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Abstract 
 
 
In many studies travel behaviour (for example, commuting) is analysed on the basis of a 
utility function with the distance travelled (d) as one of the arguments. An example is  
 
 U=U(d,Y-cd,T-td),        
 
This standard approach is not without problems, however, since it ignores the fundamental 
fact that most transport has a derived character: travelling kilometres is not an activity that 
gives utility per se, but only because these kilometres bring people to certain places they want 
to visit. In this paper we develop a method that provides a justification for utility functions 
such as shown here by showing that these can be made consistent with theories that take into 
account the derived character of transport.  
 
The core element of our approach is that individuals compare potential destinations of their 
trips that are heterogeneous in terms of distance travelled and quality offered. Given the 
spatial distribution of destinations and the distribution of the quality of the jobs, one can 
derive the set of non-dominated alternatives that may serve as a destination. This non-
dominated set is essentially a monotone relationship between distance travelled and utility of 
the trip. Examples of this curve are given under various assumptions concerning the spatial 
density of destinations and urban form. 
 
Implications of this approach are discussed for commuting distances of different types of jobs. 
Our approach gives an explanation for the paradox that highly educated workers tend to have 
long commuting distances. Given their high value of time one would expect short commuting 
distances, but the low spatial density of their jobs appears to dominate the outcome. 
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1. Introduction 
 
It is common wisdom that travel demand has mainly a derived character: people usually do 
not travel for the fun of it1. In stead, people travel in order to reach certain destinations where 
they want to carry out certain productive or consumptive activities. This common fact is, 
however not reflected in the way travel demand is modelled in many studies of travel 
behaviour. Consider for example the following formulation of a utility function that is often 
used as a basis for the analysis of travel demand. In such studies (see for example Golob et al., 
1981, De Jong 1989, McCarthy, 2001), travel behaviour is analysed on the basis of a utility 
function with the distance travelled (d) as one of the arguments. An example is  
 
 U=U(d,Y-cd,T-td),        (1) 
 
where Y and T are money and time budgets, and c and t are the money and time costs per unit 
distance. The first argument of the utility function relates to the benefits of a trip of a certain 
distance d, the second concerns the benefits of consuming other goods than transport (Y-cd 
equals the amount of money available for this after transport expenditures have been 
subtracted). The third term of the utility function concerns the total time available after time 
for travelling has been susbtracted. The partial derivatives of U with respect to its three 
arguments are assumed to be positive. As indicated by Small (1992, p 12) the theoretical 
foundation of this formulation is not entirely clear, however. One of the problems is that it 
ignores the derived character of transport: travelling kms is not an activity that gives utility 
per se, but only because these kms bring people to certain places they want to visit. The utility 
function as specified in (1) can be used to derive a demand function for transport where the 
distance travelled per time period d is explained by factors such as the price of transport, the 
travel time involved and income (see for example McCarthy, 2001): 
 

d = d (c,t,Y) 
 

Given the derived nature of travel demand one would have expected a utility formulation such 
as: 
 

U=U(v,Y-cd,T-td),        (2) 
 
as a basis for the analysis. In this utility formulation v represents the gross2 utility of a visit to 
a certain destination at distance d.  
 
In this paper we give a justification for utility functions such as (1) by showing that these can 
be derived from formulations of type (2). We also indicate some pros and cons of both 
formulations and discuss implications for the differences in commuting distances of workers. 
In addition@@@ 
 
2. Individual consumer. 
 
Consider a consumer who can visit a number of destinations at various distances from his 
residence (point of origin). We assume that he makes one visit per time unit. The total number 
of potential destinations within a certain maximum distance D is M. The alternatives are 

                                                                 
1 For a counter view refer to Mokhtarian and Salomon(1999). 
2 The gross utility is the utility of the outdoor activity without taking into account the money and time outlays 
related to the trip. 
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ranked in increasing distance from the origin to the destination: d1,...,dM. The corresponding 
gross utilities are v1,...,vM. Consider a certain distance d+. Let n < M be the destination with 
the longest distance dn being shorter than d+. Then the maximum utility derived from a trip 
with distance d+ equals  
 
 v(d+) = max {v1,...,vn}      
 
When we compare two distances d+ and d++ε 
 with ε>0, we find that  
 
 v(d++ε) ≥v(d+).       
 
Thus we arrive at a monotone non-decreasing function. The case of v(d++ε) =v(d+) occurs 
when one of the two following conditions holds: 
1. There is no potential destination with a distance between d+ and d++ε. 
2. There are one or more potential destinations with a distance between d+ and d++ε, but these 
additional destinations have a lower utility than v(d+). 
The form of the function v(d+) is as presented in Figure 1. 
 
 
Figure 1. Maximum utility of visiting a destination within a certain distance d+. 
 
 
The points at the upper corners of v(d+) form together the set of non-dominated alternatives. 
The destinations below the line in figure 1 are dominated by destinations on the line. The 
consumer will never choose an alternative below this line. By deleting the dominated 
alternatives we arrive at a one-to-one relationship between utility levels and distance 
travelled. The function v=f(d) as presented in Figure 1 can be translated into d=f-1(v) where 
the function f-1 is defined in the points v for which an observation exists. Consider an 
individual at i considering a destination j. 
Then the basic utility function already introduced above 
  
 Uij=U(vi,Y-cdij,T-tdij),        (2’) 
 
can be reformulated  as 
 
 Uij=U[f-1(dij),Y-cdij,T-tdij]       (3) 
 
Equation (1) is a rewritten version of equation (3) with one difference: (3) is only defined in 
particular points (i.e., the distances corresponding to the non-dominated points in Fig. 1), 
whereas for (1) such an explicit limitation has not been introduced. In the next section we will 
demonstrate how the gap between these two can be bridged. 
 
3. Utility of visits for an average consumer in a uniform space of infinite size. 
 
Figure 1 gives a possible result of the relationship between distance travelled and utility for 
the particular spatial setting for one specific consumer. One may wonder how the 
transformation between utility and distance would look like for the average consumer. We 
will give a derivation based on the assumption of uniform density of locations in two 
dimensional space and uniform density of the utility of visiting a destination. Consider a set of 
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M destinations in two dimensional space that are uniformly distributed. Also consumers are 
assumed to be distributed uniformly across space. The two distributions are assumed to be 
independent. Consider a randomly drawn consumer. Then the distances to the M destinations 
are a random sample of the following uniform distribution3: 
 
 f(d) = d/[2D2]   where 0≤d≤D       
 
 
The cumulative distribution F(d) is: 
 
 F(d) = d2/D2   where 0≤d≤D      (4) 
 
 
Then, when the consumer makes a trip with distance d, the expected number of potential 
destinations equals M.d2/D2. Therefore, the expected number of potential destinations 
increases quadratically with distance travelled. Thus, the elasticity of the number of potential 
destinations with respect to distance travelled equals 2. The quadratic form obviously follows 
from the assumption of a two-dimensional space. When the consumer can only make visits in 
a one-dimensional space (all destinations are located along one road), the number of potential 
destinations would be proportional to the distance traveled. 
 
These results make clear that a longer trip yields potential benefits because it leads to a larger 
choice set, and hence to adding an especially attractive alternative to the choice set. Assume 
that the utility v of a visit to a particular destination (apart from transport costs) has a uniform 
distribution g(v) with values between a and 1: the values of a and 1 are the lower limit and 
upper limit of  the utility level. Thus, 
 
 g(v) = 1/[1-a]    where a≤v≤1       
 
The corresponding distribution function G(v) equals: 
 
 G(v) = [v-a]/[1-a]  where a≤v≤1     (5)  
 
Suppose that the consumer can choose out of n potential destinations (n≤M). Let the 
destinations be ranked in increasing order: v1,...,vn. Then it follows from the theory of order 
statistics (Mood and Graybill, 1963) that the distribution of the utility of the best alternative 
vn, h(vn)  equals: 
 
 h(vn)  = [n!/(n-1)!] [G(vn)]n-1 g(vn)   where 0≤vn≤1 
 
  = n [1-a]-n [vn –a] 

n-1   where 0≤vn≤1   (6) 
 
Then the expected utility value of the best alternative among these n is equal to: 
 
 Ε(vn) = 0∫1n [1-a]-n [vn –a]n-1 vn dvn =  [n+a]/[n+1],  n=1,2,3,...,M  (7) 
 

                                                                 
3 For the ease of presentation we ignore the problem that consumers near the ‘border of the space’ will have less 
potential destinations since the space is empty at the other side of the border. Thus, the space is assumed to be of 
infinite size. 
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From (7) it follows that the elasticity of the expected maximum utility of a trip with respect to 
the number of alternatives n from which can be chosen equals [n(1-a)]/[(n+a)(n+1)]. This 
elasticity strongly decreases with the number of alternatives. For example, when a=0 and n=1, 
the elasticity equals ½, but for larger values of n it gets close to 0. When we confront this 
result with the constant elasticity of value 2 of the number of potential alternatives with 
respect to distance, it is clear that with longer distances the relative gains of searching at even 
longer distances get very small4.  
 
For a more detailed analysis of the impact of distance travelled on utility, consider a consumer 
who wants to make a trip within distance d. Given equation (4) the expected number of 
destinations within this distance equals M.d2/D2. The probability that a particular destination 
out of the total set of potential destinations is within distance d equals d2/D2. Then the number 
of destinations n lying within this distance has the following binomial distribution: 
 
 k(M,d,n)= M!/[n!(M-n)!] . [d2/D2]n[1-d2/D2]M-n        n=0,1,2,...,M  (8) 
 
where k(M,d,n) is the probability that a sample of M destinations leads to n alternatives within 
a distance d. If we only consider situations where at least one destination is found the result 
n=0 must be excluded, so that the probability k(M,d,n) has to be redefined as: 
 

k’(M,d,n)= M!/[n!(M-n)!] . [d2/D2]n[1-d2/D2]M-n  / [1-(1-d2/D2)M]      n=1,2,...,M (8’) 
 
 
Assume that the distribution of distances f(d) and the distribution of utilities g(v) are 
independent. Then the expected value of a trip with distance d (denoted as Ε[v(d)]) is: 
 
 Ε[v(d)]= ∑n=1,..M M!/[n!(M-n)!].[(n+a)/(n+1)].[d2/D2]n[1-d2/D2]M-n /[1-(1-d2/D2)M]   (9) 
 
In the special case that M goes to infinity, Ε[v(d)] equals 1 for all positive d. This is a 
plausible result: when there is a very high spatial density of potential destinations one will 
easily find a very good destination nearby without the need to travel long distances. In the 
extreme case that there is only one potential destination (M=1), Ε[v(d)] equals [1+a]/2.  This 
can easily be understood: in this case we just find that the expected utility of the trip equals 
the expected utility of any destination, being the mean value between a and 1. 
 
The expected value for a trip with distance d=0 equals [1+a]/2.  For d=D we find that the 
expected utility of a trip is (M+a)/(M+1) which is close to 1 for larger values of M. This is 
again a credible result: when a large number of potential destinations exists, the expected 
utility value of the best alternative is close to the maximum possible value of 1.  
 
 
 
Figure 2. Utility of a trip as a function of distance and the number of potential destinations; 
based on uniform distribution of utility (0.2 to 1) and based on uniform density in space with 
circular distance function. 
 

                                                                 
4 Given a search distance d and  number of destinations n, an increase in the search distance with 1% leads to 2% 
extra alternatives. But these lead to an increase of only 2[n(1-a)]/[(n+a)(n+1)]%  in utility. 
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In Figure 2 some results are presented for the expected utility of the trip as a function of the 
number of alternatives M (values are given for 1, 2, 5, 10, 50, 100) and distance d (d ranges 
from 0 to D=100). The value of the utility parameter a has been set equal to 0.2. As indicated 
above the curve’s shape is influenced by two countervailing forces. First, an increase in 
distance d leads to a more than proportional increase in the number of alternatives (the area of 
a circle is a quadratic function of its radius). This would lead to convex curves. Second, an 
increase in the number of alternatives leads to higher expected utility values, but the increase 
fades away as the number of alternatives gets higher. The second effect would lead to a 
concave curve. From figure 2 it appears that only in the case that M=2 or slightly higher the 
final curve has a pure convex form5. In all other cases the curves are characterised by an 
inflection point separating a segment with increasing slopes from a segment with decreasing 
slopes. Pure concave shapes are never found.  
 
 
4. Utility of visits for an average consumer in a uniform space, rectangular city. 
 
The above analysis is based on the assumption that the space has infinite size so that the issue 
of consumers being located at the fringe of an urban area have less destinations than 
consumers in the centre does not arise. As a consequence of this assumption an increase in the 
distance travelled always leads to a more than proportional increase in the number of potential 
destinations. In the real world with its distinct cities, this is not realistic. Therefore we repeat 
our analysis for some specific urban forms. We start with the assumption of a rectangular city. 
This city consists of a grid of say 1000 x 1000 points. Each point represents a consumer. Thus 
there are one million consumers. A set of M destinations is randomly distributed among the 
grids according to the uniform distribution. 
 
For the above described spatial setting it’s difficult to give a theoretical derivation, therefore 
we adopt a simulation approach. We draw a certain consumer in a random way. His location 
appears to be grid i,j. This grid is labelled k0. Then we draw M other grids that are randomly 
distributed among the grids. These grids are labelled k1,…,kM. The distances of these grids to 
k0 are d1,…,dM. The distances are computed as city block distances: 
 
 d[(x1,y1),(x2,y2)] = |x1-x2|+|y1-y2| 
 
The next step is that we rank the M distances in increasing order, which results in d1

*,…,dM
*. 

Then we draw M utility values from the distribution g(v), which results in v1,…,vM. We are 
now able to compute the maximum utility w of a certain trip as a function of the distance d 
travelled. This maximum utility is not defined for distances between 0 and d1

*. For distances 
that are larger than d1

* we compute this maximum utility as follows: 
 
 w(d) = max {v1,…,vn}  where dn

*≤d≤dn+1
* 

 
We repeat this procedure 10000 times in order to get results for an aggregate traveller similar 
to the approach followed in section 4. Now we are able to compute the average value of w(d) 
for all 10000 iterations in the points d = 0,1,2,…,1998 (1998 is the maximum possible 
distance according to the city block distance). 
 
 
                                                                 
5 We observed already earlier that when M=1 the expected utility of a trip is just equal to the constant (1+a)/2. 
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Figure 3. Expected maximum utility level of a destination, assuming there are one or more 
destinations, as a function of the distance and the number of potential destinations; based on 
uniform distribution of utility (0.2 to 1) and based on uniform density in space, in a 1000 x 
1000 rectangular city. 
 
 
In Figure 3 some results are presented for the expected maximum utility of a destination as a 
function of the number of alternatives M (values are given for M = 1, 2, 5, 10, 50, 100) and 
distance d (d ranges from 0 to 1998). The value of the utility parameter a has again been set 
equal to 0.2. We see that for distances between 0 and 100 the curve pattern is rather unstable. 
This is due to the fact that the curve is based only on 10000 iterations and that the probability 
of a distance lower than 100 between the randomly drawn consumer and a randomly drawn 
destination is very small. All curves have a sigmoid shape: the expected marginal utility of 
distance of a trip starts at a low level, as distances it gets higher, but finally it declines again. 
A regular pattern of inflection points appears: as there are more destinations the transition 
from increasing to decreasing marginal utilities of distance take place at shorter distances.  
 
When we compare Figures 3 and 2, we note that for M=2, Figure 2 yields an inflection point, 
whereas Figure 3 does not. This is because of the finite size of the spatial setting. Because of 
this finite size, the expected number of potential destinations doesn’t increase quadratically 
with distance travelled, but slightly less and for very long distances the number of potential 
destinations hardly increases (see Figure 4). Note that in section 3 the density of potential 
destinations is proportional to distance (see equation 4), whereas Figure 4 yields a bell shaped 
pattern. 
 
We conclude that although the assumptions on the spatial structure are different, the final 
result for the relationship between distance and utility of a trip is rather similar. Only when 
there is a very small number of potential destinations the curves are somewhat different. Thus, 
the shortcut applied in utility function (1) is defendable in the situation that no data are 
available at the individual level on the locations and qualities of the available destinations. 
 
 
 
 
 
 
Figure 4. The density of distances to potential destinations, assuming a 1000 x 1000 grid. 
 
 
Having established the relationship between distance travelled and average utility, it is also 
possible to derive some additional results on travel patterns. For example, one can easily 
derive the expected utility of the most preferred trip as a function of distance. For this purpose 
we have of course to take into account the transport costs. We assume that the cost per unit 
distance is such that the cost level at the maximum distance (d = 1998) equals 1. Thus we 
arrive at a cost of 1/1998 per unit distance. 
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For each iteration we determine the most preferred trip by solving the following problem in 
order to derive the distance j with with the highest net utility uj – costj: 
 
 maxj {uj – costj}  j=0,1,…,1998 
 
Thus we gather 10000 distances with associated net utilities. From these net utilities we can 
compute the level of expected net utility of the best destination (see Figure 5). 
 
 
 
 
Figure 5. Expected net utility of the best destination as a function of distance and the number 
of potential destinations. 
 
 
Note that the curves are declining with distance. With the given level of transport costs it 
appears that as the best alternative lies further away the transport costs increase faster than the 
‘gross’ utility of the trip. Note, however, that this result depends on the level of the transport 
costs. When transport costs would be close to zero the resulting patterns of expected net 
utilities would be very similar to the ones found in Figure 3. 
 
Another result that can be derived from these inputs is the distribution of destinations with the 
highest net utility according to distance. As Figure 6b shows the density is close to the origin 
when the number of potential destinations M is large (for example M=100). When M is small 
(for example M=1) the density has a very wide range (see Figure 6a). Thus, when people are 
searching for a scarce good or service the average distance travelled will be much higher. 
Note also that when M is small there will also be many persons who will not find a 
destination with a positive net utility: the utility of the feasible alternatives is always smaller 
than the costs of getting there6. 
 
 
 
Figure 6. The distribution of destinations with the highest net utility according to distance. 
 
 
When we compare Figures 6 and 4, Figure 4 can be interpreted as the distribution of 
destinations with the highest net utility according to distance when transport costs were zero. 
We see that when transport costs are zero the density has a very wide range. This is due to the 
fact that in that case, people would consider every alternative and choose the one with the 
highest utility, even when the distance to that alternative is very large. 
 
5. Utility of visits for an average consumer in a polycentric urban area. 
 
The above analysis is based on the assumption that the relevant urban area has a uniform 
density and a rectangular space. One may wonder whether other urban forms would lead to 
different results. Therefore we also carry out an analysis for a rectangular polycentric urban 

                                                                 
6 This can be inferred from the mass of the density in d=0, reflecting the share of people that will not participate. 
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area.7 We repeat the procedure as described in section 4 for a specific urban system with 4 
centres (see Figure 7). 
 
 
 
 
Figure 7. Example of a polycentric urban area. 
 
 
When we construct the same figures as in section 4, we find that there are only small 
differences between Figures 3, 5 and 6 depicting the results for a monocentric system and the 
corresponding figures (Figures 8, 9 and 10) based on a polycentric system. 
 
 
 
 
Figure 8. Expected maximum utility level of visiting a destination as a function of the 
distance and the number of potential destinations; based on a uniform distribution of utility 
(0.2 to 1) and on a polycentric urban system.  
 
 
 
 
 
 
Figure 9. Expected net utility of visiting the best destination as a function of distance and the 
number of potential destinations, based on a polycentric urban system.  
 
 
 
 
 
Figure 10. The distribution of destinations with the highest net utility according to distance, 
based on a polycentric urban system. 
 
 
On the other hand, when Figure 4 is reproduced for this polycentric urban structure, one gets 
clear differences (see Figure 11). The difference between Figures 4 and 11 follows from the 
specific polycentric urban structure on which the latter is based. If one would carry out this 
procedure for a more fine-meshed and/or less systematic urban structure the differences 
would probably be less obvious. It is striking that although the spatial structure in sections 4 
and 5 are rather different the fundamental relationship between distance and utility is not 
strongly affected. 
 
 
 
 

                                                                 
7 This means for the simulation that we consider the same 1000 x 1000 grid, but when we run the simulation we 
take care that when we draw the consumer and the set of M destinations some grids are drawn with chance zero 
(the empty areas). In this way one can simulate practically every urban structure. 
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Figure 11. The density of potential destinations, based on a polycentric urban system. 
 
 
 
 
6. Conclusions  
 
We conclude that the above approach yields a satisfactory basis for the common practice of 
including distance travelled in utility functions as a source of welfare. The spatial distribution 
of destinations and the distribution of their utilities are implicitly present in the formulations 
derived in sections 2 and 3. Thus, the utility function formulated in section 1 can be 
considered as a reduced form where these underlying distributions are taken on board. The 
conclusion is that in the context of estimation the parameter related to distance in equation (1) 
is not purely reflecting preferences, but that it also represents elements of the spatial 
distribution of destinations and of densities (as reflected by the parameter M). Also the quality 
level of destinations and variations in the quality of destinations (represented by the parameter 
a) play a role.  
 
The obvious advantage of equation (1) is that it can be used without the need to specify the 
spatial distribution of destinations. For many applications where equation (1) is used data on 
the distances of relevant destinations of each consumer are not known. The disadvantage of 
the use of equation (1) is that it has a reduced form character so that the parameter related to 
distance reflects several things at the same time which cannot be disentangled without further 
information. An implication is that transferability of model parameters from one case to the 
other becomes a complex issue.  
 
Equation (1) can be used for example for the analysis of the optimal commuting distance 
chosen by a job seeker who makes a choice out of a set of job openings. An interesting 
implication of this interpretation is that it helps one to understand why there is a general 
tendency that persons with higher education and higher incomes tend to commute at longer 
distances (Rouwendal and Rietveld, 1994, van Ommeren, 2000). Based on the notion of the 
value of time one would expect that these workers would opt for a commuting distance that is 
relatively short. The explanation of the fact that the opposite occurs in reality is that at higher 
levels of income and education the number of jobs offered within one’s class of competence 
(M) is much smaller and the heterogeneity it higher. In terms of equation (9) this means that 
the marginal utility of longer commutes is much higher here than for most workers with lower 
qualifications. 
 
In the present analysis we focussed on only one particular type of destination. When more 
than one transport motive is considered equation (1) should be generalised to become 
 
 U=U(d1,d2,..dN, Y- c.[d1+…+dN] , T- t.[d1+…+dN]) 
 
where d is the total distance travelled, defined as the sum of all distances dn travelled for all 
motives n=1,2,...,N. The different parameters to be found for the different travel motives will 
represent both the priority attached to the respective activity, the spatial distribution of the 
destinations and the distribution of utilities across destinations and the absolute number M of 
destinations available. 
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Figure 1. Maximum utility of visiting a destination within a certain distance d+. 
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Figure 2. Utility of a trip as a function of distance and the number of potential destinations; 
based on uniform distribution of utility (0.2 to 1) and based on uniform density in space with 
circular distance function. 
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Figure 3. Expected maximum utility level of a destination, assuming there are one or more 
destinations, as a function of the distance and the number of potential destinations; based on 
uniform distribution of utility (0.2 to 1) and based on uniform density in space, which is a 
1000 x 1000 rectangular city. 
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Figure 4. The density of potential destinations, assuming a 1000 x 1000 grid. 
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Figure 5. Expected net utility of the best destination as a function of distance and the number 
of potential destinations, based on uniform density in space, which is a 1000 x 1000 
rectangular city. 
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Figure 6. The distribution of destinations with the highest net utility according to distance, 
based on uniform density in space, which is a 1000 x 1000 rectangular city. 
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Figure 7. Example of a polycentric urban area. 
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Figure 8. Expected maximum utility level of visiting a destination as a function of the 
distance and the number of potential destinations; based on a uniform distribution of utility 
(0.2 to 1) and on a polycentric urban system.  
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Figure 9. Expected net utility of visiting the best destination as a function of distance and the 
number of potential destinations, based on a polycentric urban system.  
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Figure 10. The distribution of destinations with the highest net utility according to distance, 
based on the urban system depicted on Figure 7. 
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Figure 11. The density of potential destinations, based on the urban system depicted on Figure 
7. 

0

100

200

300

400

500

600

700

800

900

0-50 400-450 800-850 1200-1250 1600-1650

distance

n
u

m
b

er

 
 
 
 
 


