatial link parameter can be estimated for each
(higher order) spatial link. The following section gives an idea of how to construct a
SARMA model using spatial data. It also treats some differences between time link

and spatial link matrices.

4 Spatial link matrices
Anselin and Smirnov (1996) use a simple example of spatial dependence, which can

be represented by the following graph.

Figure 1: graph representing the dependence between spatial units.

Some of the spatial units in the graph have a direct connection in space, while other
spatial units are only related indirectly. For example, one could think of cities that can
be linked by means of infrastructure or countries that may or may not have certain

socio-cultural relations.



Equations (10) and (11) can now be used to construct the spatial link matrices

corresponding to the spatial relations depicted in figure 1:

01011 0] 001 00 0] (0000 0 0 1]
100110 001000 00000 1
00001 1 110100 000000
(13) S, = S, = S, =
110010 001000 00000 1
111100 000001 000000
00100 0] 00001 0] 1101 0 0]

This example shows some of the key differences between time link matrices and
spatial link matrices.

First, while every row in a time link matrix relates a single observation in time to
only one past observation, this one-to-one relation is not necessarily present when it
comes to spatial link matrices. For example, the first order spatial link matrix relates
spatial unit 1 to spatial units 2, 4, and 5. The third order spatial link matrix, however,
does not relate spatial unit 1 to any other spatial unit.

Second, in contrast with time series processes it is usually the case that distances
between neighboring spatial units are not constant over space. This can be a source of
serious modelling problems if spatial units are clustered, i.e. if some spatial units are
close to each other and if others are more remote. A simple alternative would be to

replace equation (11) by the following equation:

04 { f(d,,) if spatial units j and k are i — th order neighbors
Sl Jk = ’

0 elsewhere

where f(d;;) denotes a function f{.) of d;;, the (Euclidian) distance between spatial

units j and k. For example, Pace and Gilley (1997) use normalized weights based on



the distance between spatial units. However, the problem with this ad hoc solution is
that estimation results will crucially depend on the specification of the distance

function f7.).

In the application that is treated later on in this paper the spatial link matrices are
constructed as follows: in the first stage the Euclidian distances between all spatial
units are calculated and sorted ascending. In the second step the calculation of all
spatial link matrices is based on the following rule: s,z = 1 if rank(d;» =1i) and s; % =0
in all other cases. In other words, the i-th order spatial link matrix relates each spatial
unit to the spatial unit that is number 7 on the sorted list of all distances between the

spatial unit under consideration and each other spatial unit.

In the next section the maximum likelihood estimation procedure of the spatial

ARMA model is described.

5 The maximum likelihood estimation procedure for the SARMA model

In the appendix of this paper the general spatial ARMA model is described together
with a derivation of the elements in the information matrix. In this section a special
case of the SARMA model described in equation (A.1) is considerd. It is assumed that

Q= &1, Under this restriction the log likelihood function in equation (A.6) becomes:

1

20
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Maximization of the log likelihood function in equation (15) yields the maximum

likelihood estimates for Sand o”:

(16) B =[(XB) BX]"(XB) BAy =[B' X'BX]" B' X' BAy
(17) fi = B(Ay - Xp)
a8 =Py xpyB By - XB)

n n

Substitution of the estimates for fand o into the log likelihood function (15) results

in a concentrated likelihood of the following form:

L(ylo)=C - gln(62) +In(|B)) + In(|))
(19)

where C = —Eln(27r)— 2
2 2

The estimation process of the SARMA model can proceed according to the following

algorithm:
1. choose some starting values for & and J;
2. estimate f using equation (16) : yields ﬁ;
3. estimate o using equations (17) and (18) : yields &7;
4. find @ and 0 that maximize L(y | @) defined in equation (15) : yields @ and o;
5. proceed with step 2 unless a certain convergence criterion is met;
6. givena and d, compute f and &2.

Note that step 4 in this estimation algorithm necessitates the use of a nonlinear

optimization routine.

In many applications there are no a priori reasons to choose a particular specification
of the SARMA model. Consequently, to a large extent the data will determine which
model is appropriate. In the next section the spatial analogue of the time series sample

autocorrelation coefficient is introduced.



6 The spatial autocorrelation function

In time series analysis, before estimating any model it is common to estimate (partial)
autocorrelation coefficients. Often this gives some idea about which model
specification might be correct. The time series sample autocorrelation function
describes the estimated correlation between y, and its lag y,; as a function of /. The /-
th order sample autocorrelation coefficient is defined as:

S0 PN P)

A T+1

5, < r+1 YTy
(20) L T+

TTH-L Yy

i(yj-y>2

~ 1 '
where Y =, —75lr0lrn )Y

The [-th order sample spatial autocorrelation coefficient can be defined as:

T T
V-V Ye-D)s, o
L Ty1-] i(yj_)—/)z T+1-1 y'i
j=0

The sample spatial autocorrelation coefficients can be used to construct sample partial
spatial autocorrelation coefficients using a recursive formula due to Durbin (1959).
This coefficient measures the strength of the /-th order spatial autocorrelation among
pairs of spatial units while accounting for (i.e., removing the effects of) all spatial

autocorrelations below spatial order /.

Note that the quadratic form on the right hand side of equation (21) is just a
multiplication of a constant and the basic form of Moran's (1948) I test statistic for

spatial autocorrelation that specifies the variation of y around its mean.

10



It is possible to simulate the theoretical spatial autocorrelation coefficients of a simple

SARMA model using the following equation:
Ay =¢ I
(22) <Sy=A4A B u
Be=u

It is easy to simulate spatial data with equation (22) by simply generating a vector u
of independent standard normally distributed disturbances for a given set of spatial
link matrices and parameter vectors « and 6. The simulated vector y can in turn be
inserted into equation (21) to calculate the theoretical spatial autocorrelation

coefficients.

7 The likelihood ratio test for residual spatial autocorrelation
It is possible to test for the presence of residual spatial autocorrelation in the SARMA
model described in section 5. In this section the likelihood ratio test is described.

Starting from the log likelihood function of the model

L'(y}o) =2 1n(2x)- 2;2 (Ay - Xp) B'B(Ay - XB) -
(23)
_ gln(az) +1In(|B]) + In(4])

one can impose restrictions under the null hypothesis.

For example, the null hypothesis Hy: 6= 0 can be tested against the alternative

hypothesis Hi: 0# 0, i.e. B = [,, which yields:

1

202

24) (ylo) = —%ln(27r)— (Ay — XB) (Ay — XB) — gln(az) +1In(4))
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The likelihood ratio test for residual spatial autocorrelation is based on the difference
between equations (23) and (24). The coefficients in the log likelihood functions can
be replaced by their maximum likelihood estimates, yielding the following likelihood

ratio test statistic:
(25) LR =2[L'(y|0) - L’ (y|0)] = n[In(6, ) —In(67 )]+ 21In(|B|) ~ z*(d;)

Analogue, it is possible to test the null hypothesis Hy: o = 0 against the alternative

hypothesis H: a# 0, i.e. A = I, which yields the following test statistic:

(26) LR =n[In(65) - In(67)]+2In(4|) ~ x°(d,)

8 Data description

Harrison and Rubinfeld (1978) apply ordinary least squares estimation to analyze the
demand for clean air using housing market data from the Boston Standard
Metropolitan Statistical Area in 1970. The dependent variable in the hedonic equation
is the median value of owner-occupied houses in each of the 506 census tracts. There
are 14 non-constant independent variables.

Pace and Gilley (1997) add the location of each tract in latitude and longitude
out of the 1970 census to this data set and use a two-dimensional grid search to

estimate a SARMA(0,1) model, i.e. a spatial moving average model of order one.

In the next section a class of more general SARMA models is estimated using the

Harrison and Rubinfeld data.'

' The SARMA models are estimated using a slightly modified version of the Econometrics Toolbox
developed by J. P. LeSage (which is downloadable free of change at internet page http://www.spatial-
econometrics.com). You can download the program files and data necessary to estimate some of the
models in this paper at http://www.renevdkruk.com.

12



9 Application: A hedonic SARMA model

In this section the theoretical SARMA model introduced in section 5 will be estimated
using the data described in the previous section. However, first some attention is paid
to the spatial autocorrelation coefficients in order to see which model specification

might be correct.

Figure 2 depicts the sample (partial) spatial autocorrelation coefficients, which are

calculated up to and including order ten using equation (21).

0.85

0.75 1| @ Sample spatial autocorrelation coefficient ||
' ] B Sample partial spatial autocorrelation coefficient

0.65 +— ]

0.55 ] —

0.45 + —

0.35

Coefficient

0.25

0.15

B e R R )

-0.15

Order of spatial autocorrelation

Figure 2: Some sample (partial) spatial autocorrelation coefficients of the log
of the median housing prices in the Boston census tracts.
The figure above shows that the first order sample spatial autocorrelation coefficient
is quite high. The higher order spatial autocorrelation coefficients decrease gradually.
The first order sample partial spatial autocorrelation coefficient by definition equals
the sample spatial autocorrelation coefficient. The higher order sample partial spatial
autocorrelation coefficients converge rather fast towards zero for successively higher

spatial lags.
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It is possible to simulate the theoretical spatial autocorrelation coefficients of
SARMA(10,10) models using equation (22). Table 1 contains the parameter vectors
of a selection of these models. The first model shows gradually decreasing parameter
values, whereas the third model is characterized by less spatial dependence. The
fourth and fifth model both contain a first order spatial link parameter that is close to
one, i.e. the spatial unit root case. Figure 3 presents all the theoretical spatial

autocorrelation coefficients for each model based on one and the same random draw

of u.
Table 1: The parameter vectors of 5 theoretical SARMA(10,10) models.
model 1 model 2 model 3 model 4 model 5
order a p a p a p o p o p
1 0.95 0.95 0.95 0.95 0.95 0.95 095 | 0995 | 0.995 | 0.95
2 0.85 0.85 | 0.75 0.75 0.55 0.55 0.85 0.85 0.85 0.85
3 0.75 0.75 0.55 0.55 0.15 0.15 0.75 0.75 0.75 0.75
4 0.65 0.65 | 0.35 0.35 0 0 0.65 0.65 0.65 0.65
5 0.55 0.55 0.15 0.15 0 0 0.55 0.55 0.55 0.55
6 0.45 0.45 0 0 0 0 0.45 0.45 0.45 0.45
7 0.35 0.35 0 0 0 0 0.35 0.35 0.35 0.35
8 0.25 0.25 0 0 0 0 0.25 0.25 0.25 0.25
9 0.15 0.15 0 0 0 0 0.15 0.15 0.15 0.15
10 0.05 0.05 0 0 0 0 0.05 0.05 0.05 0.05
0.90
\ — SARMA(10,10) model 1
0.70 —— SARMA(10,10) model 2

\ SARMA(10,10) model 3
SARMA(10,10) model 4

0.50
\\ — SARMA(10,10) model 5

0.30

~__

1 2 3 4 V 6 \ 8 9 10
-0.10
0.30 4 \//

-0.50

Value

Order of contiguity

Figure 3: The theoretical spatial autocorrelation coefficients for the five
SARMA(10,10) models described in table 1.
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Figure 3 shows that it is difficult to choose between different types of SARMA

models when comparing both the sample and the theoretical spatial autocorrelation

coefficients. Moreover, it seems difficult to detect spatial unit roots. One way out is to

estimate different kinds of SARMA models.

Table 2 shows the estimation results of four types of SARMA models, as described in

section 5, along with the estimates of the classical linear regression model.

Table 2: The estimates of 4 SARMA models and the classical linear regression model.

. OLS SARMA(1,1) | SARMA(4,0) | SARMA(0,4) | SARMA(4,4)
Independent variables
par |t-stat| par |t-stat| par |t-stat| par |t-stat| par |t-stat
constant 4.56| 29.95 3.53| 14.35| 2.27| 0.00| 3.64| 60.87| 3.13| 33.46
crime -0.01] -9.59| -0.01| -8.82| -0.01| -8.03| -0.01| -6.02| -0.01| -6.13
zoning 0.00, 0.18] 0.00| 0.43| 0.00| 1.11| 0.00, 1.46| 0.00| 1.41
amount of industrial land 0.00/ 0.08| 0.00| 0.26/ 0.00| 0.69| 0.00| 0.02| 0.00| 0.39
contiguity of the Charles river 0.09| 2.81| 0.04| 1.19/ 0.02| 0.91| -0.03| -0.95| -0.02| -0.64
(nitrous oxide concentration)? -0.64| -5.71| -0.43| -4.04| -0.28| -3.51| -0.15| -1.04| -0.17| -1.27
(number of rooms)? 0.01| 4.83] 0.01| 6.10| 0.01| 7.48/ 0.01| 10.07, 0.01| 9.17
age 0.00, 0.14] 0.00| -0.91| 0.00| -0.51| 0.00| -2.97, 0.00| -2.53
distance to the center of Boston | -0.20| -6.01| -0.17| -4.36| -0.15| -6.31| -0.11| -2.61| -0.15| -3.42
accessibility 0.09| 4.75| 0.08/ 1.76| 0.07| 0.00| 0.06/ 2.78 0.06| 3.09
tax burden 0.00| -3.46| 0.00| -0.80| 0.00| 0.00| 0.00| -3.69| 0.00| -2.95
pupils-to-teachers -0.03| -5.99| -0.02| -5.33| -0.01| -3.20| -0.02| -3.43| -0.02| -3.28
race 0.00f 3.55| 0.00| 3.02| 0.00 2.22| 0.00, 5.85 0.00] 5.19
prop. of lower status individuals |-37.49|-15.20(-28.81|-11.72|-23.94|-13.17|-24.93|-11.30|-25.49|-11.69
SARMA Parameters OLS SARMA(1,1) | SARMA(4,0) | SARMA(0,4)  SARMA(4,4)
par |t-stat| par |t-stat| par |t-stat| par |t-stat| par |t-stat
(o - -] 0.18/ 6.13] 0.18| 7.16 - -l 0.07] 2.79
ol - - - - 0.13| 5.05 - -l 0.07| 2.63
O3 - - - -l 0.11] 4.65 - -/ 0.00/ 0.06
o - - - -/ 0.05| 2.39 - -l 0.04] 1.40
&1 - -] 0.22| 7.86 - - 0.16| 4.32| 0.12| 2.57
82 - - - - - - 0.21] 5.13] 0.14| 2.73
O3 - - - - - - 0.21| 5.24| 0.24| 4.41
84 - - - - - - 0.18/ 5.12| 0.14| 2.80
Other statistics OLS SARMA(1,1) | SARMA(4,0) | SARMA(0,4)  SARMA(4,4)
number of observations 506 506 506 506 506
number of variables 14 16 18 18 22
number of iterations 1 22 106 58 481
maximum log likelihood value 156.96 227.48 254.86 275.21 279.69
o 0.03 0.02 0.02 0.02 0.02
R’ 0.81 0.86 0.88 0.89 0.90
adjusted R® 0.81 0.86 0.88 0.89 0.89
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From table 2 it appears that the higher order SARMA models perform relatively good:
the (adjusted) R*-values are higher as well as the maximum log likelihood function
values. Moreover, most SARMA parameter estimates are significantly different from
zero. Remarkably, the estimated NOy (pollution) parameter becomes less negative if

more spatial links are included in the model.

It is possible to test the SARMA(4,4) model against either the SARMA(4,0) model or
the SARMA(0,4) model. First, the likelihood ratio test statistic corresponding to the
null hypothesis Hy: 6 = 0 against the alternative hypothesis H;: ¢ # 0 equals 49.66
while the critical value of the #°(4) distribution at a critical value of 5% is equal to
9.49. Second, the likelihood ratio test statistic corresponding to the null hypothesis
Hy: a = 0 against the alternative hypothesis Hi: & # 0 equals 8.96. This means that the
SARMA(4,4) model is not significantly performing better than the SARMA(0,4)

model.

10 Conclusion

The advantage of the general SARMA model is that the order of contiguity of spatial
units can be modeled explicitly: a separate spatial link parameter can be estimated for
each spatial link. In this paper the elements in the information matrix corresponding to
the SARMA model are derived and the maximum likelihood estimation procedure for
the SARMA model is treated. The spatial autocorrelation function does not seem to be
as promising as a tool for the selection of the suitable spatial model in comparison
with the likelihood ratio test for (residual) spatial autocorrelation. The hedonic pricing
model estimation results show the superiority of the general spatial ARMA model

over other (spatial) linear models.
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Appendix: the SARMA model

In this appendix the general spatial ARMA model is described. Moreover, the
elements in the information matrix are derived. The notation used here closely follows

Anselin (1988, pp. 61-65 and 76-77) who specifies the SARMA(1,1) model.

Consider the general SARMA model:

d, d,
y = ZaiSl.y +ZCiSl.z+ Yy+e
i=1 i=l

dy
(27) =) 06Se+n
i=l1

#~ N(0,Q)
Q. =h(zk) h >0

The dimensions of the variables and parameters are as follows:

nx1l q 1x1 S nxn d 1x1
Ix1 z nxl Y nxm y mx 1
nx1l o Ix1 p nx1 Q nxn
px1 h Ix1

R AN

The model has d; +d, + m + d; + 1 + p unknown parameters:
0 =[ar...an&i...Cn 7 6 ... 00 K]

Now, define:
dl
A=1- ZaiSi
i=1

d}
(28) B=1-%65,

i=l

Xp=(.08)x+Yy
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Where Aisn xn, Bisnxn, Xisn x (d> + m) and fis (d, + m) x 1.
The model in equation (A.1) can be rewritten using (A.2) as:

29) {Ay =XB+¢

Be=u

Since (2is diagonal, there exists a vector v of homoskedastic random disturbances:

y=Q 2B(Ay — Xp)

(30) o

1
= ‘Q_ZBA 18| 4]

1
= ‘Q_z

Equation (A.4) gives the following result:

G gy)=/(Q By~ X/)’))‘%‘ -~ (22) 3 exp- v * B

The likelihood function is thus defined as:

(A.6) L(y|0) = —gln(27r) - %v'v - %ln(|§2|) +In(|B|) + In( 4))

The first order and second order conditions can now be derived. In turn, the elements

of the information matrix can be determined..
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First order conditions :

oL(y|@ L

8(—y|) =v'Q *BS,y— tr(A‘lSi)
ai

oLyle) -
— =V S, (Ay - Xp) - tr(B™'S,)

1

OL(y|6 -
A0 e py
op

oL(yle) 1, - L
T Q1 H B(dy - XB) - —ti(Q7'H
™ 5 ,B(Ay — XB) 5 ( »)

P

Second order conditions :

o’ L(y|0
w:_(g)()'g-lg)(

opop'

o> L(y|o
ﬂ =—tr(47'S,47'S,)—(BS,y)Q "' BS,y

oo, 0a;

62L(y|‘9) -1 -1 -1
—— = —tr(B"'S,B'S,) - [S.(Ay — XB)IQ'S. (Ay — XB)
06,00, / /

O’L(yl#) o°L(ylo

opoc, oo, 0p'

o*L(yl#) o°L(yle !

¥) _o°LO ) __(BXYQ'S, (Ay - X)—1'Q 28, X

opos, 05.0p'

62L(y|49):62L(y|9): 1 1 :

_1—
——(BX)QH B(Ay - XB)——Vv'Q 2H BX
pox,  oxop | 2 e MBS = ’

2 2 1
S5 e sy s
O’L(ylp) 9’L(y|o)
Gaialcp a](‘paai
CLD 15 (ay - xpyrer i, sty - )~ Lv a5, (ay - 1)
65i6k‘p 2! ) > 9

LY 1, [P 1 i
— o = WOQTH H )~ (@ H )~ [B(Ay ~ X O H, H, B(dy - XB) -

1 ) 1,
—(BSy)'Q 2HPB(Ay—Xﬁ')—Ev Q 2H BSy

a/cpa;cq

3,0 Lo
- Q ZHquB(Ay—Xﬂ)+EvQ *H , B(4y - XB)

20




Expected values :

E[¢] = E[u]=E[v]=0
E[ee']=B'Q(B™)

E[pu']=Q

E[w']|=1

E[y]=A4"Xp

Elyy'l= A" XB(A7' XB)+A"'B"'Q(A'B"Y

Elements information matrix :

92 L(y|6) |
g ZEOO oy
| ok
- -
E L) | A7'S . A7'S BS A" XB)Q'BS. A7 X Q(BS . A"'B')YQ'BS. A"'B™
B = tr( ; ) +r((BS, () i P) + tr(CUBS, ) i )
L VA
O’ L(y|o) |
~E|—————|=tr(B7'S,B7'S,) +tr(QS,B7)YQ'S.B™)
| 00,00, | / /
02 L(y|) | [ 92L(y|6) |
-E ﬂ - -F ﬂ =(BX)Q'BS, A" XB
| Opoa; | | da,0p' |
92 L(y|6) | [ 02L(y|9) |
g OO e |
| apos, | | 05,08' |
[ 92L(y|6) | 92 L(y|6) |
I e 2N e i O
| pox, | | 0k, 08" |
02 L(y|9) | 92 L(y|6) |
~-E ﬂ =-E ﬂ =tr((S,B™)Q"'BS, A" B"Q) +1r(S,;S, 4" B™)
| 02,05, | | 05,0a,; |
02 L(y|) | [ 92L(y|6) |
~-E ﬂ =-F ﬂ =ltr(Q-2H Q(BS.A"'BY+Q'H BS.A"'B™)
oa,0 oK ,0 2 g l pe
L a, K‘p | L Kp a, |
02 L(y|o) |
~-E ﬂ =ltr(Q-szQ(Sl.B-l)'+Q-1HPS,.B-1)
| 00,0k, | 2
92 L(y|6) |
—-E w :ltr(Q-zH H)
| Ox,0k, | 2 “r
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