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Abstract

Consistent transportation forecasting models that combine travel demand and net-
work assignment are receiving more attention in recent years. A fixed point formulation
for the general combined model is presented. Measures for solution accuracy are dis-
cussed. An origin-based algorithm for solving general (non-convex) combined models
is proposed. Experimental results demonstrate the efficiency of the algorithm in com-
parison with prevailing alternatives.
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1 Introduction

When planning improvements to transportation systems, various alternatives are con-
sidered. Careful evaluation requires forecasts of travel patterns for each alternative.
Travel patterns are the result of many choices. Traditional modeling practice considers
these choices as a sequential process with unique order: activity location choice (trip
generation), joint choice of origin and destination (trip distribution), mode choice and
finally route choice (assignment). Despite its intuitive appeal, justification for this
order is not as trivial as it may seem.

Travelers usually do not think about modes and routes until they have chosen a
destination. In many cases this is simply because they have a fairly good idea about
the route of choice and its properties, and even more so about the mode of choice
and its properties, for most origins and destinations under consideration, prior to
choosing their activities. To a certain extent this is true even for choices of work
place or residential location, whether made simultaneously or sequentially in one order
or another. In view of these observations it seems odd and perhaps even inappropriate
to ask which choice comes first.

If all of the conditions that could affect travel choices are known in advance, the
order of modeling the different choices should not matter. However, a basic assumption
in most forecasting models is that travelers’ choices are affected by the level of service
of the transportation system. On the other hand, this level of service, and particularly
travel times on the roadway network, depend upon the prevailing travel pattern and
the associated congestion. The fact that the travel pattern depends on the level of
service, which in turn depends on the travel pattern, is one of the main challenges of
transportation modeling.

The need to consider congestion effects on route choice became apparent fairly
early in the development of travel forecasting models. Farly attempts included var-
ious computational procedures like quantal loading, origin by origin loading, etc. In
recent years user-equilibrium models have gradually replaced previous computational
procedures. In these models behavioral assumptions are translated into mathematical
conditions that need to be satisfied by the model solution. These well-defined condi-
tions allow one to evaluate approximate solutions, and to examine the convergence of
various algorithms.

In contrast to the development and penetration of user-equilibrium route choice
models, travel forecasts are still based by and large on sequential procedures. Se-
quential procedures, even if they are based on user-equilibrium route choice model,
still suffer from inconsistent consideration of travel times and congestion effects in
the various steps of the procedure. The inconsistent consideration of congestion is a

well known and often debated flaw of traditional sequential computational procedures.



This flaw was a key issue in the San Francisco Bay Area lawsuit (Garrett and Wachs,
1996). A common remedy for this flaw is to introduce a “feedback” mechanism into
the computational procedure, much like quantal loading in its different forms provides
a “feedback” mechanism in computational procedures for network assignment. An
alternative approach is to state the behavioral assumptions, translate them into math-
ematical conditions, and seek solutions that satisfy these conditions. Such models are
referred to as combined or integraled models.

The authors believe that whenever possible models must be formulated mathemat-
ically. The first goal of this paper is to demonstrate that for most models used in
practice a mathematical formulation requires less effort than generally believed, and
that there are important benefits to mathematical formulations which are not always
appreciated.

Models that combine several travel choices together are far from new. The first
mathematical formulation of user-equilibrium assignment by Beckmann et al. (1956)
assumed in addition that the flow of travelers between every origin-destination (O-D)
pair of is a function of the level of service for that O-D pair. Their convex optimization
formulation was later extended to take substitution effects into account by the intro-
duction of origin and/or destination constraints (Fvans, 1976). Evans was also the
first to present an efficient convergent algorithm for solving this model. Other convex
optimization models include the multi-mode model of Boyce et al. (1983); the multi-
mode, multi-class model of Lam and Huang (1992); the multi-mode, multi-class model
of Boyce and Bar-Gera (2001) and the origin-based algorithm for solving combined
models formulated as convex optimization problems of Bar-Gera and Boyce (2002).
Convex optimization formulations have the advantage of unique solutions and algo-
rithms that are proven to converge. More general combined models were formulated
as Variational Inequalities (VI) by Dafermos (1982), Florian et al. (2002) and others.
Algorithms for combined models are mostly link-based, similar to Evans (1976), with
the exception of the route-based algorithm of Lundgren and Patriksson (1998).

The remainder of the paper is organized as follows. Section 2 presents the gen-
eral fixed point formulation for combined models. Measures for solution accuracy are
discussed in section 3. Algorithms for combined models are presented in section 4.
Computational results are presented in section 5. Conclusions and suggestions for

future research are presented in section 6.

2 Fixed point formulations of combined models

This section presents a mathematical formulation for the general combined model.

Mathematical formulations are important tools for describing the goal of a computa-



tional process. Setting the goal is a crucial step that must come prior to any consider-
ation of computational procedures, such as the popular “feedback” mechanism. Only
with a clearly stated goal can anyone judge whether a certain procedure performs well
or not. Fortunately, combined models can be formulated as fixed point problems in a
way that is relatively intuitive and minimal in notation.

Consider a study area which is divided into zones, during a cerain time period of
the day in a given year. Let Z denote the set of all zones. For every pair of origin
p € Z and destination ¢ € Z let d,q denote the O-D flow (persons/hour) from p to q. d
is the array of O-D flows. Flows are averaged over the entire modeling period (e.g., the
morning peak) and over all work days during a specified year. The time period should
not be too long, so that flows within it are fairly steady and reasonably represented
by their average. Flows can be estimates for past years, or expected values for future
years. In any case, it is important to note that as expected/average values, flows can
be fractional and do not need to be integers.

The set of available routes from origin p to destination ¢ is denoted by R,q, and the
set of these sets is R = {qu}p’qe »- The distribution of travelers from p to ¢ among the
routes in Ry, is described by a vector of non-negative route proportions (conditional
probabilities) v,, = {Vper }re Rog' Y is the array of route proportion vectors. Route
proportions must add up to one for each O-D pair, hence the set of all feasible route

proportion arrays is

PR) =<7y e[0, 1™ > pp =1 Wpgez (1)

r€Rpq

Given 7, the implied vector of route flows is hy; = {hpgr}, ¢ Ryy — @pq-Ypq- The array
of route flow vectors is denoted by h.

In working with these arrays of vectors it is convenient to consider two types of
products. The dot product is interpreted as the sum of the product of the elements,
similar to a vector dot product, that is x -y = > Tpgr - Ypgr- The cross product
is interpreted as a dot product of array elements, one by one. That is z = x X y
means zpq = Tpq - Ypg- As the algebraic product of matrices is not used in this paper,
there should not be any confusion with this notation. Using these conventions, the
relationship between O-D flows, route proportions and route flows can be written in
short form as h(d,v) =d x .

According to the user-equilibrium principle of Wardrop (1952), each traveler seeks
to minimize the cost associated with their chosen route; therefore, at equilibrium the
cost of every used route can not be greater than the cost of any alternative route.

The term cost is interpreted as a general measure of dis-utility, which incorporates



travel time. Let ¢ = {{cpqr}re Rpq }p,qGZ be the array of route cost vectors, which is a
continuous function of the travel pattern, ¢ = C(h). The set of routes of minimum cost
for a given O-D pair p, ¢ is denoted by R, (c) = argmin {cpgr : 7 € Rpq}. The array of
such sets is denoted by R* (c). For any non-empty subset of routes R'; § C R, C Ry,

define the set of feasible route proportion arrays that are limited to R’ as
P(R) = {7 €T(R) g =0 Vr ¢ R, Vp,q€Z) 2)

In particular the set of minimum cost assignments is I' (R* (¢)). It is obvious without
any derivation that the travel pattern {d,~y} satisfies the user-equilibrium requirements
iff

v € Fi(d,v) =I'(R*(C(h(d,7)))) 3)

In other words, user-equilibrium route proportions must belong to the set of feasible
route proportions that are limited to the set of minimum cost routes, where route costs
correspond to route flows that result from the chosen route proportions.

We assume that the array of O-D flows is a continuous upper-bounded function of
O-D costs, d = @ (u), where u = {upg}, o
average route costs, weighted by flow, Upq (€,7) = v, * Cpg; or U(c,7y) = x c. The

 1s the array of O-D costs. O-D costs equal

fixed point formulation of the combined model is

{d,7} € Fa(d,y) = {® (U(C(h(d,7),7)} xTR*(C(h(d,7))))  (4)

or equivalently

d =2 (U(C(h(d,7)),7)) (5)
v eI'(R*(C(h(d,))) (6)

These equations state that at equilibrium O-D flows must correspond to prevailing O-D
costs, and at the same time the user-equilibrium conditions must be satisfied.

For user-equilibrium solutions Upq (¢,~) = Uk, (Cpg) = min{cpgr : 7 € Rpq}. There-
fore, in the above formulation, we can replace U with U* and obtain an equivalent
formulation.

This formulation can be easily extended to multi-mode and multi-class models, by
adding a mode subscript m and a class superscript [ to all variables. In other words if
we let d = {d},p0} iR = {Rlpg b 37 = {Vhuper } 10 = {Mipr } 1 € = {Clnpgr }, and adapt
the interpretation of R*, I'; @, C, and U accordingly, then Eq. (4) is a mathematical
formulation of a generic multi-mode, multi-class model.

Solution existence is demonstrated by Kakutani’s extension to Brouwer’s fixed point



theorem (Kakutani, 1941; Nikaido, 1968, Theorem 4.4, p. 67). Nikaido defines a set-
valued mapping f : X — 2V, where 2 represents the set of subsets of Y, to be closed
if 28 — 2; 9% — y; y* € f(2*) implies y € f(z). BEvery continuous function is closed;
hence ®, U, C are closed. R* is closed, with discrete topology on R, and I is also
closed. Therefore, Fy is closed. T'(R’) is convex for every set of routes R/, hence
F5(d,~) is convex for every (d,-y). Due to the upper bound on O-D flows, M, the set
of feasible solutions, [0, M]IZI*1%l x [0, 1] is non-empty, compact and convex. Under
these conditions, Kakutani’s extension to Brouwer’s fixed point theorem guarantees
that the map F5 has a fixed point. In other words, there is at least one solution for
the combined model in Eq. (4).

3 Accuracy Measures

One of the main advantages of mathematically formulated models is the ability to
evaluate solutions by well defined accuracy measures, and hence to determine whether
a solution is sufficiently accurate for the specific analysis under consideration.

In the case of O-D flows it is natural to compare O-D flows in the current solution
d, with the O-D flows that result from the costs of travel under current conditions.
For the latter we can choose either minimum O-D costs d’ = @ (U* (C (h))) or av-
erage O-D costs d” = @ (U(C(h),~)). Both comparisons lead to similar results.
We shall use d’ simply because average O-D costs are not available for some algo-
rithms. Possible aggregate measures of accuracy are the maximum positive difference,
maz {d},, — dpq : d},y > dpg }, the maximum negative difference, max {dpg — dy,, : dj,, < dpg},
and the total misplaced O-D flow, >, ., |d],; — dpg|. All are in units of person trips
per hour.

The intuitive interpretation of these measures can be very helpful in setting condi-
tions for sufficiently accurate solutions. For example, consider a study that examines
the impact of a new commercial facility, which is expected to attract 1,000 trips per
hour during the morning peak. It would be reassuring to know that the total misplaced
O-D flow in the solution is less than 100 trips/hour. A total misplaced O-D flow of
1,000 trips/hour may still be acceptable, assuming that it is spread over a wide region.
But, a total misplaced O-D flow of 10,000 trips/hour is probably not acceptable, as it
is quite likely to have significant influence on the results of the study.

Assignment accuracy measures can be based on the distribution of excess cost,
ecr = Cpgr — Uy, (€pq), among used routes. Possible aggregate measures based on access
cost include the maximum excess cost, the 95-th percentile, the portion of flow with
excess cost above a certain value, say one minute, etc. The main aggregate measure

1

used in this paper is the average excess cost, AEC, = i > rer hr - €c, where



des = D, 4z dpq 18 the total O-D flow (on the road network). In the context of fixed
demand problems AEC is sometimes referred to as “normalized gap”.

Setting requirements for assignment accuracy is more challenging, since typically
the goal is to make sure that link flows are sufficiently close to the true equilibrium
solution. A case study (Boyce and Bar-Gera, 2002) examined the impact of adding a
pair of freeway ramps in the Delaware Valley Region. The goal of the study was to
estimate flow differences on links in the vicinity of the proposed improvement between
the Build and No-Build scenarios. It was found that solutions should have Average
Excess Cost less than 0.001 vehicle-minutes, so that estimates for freeway links shall be
within 3% from the true equilibrium solution, and estimates for arterials shall be within
10% from the true equilibrium solution. As additional case studies are conducted on
different networks and for various levels of congestion, more definite recommendations
will be available for practitioners.

A solution is considered to be sufficiently accurate only if it satisfies both conditions,
that is if it has average excess cost less than, say, 0.001 vehicle-minutes, and total

misplaced O-D flow less than, say, 1000 trips/hour.

4 Algorithms

In this paper we consider two algorithms; both are iterative. In the first algorithm,
demand and route proportions are updated simultaneously in every iteration. It is sim-
ilar to the algorithm proposed by Evans (1976) for a combined model formulated as a
convex optimization problem. In every iteration of this algorithm, given the current so-
lution (dk, ’yk); h* = d* x~*, a subproblem solution is found in the following way. First
a minimum cost assignment is chosen, given the current costs, 4* € T' (R* (C (b*)));
then, new O-D flows are found using the minimum costs found in the previous step,
d* = & (U* (C (b*))); finally, the new demand is assigned to the minimum cost routes
found in the first step h* = d* x 4*.

Once a subproblem solution is found, a new solution is obtained by a weighted
average of the current solution and the subproblem solution, h*+1 = (1 — X\) - h* +
A flk, where 0 < A < 1 is the step size, or the weight of the subproblem solution.
Since total link flows are a linear function of route flows, averaging route flows and
averaging total link flows lead to the same solution. Therefore, implementations of
this algorithm typically store only total link flows, thus reducing memory requirements
substantially. In the algorithm proposed by Evans (1976), the convex formulation was
used to determine the step size. In the general case, when a convex formulation is not
available, different techniques must be used to determine the step size, as discussed

below.



Initialization:
Let u = U*(C(0))
Let d° = ®(u)
for pin Z do
A, = tree of minimum cost routes from p
f, = all or nothing assignment using A,
end for

Main loop:
for n=1 to number of main iterations
Update O-D flows, retain route proportions
for p in Z do
update restricting subnetwork A,
update origin-based approach proportions «,
end for
for m=1 to number of inner iterations
for pin Z do
update origin-based approach proportions «,
end for
end for
end for

Fig. 1: An origin-based algorithm for combined models

The second algorithm is similar to the origin-based algorithm proposed in Bar-Gera
and Boyce (2002) for combined models with convex formulations, which is based on
the origin-based assignment algorithm (Bar-Gera, 2002). The general scheme of the
algorithm is presented in Fig. 1. Stopping conditions for the algorithm are based on
total misplaced O-D flow and average excess cost, as discussed in section 3.

The key element in the proposed algorithm for combined models is the procedure
for updating O-D flows, while retaining the route proportions of the current solution.
Given a current solution, {dk,’yk}, subproblem O-D flows are determined according
to average O-D costs d* = o (’yk x C (dk X ’yk)) New O-D flows are obtained by a
weighted average dl;“ —(1=X)-d*+X- d¥, where 0 < A < 1 is a chosen step size.

In models that have a convex formulation, it can be used to determine the step
size. A proof of convergence for the resulting algorithm is given in Bar-Gera and
Boyce (2002). As shown there, the use of average O-D costs (rather than minimum
O-D costs) to determine subproblem O-D flows is critical for convergence. As with the

Fvans-like algorithm, when a convex formulation is not available, different techniques



must be used to determine the step size.

Once O-D flows are updated, route proportions are revised by an origin-based as-
signment iteration, while keeping O-D flows temporarily fixed. The main solution
variables in the origin-based assignment algorithm are origin-based approach propor-
tions & = {ap} e ppezs 0 S Qap <15 3,0, —jap =1 Vj € N Vp € Z, where N and
A are the sets of nodes and links on the road network, and a;, as, are the tail and the
head of link a = [a, a] . For every origin an a-cyclic restricting subnetwork is chosen,
Ap C A a ¢ Ay, = agp = 0. Initial restricting subnetworks are trees of minimum cost
routes. To update the restricting subnetwork, unused links are removed, v; - the max-
imum cost to node 4 within the restricting subnetwork is computed, and all links [, j]
such that v; < v; are added to the restricting subnetwork. Approach proportions for
origin p are updated by shifting flows within the restricting subnetwork A, according
to a boundary (piece-wise linear) search in a direction determined by an approximate
second order method. Given the demand d and the current solution «, the set of
restricting subnetworks for the next iteration is defined by a function A = A (d, ),
and the next iteration solution is defined by a map &’ € 0% (d, ).

Route proportions are determined by Vpgr = [[oc, @ap- It can be shown that
origin-based link flows fop(h) = 32 c7 > cn  ac fipgr and origin-based node flows
fip(B) =3 0ez X orer, sier Poar = 2 aiay—j Jap Maintain the relationship faop = ap- gjp,
demonstrating that oy, is indeed the proportion of flow on approach a to node ay,
for origin p. The availability of route proportions allows one to compute average O-D
costs, as well as the assignment of new O-D flows by current route proportions. Due
to the restriction to a-cyclic subnetworks, these computations can be done efficiently
without route enumeration, in a time that is a linear function of the number of links
times the number of origins. These properties are essential for the demand update
procedure described above.

In both the Evans-like algorithm and the origin-based algortihm the main obstacle
towards a general implementation for non-convex models is the determination of the
step size. The most well known technique to determine step sizes in general problems is
the Method of Successive Averages (MSA), introduced in the seminal work of Robbins
and Monroe (1951). In this technique, step sizes are predetermined as Ay = 1/k.
(Where £ is the iteration index.) Polyak (1990) argues that in the context of stochastic
approximation techniques, under certain conditions, it is better to use either a constant
step size, or step sizes of \y = k=% where 0 < 5 < 1.

Basic intuition for the behavior of different algorithms with various choices of step
sizes can be developed by considering a very simple example of a single dimensional
problem with a given feasible range [0, M|, and an unknown optimal solution x*. Con-

sider an averaging algorithm, 21 = (1 — A\¢)-2* 4+ A\g - * that is based on subproblem



solution y* = f,(z*), where

M $§b1
Jo@) =< 2¥ —alz —2%) b <z <bo (7)
0 bo <
b1:$*—M_$; b2:$*+£ (8)
a a

The value of a controls the accuracy of the subproblem. a = 0 indicates perfectly
accurate subproblem solutions, since fo(z) = z* Vz. On the other hand, as a — oo
subproblem solutions are less accurate, and at the limit a semi-continuous point to set

function is obtained

M T < x*
Joolz) =9 [0,M] z=2a* 9)
0 z > x*

When subproblem solutions are accurate, i.e. a — 0, larger step sizes lead to faster
convergence. MSA does not take advantage of accurate subproblem solutions, however,
since even if @ = 0, the convergence of MSA is given by z* — z* = (xo — x*) /k, which
is quite slow. The progress under constant step size, A, while in the linear range [b1, b2],

is given by:

= (=N dPh A (@ —a @ —a) =2t (1= A= X-a) - (" —2%) (10)
waFl_x*:<$k—$*>-(1—)\-(1+a)):($0—$*)'(1_)\'(1+a))k (11)

The sequence z*

converges to z* for every step size 0 < A < 2/(1 + a). Oscillations
are avoided by any step size 0 < A < 1/(1 + a). Further reducing step sizes only slows
convergence. In the case of f,, any constant step size leads to oscillations around z*.
Smaller step size leads to oscillations closer to 2*, but also to slower progress towards
x*.

In monitoring the progress of the algorithm, typically, the value of z* is not known,

k _z* can not be evaluated. Instead, we can monitor the value of gap® = 2% —y/*.

hence z
This is similar to the accuracy measure for O-D flows proposed in section 3. For an
algorithm that is based on f,, when the slope a is finite, the relative reduction in the

gap within the linear range [b1, bs] is given by

k+1 k+1

gap® —gap*t!' =z

—y
1
gapk

R =A-(1+a) (12)

With perfectly accurate subproblem solutions (¢ = 0) the relative gap reduction is

10



equal to the step size A. Notice that in the first iterations of an algorithm based on
foo, that is until oscillations start, the relative gap reduction is also equal to the step
size. It is therefore interesting to monitor the relative gap reduction in computational
experiments.

It is clear from the above discussion, that the optimal step size strategy depends
on the algorithm. If subproblem solutions are continuous as a function of the current
solution, as is the case with f, when a is finite as well as for the origin-based algorithm
described above, a constant step size, if sufficiently small, should not cause oscillations.
Our goal in that case is to use the largest constant step size that does not lead to
oscillations. On the other hand, if subproblem solutions are not continuous, as is the
case with fo, and with the Evans-like algorithm, any constant step size will eventually

lead to oscillations; therefore, we must use a decreasing sequence of step sizes.

5 Experimental Results

This section presents computation results comparing the convergence of the proposed
origin-based algorithm and the Ivans-like algorithm for different step size strategies.
All experiments were conducted on the same Compaq Alpha Unix Server model DS20E,
with CPU speed of 666 MHz, and 256 MB RAM.

The algorithms were applied to a multimodal model, which is similar to the model
presented in Boyce and Daskin (1997). The network of the model, referred to as the
“Chicago Sketch Network,” consists of 387 zones, 933 nodes, 2,950 road links, and total
O-D flow of about 1.25 million person trips per hour. The main inputs to this model
are: the flow of person trips per hour from each origin dy,; the flow of person trips per
hour to each destination cf.q; free flow travel times t10, capacities k4, and lengths I,
for each link on the roadway network; parking costs pc, and walking times to or from

the parking place wt, for each zone; in vehicle travel times ¢, fares ¢/, and out

pq tpg

ovl when traveling by transit from origin p to destination ¢ (these are

ipq
fixed regardless of flows); and truck flows df)’;]“k by O-D in passenger cars equivalents.

of vehicle times ¢

Link travel time functions are of the BPR form

tta(fa) = tty - (1+0.15 - (fa/ka)") (13)

Auto operating costs, including gasoline consumption, are a linear function of link

length and travel time,

0Cq =M1 * tta(fa) + o - la (14)

11



Link generalized costs are

ta(fa) = Biime - ta(fa) + Beost - 0Ca(fa) (15)

where the §’s are calibration parameters. Parking costs and walking times are compo-

nents of the additional auto costs, defined as

au pCp + pc au
ACapq = park % walk (’U)tp + wtq) (16)

Route generalized costs by auto are capgr = aCapg + 2 _ger ta- O-D generalized costs by

auto are Uspg (€,Y) = Yapq * Capgs 88 before. O-D generalized costs by transit are

_ patr tr ivtt tr fare tr  ovt
Utpg = ﬁbias + Oswte - Cepq =+ ﬁ are ’ Ctpq + Oovt * Cipq (17)

O-D flows are of the compound LOGIT form

dapg = Ap - By - exp (=44 Uapq) - U;ppq (18)
dipg = Ap - By - exp (—f4 - Uipq) - U;)Z (19)

Flows of person trips by auto are converted to vehicle flows by a predetermined auto
occupancy factor, aof. The same route proportions are used for auto flows and for

truck flows, hence

By (d,) = (dapa/a0f + di ) -, (20)

The fixed point formulation in Eq. (4) applies to this model almost directly, except
that the definition of hy, (d,~) mentioned above is slightly different than before. The
only difference between this model and the model considered in Bar-Gera and Boyce
(2002) is the power term v ~” in (18) and (19). For p = 0, we get the original model, that
can be formulated as a convex optimization problem. In that case, the performance of
the algorithms based on step sizes determined using the convex objective function can
be used as a reference for the performance of any other step size strategy.

Practitioners have reported that in some cases observed data is better explained by
models with p ~ 1. Figures 2-7 show results of the two algorithms for p = 0,1,2. In
the case of p = 0, the results of the algorithm described in Bar-Gera and Boyce (2002),
which is based on a line search over the convex objective function, are included as a
reference.

Equilibrium solutions are quite different for different values of p. For example total
intra-zonal flow values are about 105,900, 88,708 and 63,203 person trips per hour for
p = 0,1,2 respectively. On the other hand, the behavior of the different algorithms is

12
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almost identical in all three cases.

In the case of Evans-like algorithms, we find that any constant step size at some
point leads to oscillations, as expected. In this case MSA performs reasonably well,
although it is possible that a more sophisticated strategy will provide better results.
On the other hand, in the case of origin-based algorithms, any step size less than 0.5
leads to convergence much faster than with MSA step sizes.

Comparing the convergence of the two algorithms with MSA step sizes with respect
to CPU time, shows substantial advantage for the Evans-like algorithm. This is mainly
because each origin-based iteration takes more CPU time. For example 50 origin-based
iterations take about 15 minutes of CPU time, and lead to total O-D flow difference
of about 30,000 person trips/hour (with MSA step sizes); 50 Evans-like iterations take
about 1.3 minutes of CPU time, and lead to total O-D flow difference of about 15,000
person trips/hour (with MSA step sizes); in 15 minutes of CPU time about 600 Evans-
like iterations are performed, leading to total O-D flow difference of about 1500 person
trips/hour (with MSA step sizes).

Assignment convergence of solutions obtained by origin-based algorithms is sub-
stantially superior to that obtained by Fvans-like algorithms. Solutions after 50 origin-
based iterations with A = 0.5, obtained in 4-5 minutes of CPU time, have average excess
cost of less than 1E-10 vehicle minute equivalents. Solutions after 1000 Evans-like it-
erations with MSA step sizes, obtained in 20-30 minutes of CPU time, have average
excess cost of 0.005 to 0.01 vehicle minute equivalents.

It is interesting to point out that in most cases, in all algorithms while not in
oscillation, the relative reduction in gap is fairly close to the step size. As discussed
in the previous section, this is expected to happen when the subproblem solution does
not change much as a function of the current solution, at least for most dimensions.
Given the enormous number of dimensions in this problem, there may be other reasons
for this observation as well. In any case, it may be possible to use this observation to
develop an algorithm that adjusts the step size during the run. This remains a subject

for future research.

6 Conclusions and Future Research

Traditional travel forecasting methods were based on sequential computational pro-
cedures. The need for integrated or combined models is becoming more and more
convincing, in view of court decisions and legislative mandates in the U.S. in the last
decade. The fixed point formulation presented in this paper seems to be a natural tool
to formulate general combined models mathematically, including most models used in

practice. The need for intuitive accuracy measures leads to separate consideration of
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agsignment accuracy and the accuracy of O-D flows.

General combined models can be solved with either an Itvans-like algorithm, or
with an origin-based algorithm. In the first case, the sequence of step sizes used for
averaging should be decreasing, as in the MSA. As a result, convergence is relatively
slow. The proposed origin-based algorithm can provide much faster convergence, when
a constant step size is used, as long as the step size is not too large.

The results presented in this paper should be examined and validated in other

models, and particularly for different levels of congestion.
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