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Complication and Complexity in Dynamics of Linear Spatial Socio-Economies, 

 A Synopsis. 

 

M. Sonis. Bar-Ilan University, Israel, e-mail: sonism@mail.biu.ac.il 

 

I. Introduction: A new Paradigm: Complication as Evolving Complexity. 

The purpose of this article is to provide an explanation of the process of complication, i.e. 

the deepening and evolution of complexity in evolving complex   linear systems in 

Human Geography and Regional Science. 

In this article we will apply the paradigm of complexity and complication to the three 

main branches of Economic Geography and Regional Science connected with linear 

systems of flows, networks and superposition of their hierarchies: Linear and 

Transportation Programming optimization problems, Superposition Principle in  

Push-Pull analysis of Migration Streams,  and Central Place theory.  

 The main feature of the evolution of a complex system is the emergence of new 

properties which did not exist in previous trends and which add new information to the 

system (see, for example, Cowan et al, 1994). The evolution of complexity 

(complication) of the physical universe included in the past at least two quintessential 

events: the Big Bang, which flooded the universe with radiation and, a billion years later, 

the darkening of the firmament, because of the appearance of atoms and the creation of 

stars, black holes and galaxies. The Big Bang started the work of the Universal Engine of 

Complication , i.e.,  the machine of the deepening and evolvement of complexity. The rate 

of complication of the physical universe is very low, while the complication of biological, 

ecological and especially social reality has continued at an accelerated rate. 

At the start we should stress the difference between appearance of new information 

(invention) in the complex socio-spatial system and a spread of this information 

(innovation diffusion). Spread of information within the complex system presents the 

essence of the process of complication. This spread shows itself through the partial 

adoption of new information and manifests itself through the path dependent process of 

self-organization within socio-spatial complex system. 

 The innovation diffusion is the universal property of all complex system and the 

quintessence of the complication process. The detailed description of the innovation 

diffusion theory can be found in the publications Sonis, 2000, 2001. 

The present article considers the forms of self-organization in linear systems.  A system 

called linear if its states satisfied the system of linear constrains. 

 Geometrically the set of all admissible states of linear system presents itself in the form 



of convex polyhedron in a many-dimensional space (see Weyl, 1935). The vertices of this 

polyhedron are the optimal solutions of the Linear Programming Optimization problem 

(Dantzig, 1951). 

 The actual state of the linear system is the point within the convex polyhedron. The 

actual state belongs also to the set of simplexes generated by some subset of the vertices 

of polyhedron. So the dynamics of linear system includes the movement of actual state 

within the convex polyhedron of the admissible states and the catastrophic jumps of the 

surrounding simplexes. The self-organization of the linear systems in a simplest form 

appears as the optimization tendencies of different organizations of space and society.  

The algorithmic form of such optimization processes in the case of a general Linear 

Programming Optimization problem and the particular case of the classical Minimal Cost 

Transportation Problem is treated in the section II. The central point here is the structural 

stability of optimal solutions within the Cone-Wedge domains of structural stability and 

structural changes (“catastrophe” effects) of optimal solutions on the boundaries of 

structural stability.   

In  this study the classical theory of Central Places is reconstructed on the basis of 

Barycentric Calculus and the Christaller and Losch&&  principles Central Place principles 

presented as principles of optimal organizations of space. 

More elaborated form of self-organization of the linear systems is the superposition of 

different optimization tendencies which acting simultaneously and obtain only partial 

representation in the socio-spatial system Their weighted superposition (convex 

combination) reflects the results of self-organization of society in space. The Rank-Size 

sequence of these weights represents the hierarchy of extreme tendencies partially 

represented in the concrete socio-spatial system.  The application of this principle for the 

analysis of non-optimal transportation flows, migration flows and new decomposition 

models of the Central Place hierarchies is discussed in detail.  

II. Catastrophe effects in Linear Programming 

II.1. Cone-Wedge presentation of the domain of Structural Stability of optimal solutions. 

In this section we consider the simplest form of self-organization of linear systems: the 

optimization tendencies of different organizations of space and society. We will start with 

the consideration of the classical Linear Programming optimization problem.  

The central point of this section is the structural stability of optimal solutions of the 

Linear Programming problem within the Cone-Wedge domains of structural stability and 

structural changes (“catastrophe” effects) of the basis of optimal solutions on the 

boundaries of structural stability.  

The domain of stability of the basis of optimal solutions in linear programming is the 



aggregation of three different domains: (1) the domain of permissible changes of the 

resources (coefficients of the system of linear constraints); (2) the domain of admissible 

changes in prices (coefficients of the objective function) and (3) the domain of admissible 

changes in technological coefficients under which the optimal solutions of the linear 

programming problem will correspond to the same basis, i.e., to the same set of possible 

components of optimal solutions. 

The description of the domain of the basic stability has a deep economic significance 

since, from an economic viewpoint, the cons truction of the domain of the basis for 

stability corresponds to the determination of the permissible levels in the variation of 

production costs, permissible levels of resource fluctuations and permissible changes in 

technological coefficients under which the optimal assortment of output is preserved.  In 

essence, these conditions reflect the basis for the preservation of the optimal arrangement 

of the economic system. or conditions of optimal organization of space in spatial system.   

The potential link with input-output analysis provides for the intriguing possibilities of 

exploring ways in which prices (or quantities) can be used as a tool for the optimal 

management of an economic system undergoing technological changes or for a system of 

regions facing changing competitive pressures.  

 This section focuses on the description of the sensitivity analysis of the optimal solutions 

of the linear programming problem under conditions of unchanging technology.  This 

implies that only the coefficients of the objective function and the right parts of the 

system of linear inequalities are arbitrarily changing. We chose such form of sensitivity 

analysis which describe the catastrophe effects in optimal solutions structure. The 

description of these effects is based on the polyhedral form of general sensitivity analysis 

for classical Linear Programming problem (see Sonis, 1982): Consider a primal linear 

programming problem  LP and its associated dual D : 

             
LP:                 D:        

0

              min                  max

AX b
YA c

X

cx Yb

= ≤ ≥
→ →

                                          (II.1) 

Let A0  be an invertible submatrix of the matrix A with the inverse 1
0A B− =   with the 

properties: 

                                           00,      B c BA c≥ ≤                                                                      (II.2) 

where the coordinates of the vector c0  correspond to the columns of the matrix A0 .  Then 

the primal problem has the optimal solution, X, with the vector of non-zero basis 



components 0X                                                 

                                     0X Bb=                                                              (II.3) 

and  the dual has the optimal solution: 

                              0Y c B=                                                                      (II.4) 

This proposition also provides the complete description of the domains of the structural 

stability of the optimal solutions for the primal and dual linear programming problems 

under conditions of unchanging technology.  

If the resources, b, and prices, c, are changed, a polyhedral cone in the spaces of 

resources: 

                                              ( ): 0C b Bb= ≥                                          (II.5) 

and a polyhedral wedge in the space of costs: 

                                             ( )0:W c c BA c= ≤                                      (II.6) 

are obtained.  These determine the domains of stability of the basis for the optimal 

solutions of the primal and dual problems.  Thus, the Cartesian product C W×  defines the 

domains of the structural stability of the optimal solutions for the primal and dual 

problem.  The construction of the Cartesian product for each given optimal solution is 

simple, because the last tableau of the simplex algorithm of Dantzig, 1963, contains the 

components of the matrix BA .  Hence, to obtain the inequalities determining the domain 

of the structural stability, access to the components of the last simplex tableau will 

suffice. 

Moreover, the optimal solutions, X and Y, associated with the basis matrix 0A  are the 

extreme points or vertices of the corresponding convex polyhedrons of the admissible 

solutions for the primal and dual problems.  Since the matrix A contains a finite number 

of invertible submatrices, the space of resources and the space of costs are decomposible 

into a finite number of domains: 

                          1 1 2 2, ,..., r rC W C W C W× × ×                                                    (II.7) 

so that each of them corresponds to the preservation of some invertible basis submatrix of 

the matrix A, i.e., to the preservation of some optimal assortment of production. 

The transition from the domain i iC W×  to the next domain 1 1i iC W+ +×  may be described 

as the intersection of one of the bounds of the cone Ci  or wedge Wi .  In this case, outside 



the cone, iC , the criterion of optimality will fail to hold in the cell of the objective row of 

the simplex tableau corresponding to the bound of the transition.  This cell defines the 
type of production to be introduced into the basis and to construct the cone Ci +1 , only one 

step of the simplex algorithm is needed. 

If the transition through the bound of the wedge, iW , takes place, then the condition of 

positivity of the components of the optimal solution fails to hold in the row corresponding 

to the chosen bound.  This bound defines the type of production to be eliminated from the 

basis of the solution and, as before, only one further step is necessary in the dual simplex 

algorithm.  Hence, by means of a sequential transition from domain to domain, the full 

sensitivity of the optimal solutions of the linear programming problem under conditions 

of unchanging technology can be revealed.   

It should be noted that the description of the domains of the basis stability solves the 

multivariant analysis problem by reducing this problem to a relatively small number of 

variants.  This reduction may be carried out in the following way.  From the collection of 

all variants of prices and resources, select an arbitrary variant and solve the  corresponding 

linear programming problem and construct the domain of the basis stability for the 

optimal solution.  Further, from the collection of the variants, select those corresponding 

to the same domain of the basis stability.  The remaining variants are treated similarly. 

III. Structure of optimal (minimal cost) transportation flows. 

The actual hierarchy of urban settlements puts strong restrictions on the spatial 

organization of optimal (minimal cost) transportation flows between the settlements. In 

turn, the spatial and temporal stability of the transportation flows may be essential 

factor of growth or decline of a hierarchy of urban settlements. Usually the optimal 

transportation flow does not coverall linkages of the transportation network between 

the settlements; therefore the existence of structurally stable optimal transportation 

flows can result in a change of the transportation network itself on the expense of the 

non-used linkages. 

III.1. Arc-density property of optimal networks. 
Consider the cost minimization problem on a network with m suppliers with ai  units of 

supply for each of i suppliers ( i=1,...,m) and n demanders with corresponding needs for 

b j  units (j=1,...,n) and with the conservation condition that a bi j∑ ∑= .  Given a set 

of costs, cij , for each supply-demand link, the optimal solution will occupy m+n-1 

cells (the basis cells) of the computing table.  Topologically, the set of basic cells 



defines the maximally connected subgraph of the transportation network without 

cycles and includes exactly m+n-1 arcs.  For each non-basic cell, the cycle exists 

whose vertices (excluding the non-basic cell itself) are basic cells. 

Consider a connected planar graph with v vertices and a arcs. Each vertex can be origin 

(for supply) or destination (for demand) or origin/destination (for supply and demand 

simultaneously). A question arises: whether or not this planar graph can represent the 

topological structure of optimal transportation network for some minimum cost 

transportation problem?  The answer is based on the following  

Arc-density theorem (Sonis, 1982): If the connected planar graph with v vertices and a 

arcs represents a topological structure of the minimal cost transportation flow of 

homogeneous production, then its arc density (a+1)/v has a following range: 

                            
1

1 2
a

v
+≤ ≤                                                (III.1) 

 III.2. Domains of structural stability and boundaries of structural change in optimal 

transportation networks. 
Consider the cost minimization problem on a network with m suppliers with ai  units of 

supply for each suppliers (i=1,...,m) and n demanders with corresponding needs for b j  

units (j=1,...,n) such that the total supply is equal to total demand: a bi j∑ ∑= , and 

let  cij  be the cost of transportation of one unit of production from ith supplier to jth 

demander. 

The description of the domains of the basis stability provide the mechanisms for 

finding the optimal linkages between demanders and suppliers; the difficulty here is 

that the solution to the transportation problem does not provide the last simplex tableau 

and this must be restored.  For the re-establishment of the matrices, BA  and B a 

generalization of the MODI method is used (Dantzig, 1951) providing a connection 

with the simple structure of the matrix associated with the transportation problem. 

The Vector Method of Potentials and matrix inequalities of Cone-Wedge domains of   

structural stability of optimal networks can be find in Sonis, 1982a. 

III.2.1.  Structural change in the spatial structure of optimal transportation flows 

The change in the spatial structure of the optimal transportation flow is connected to 

the absence of fulfillment of one or more of the inequalities defining the cone and 

wedge of the structural stability.  The domains of the structural change are the faces of 



the domain of the structural stability C W× , which are the closed hyperplanes in the 

supply-demand space or in the space of transportation costs.  On the face of the cone C, 

the flow is degenerated; it divides into a few independent subflows that are the optimal 

solutions a smaller size problem.  If one moves out of the cone C, then the admissible 

flow with a given topological structure does not exist and a new flow must be 

constructed.  If one moves out of the wedge W, then there is an admissible flow with a 

previous topological structure, but the condition of optimality of the transportation 

flow fails to hold, and the structure of the flow must be changed   by substituting one 

arc of the spatial structure for another. 

III.3.  Behavioral competition between suppliers and demanders within the minimal 

cost transportation problem. 

In this section, it is shown that in the minimum cost linear programming transportation 

problem, the global collective minimization of cost implies a totally antagonistic 

competitive exclusion behavior on the part of suppliers and demanders.  This principle 

will surface again in the application of the superposition ideas. 

III.3.1. Competitive exclusion behavioral rules in the minimum cost solution. 

It is well known in the linear programming transportation problem that the competitive 

forces that result in an optimal allocation may lead to the exclusion of some subgroups; 

this effect will now be explored in the form of behavioral rules for subsets of suppliers 

and demanders.  Now consider an arbitrary subset of all the basic cells; the suppliers 

and demanders in this subset will be referred to as the old suppliers and demanders and 

the complement set will be referred to as the new suppliers and demanders.  The 

following three rules comprise the competitive exclusion effect (see Sonis, 1993): 

1. each new demander can be served by only one old supplier; 

2. each new supplier can serve only one old demander; 

3. if a new demander is served by both old and new suppliers, then this new supplier 

cannot serve any other old demander. 

Thus, in minimal cost transportation problem the global collective minimization of 

costs implies the totally antagonistic competitive exclusion individual behavior of 

suppliers and demanders. 

These behavioral rules allow constructing the geometric and numeric algorithm of 

enumeration of all basic subgraphs presenting spatial structure of the transportation 

network carrying the optimal transportation flows under various requirement on 



supply-demand and transportation costs.  

The following question arises: what spatial form has any admissible basis subgraph in 

the hexagonal network?  The behavioral rules presented in the previous subsection 

allow the enumeration of all basic subgraphs presenting spatial structure of the optimal 

transportation flows in hexagonal network under various requirement on 

supply-demand and transportation costs.                     

IV. Superposition Principle – the inverted problem of Multi-objective 

Programming. 

IV.1. Connection between the Weber principle of industrial location and the Moebius 

Barycentric Calculus.  

Geometrically, the solution of the Linear Programming optimization problem is taking 

into account only one vertex of the convex polyhedron of all admissible solutions. The 

information about the set of all vertices and the structure of the convex polyhedron, while 

it is important for the deriving the solution, is neglected in the solution itself. Moreover, 

the actual state of the linear regional system  (a system defined by linear balancing 

constraints) is usually far from of whatever optimization. From the view-point of 

optimization the actual state of a regional system is a solution for an optimization 

problem of multi-objective programming. This means that the actual state reflects the 

existence of a set of different extreme tendencies or trends corresponding to the 

optimization of a set of different objective functions. But simultaneous optimization of 

two or more objective functions is inaccessible mathematically (Boltiansky, 1973, 

paragraph 1.5). Therefore, the problem of multi-objective programming is usually 

transformed to the problem with only one objective. Traditionally there are two 

approaches for this transformation (Cohon, 1978). One of them is to optimize one of 

objectives while appending the other objectives to a constraint set, so that the 

(sub-optimal) solution would satisfy these objectives up to an acceptable level. The other 

approach is to optimize a super-objective function created by weighted sum of a set of 

objectives. There is a great deal of arbitrariness in both approaches and the influence of 

each objective is distorted; therefore, the optimal solution of the multi-objective 

programming is usually for removed from the actual state of the regional system. 

The problem became much easier if we replace the consideration of multi-objective 

optimization with the problem of analysis of an actual state of linear regional system. 

Geometrically, the actual state belongs to the convex polyhedron of admissible solutions; 

the vertices of this polyhedron are the optimal solutions of one objective optimization 

problems. So we find ourselves in the typical situation of the theory of convex 

polyhedrons: a point (of actual state) within the convex polyhedron (of admissible 



solutions). The central fact of the theory of convex polyhedrons is the Minkovski, 1910, 

theorem about the center of gravity of a convex polyhedron: it is possible to hang the 

collection of weights (with common weight 1) on the vertices of the convex polyhedron 

such that its center of gravity will coincide with a given point. More precisely, the 
Minkovski theorem can be can be formulized in the following manner: every point 1Y  of a 

convex bounded many-dimensional polyhedron can be presented as a convex 
combination (a weighted sum) of several vertices 1 2, ,..., kX X X : 

1 1 1 2 2 1 2... ,   0 1, 1,2,..., , ... 1k k i kY p X p X p X p i k p p p= + + + ≤ ≤ = + + + =   (IV.1)  

The Minkovski theorem can be interpreted as an inversion of the classical A. Weber 

principle of industrial location (Weber, 1909). Weber’s main idea was the utilization of 

the notion of center of gravity: the optimal location of a plant is the center of gravity of a 

polygon whose vertices correspond to the location  of raw materials, energy  man-power 

and the market location. We shall use the following inversion of Weber’s principle: the 

point of the actual state of the regional system  is considered as a center of gravity of the 

polyhedron of admissible states of the regional system. So we determine  the collection of 
vertices iX  and their weghts (baricentric coordinates) ip  such that the center of gravity 

of  the polyhedron of admissible states will coincide with the actual state. Thus, the 

problem of analysis of an actual state of the regional system  is reduced to the basic 

problem of Barycentric Calculus (Mobius&& , 1827).  

IV.2. The Caratheodory theorem and the inverted problem of multi-objective 

programming. 

The important specification of the Minkovsky theorem is the Caratheodory, 1911, 
theorem: every point 1Y  within a convex closed bounded n-dimensional polyhedron can 
be presented by a convex combination of vertices, 1 2 1, ,..., mX X X + , belonging to some 

m-dimensional simplex ( m n≤ ) with m+1 vertices: 

1 1 1 2 2 1 1 2 1... ,   0 1, 1,2,..., 1, ... 1k m i mY p X p X p X p i m p p p+ += + + + ≤ ≤ = + + + + =  (IV.2) 

In other words, the given point 1Y  is a center of gravity of the set of weights 

1 2 1, ,..., mp p p +  hanging on the vertices of certain simplex. Moreover, the barycentric 

coordinates 1 2 1, ,..., mp p p + of 1Y  with respect to a fixed simplex are defined uniquely. 

This theorem plays only auxiliary role in the linear optimization theory; in our article it 

will be the base of the superposition principle of our linear regional analysis: each actual 

state of the linear regional system is the superposition of a set of extreme states of the 

regional system, which are the optimal solutions of the sequence of optimization 

problems, presenting the simultaneous action of different extreme tendencies within 

regional system. The weights (barycentric coordinates) of the extreme states define the 

measure  of their realization in the actual state.   



In the case of a linear regional model given by the system of linear constraints the 

superposition principle can be presented as the inverted problem of multi-objective 

programming: 
Let 1Y  be an admissible solution of the system of linear constraints: 

                               
0

AX b

X

=
 ≥

                                                           (IV.3) 

and let 
                       1 2( ), ( ),..., ( )sf X f X f X                                                  (IV.4) 

be the ordered set of linear or concave objective functions. Then there is the 
decomposition of 1Y  into convex combination 

1 1 1 2 2 1 1 1 2 1... ,   0 1,  1,2,..., 1, ... 1s s s s i sY p X p X p X p Y p i s p p p+ + += + + + + ≤ ≤ = + + + + =     

(IV.5) 
where 1sY +  is the unexplored remainder state and each vector iX  is the optimal solution 

to the optimization problem: 

              

1 2 1

max ( )

subject to constraints:
0

with additional constraints on coordinates of vector X:

                                 ... 0
i

i

k k k

f x

AX b

X

x x x −

=
 ≥

= = = =

                  (IV.6) 

The additional zero constraints correspond to the regional “bottle-necks”, i.e., the parts of 

the regional system where the competition and conflict between different extreme 

tendencies obtain the most noticeable form. The ordered set of objective functions (IV.4), 

corresponding to the sequence of extreme tendencies, defines the simplex including the 
actual state 1Y . Thus, the decomposition (IV.5) takes into the consideration of the shares 

of certain extreme tendencies. So obtaining the decomposition we analyze the actual state 

from the certain preset viewpoint of investigator-analyst. The proof of the decomposition 

theorem will be presented below in the form of algorithm of decomposition. 

IV.3.1. Special case of one linear objective function. 

In the case of one linear objective function 

                          ( )1 2( ) ( ) ... ( )sf X f X f X f X= = = ≡                                 (IV.7) 

a numerical procedure of the decomposition can be simplified if we take into 

consideration the fact that points from k-dimensional face include n-k zero coordinates. 
Therefore, the choice of consequent extreme states 1 2 3, , ,...X X X can be made with the 



help of the same objective function ( )f X if we replace in this function the coefficients of 

variables corresponding to zero coordinates in , 2,3,...jX j = by a very large number M 

and solve  the M-problem (the linear programming problem with artificial basis, Dantzig, 

1963) with the same system of linear constraints (IV.3).   

V. Polyhedral Catastrophic Dynamics of   the Push- Pull states  of migration 

streams. 

V.1. Description and spatial interpretation of the decomposition procedure. 

This chapter deals with an analysis and geographical representation of attraction (Pull) 

and repulsion (Push) in a real migration stream.  At first we restrict ourselves to detailed 

representation of the Push analysis, since the scheme of Pull analysis can be considered 

analogously. (For the simplicity we will consider the migration of the homogeneous 

population of migrants moving within and between the same set of origins/destinations; 

the consideration of different sets of origin and destinations and the cases of 

differentiation of migrants by age, sex, nationality, labor specialization, level of education, 

etc. can be find in Sonis, 1980.) 

The Push/Pull analysis requires the following information: 

1. A geographical map of the  migration origin/destination regions: 

2. The choice of a homogeneous migrant population moving during fixed time interval 

from origins to destinations. This population is statistically described by the 

origin-destination matrix 

                                               ijM m =                                                      (V.1) 

where 0, , 1,2,...,ijm i j n≥ =  is the number of migrants moving from origin i 

to destination j . 

3. A geographical distribution of the migration “bottle necks”, i.e., a list of zero 

components of the matrix M ; 

                            
1 1 2 2

... 0
r ri j i j i jm m m= = = ≡                                           (V.2) 

4. An initial distribution of migrants in regions of origin (for Push analysis): 

                                 
1

, 1,2,...,
n

i ij
j

N m i n
=

= =∑                                       (V.3) 

5. A final distribution of migrants in regions of destination (for Pull analysis): 



                               
1

, 1,2,...,
n

j ij
i

K m j n
=

= =∑                                        (V.4)  

This data allows to incorporate the  real state of the migratory system M into the 

polyhedrons of admissible states. For the Push analysis the convex polyhedron of 

admissible states includes the migration matrices ijX x =   , satisfying a following system 

of linear constraints: 

                                     
1 1 2 2

1

0, , 1,2,...,

... 0

, 1,2,...,

r r

ij

i j i j i j

n

ij i
j

x i j n

x x x

x N i n
=


 ≥ = = = = ≡

 = =

∑

                                   (V.5)  

For the Pull analysis the convex polyhedron of admissible states includes the migration 

matrices ijX x =   , satisfying a following system of linear constraints: 

                                     
1 1 2 2

1

0, , 1,2,...,
... 0

, 1,2,...,

r r

ij

i j i j i j

n

ij j
i

x i j n
x x x

x K j n
=


 ≥ = = = = ≡

 = =

∑

                                   (V.6) 

The polyhedrons  (V.5,6) are bounded and lying within many-dimensional rectangular 

parallelepipeds ( )ij i jx N K≤ . The vertices of these parallelepipeds are defined by the 

rule: ”everything or nothing”- their coordinates equal either to zero or to ( )i jN K . This 

rule have the following geographical meaning (Nystien and Dacey, 1961): the extreme 

tendency represents the repulsion or attraction of migrants only to region to which the 

largest number of actual migrants are pushed or attracted. 

The superposition approach means the decomposition of the migration origin-destination 
matrix M into the weighted sum of basis matrices kM representing the action of the 

extreme tendencies: 
                              1 1 2 2 ... m mM p M p M p M= + + +                                    (V.7)  

where 1 0sp≥ ≥  and 1 2 ... 1mp p p+ + + = .   

We interpret this decomposition as a display of the principle of intervening opportunities 

and competition (Stoufer, 1960): the migrant sees the set of opportunities and selects an 



opportunity in the attempt to optimize his own objective.  The exchange of the 

information between the prospective migrants about different opportunities resulted in 

the spatial migration empirical regularity (Lee, 1966): “a migration tends to take largely 

within well defined streams” representing different extreme tendencies. The complete 
expressions of these extreme tendencies define the assemblage of basis matrices sM . 

Each extreme flow sM enters the real flow M with the weight 1sp ≤ , and the sum of 

weights is equal to 1.  

The procedure of the Push-Pull migration analysis based on the results of chapter IV.3 

consists of the successive extraction from an actual migration stream of the shares 

corresponding to the constructed set of extreme tendencies. At the beginning we choose 

the main extreme tendency; then we construct an extreme migration flow, which is the 

complete expression of this tendency, and determine its share (weight) in the actual 

migration and simultaneously determine the residual of the actual migration after the 

extraction of the action of the main extreme tendency. In this residual we choose the next 

extreme tendency, and so forth. The most significant fact is that the set of residuals 

corresponds to the migrationally meaningful set of the   “bottle necks”, corresponding to 

that parts of the actual migration where the action of migration factors compels the actual 

migration to diverge from extreme flow. The appearance of obstacles preventing or 

supporting the repulsion or attraction from or to some region can be interpreted as the 

realization of the Stouffer principle of intervening opportunities (Stouffer, 1960). 

Simultaneously, these migration “bottle necks” determine the weights The schemes of 

Push and Pull analysis include the similar numerical procedures. Since “each main 

current of migration produces a compensating counter-current” (Ravenstein, 1885) the 

result of Push and Pull analysis usually complemented each other.  

The relationship between  push and pull migration phenomena obtained in the theoretical 

migration literature in the “Laws of migration  by Ravenstein  (Ravenstein, 1885; se also 

Lee, 1966) the form of the concept of stream and counterstream: “for every major 

migration stream a counterstream develops”, and “The efficiency of stream and  

counterstream (i.e. ratio of stream to counterstream or the net migration generated by the 

opposite flows) tends to be low if origin and destination are similar.           

V.2. Polyhedral catastrophic dynamics. 

If some temporal sequence of migration origin-destination matrices exists for the 

sequence of different time periods but the same territorial differentiation of migration 

origin and destinations, then the corresponding normalized spaces of pull (or push) 

admissible migration states are coincides with the same unit cube (V.8) (or (V.9). So, the 

temporal sequence of migration origin-destination matrices generates the movement of 



the point of the normalized pull (push) migration state ( )1 1 R S  within the cube of 

admissible states, and the decomposition of the normalized state generates the simplex 

whose vertices present the extreme tendencies in the normalized state. So, the temporal 

sequence of the migration matrices generated the sequence of simplexes, whose vertices 

belong to the unit cube of normalized admissible states. This temporal polyhedral 

dynamics is structurally stable, if the sequence includes only identical simplexes. The 

dynamics is partially structurally stable if the simplexes include the same partial set of 

identical vertices, presenting the same set of extreme tendencies. The dynamics is 

catastrophic if there are no identical subsets of vertices. 

As an example, let us consider the pull polyhedral catastrophic dynamics of the internal 

migration of Israeli population during the decade 1985-1994:   

0 0.507 0.255 0 1 0 0 1 0 0 0 1

1985 0.753 0 0.745 0.507 1 0 1 0.248 0 0 0 0.238 1 0 1 0.008 1 0
0.247 0.493 0 0 0 0 1 1 0 1 0 1 0

0 0.508 0.269
1986 0.743 0 0.731 0.5

0.257 0.492 0
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0 1 0 0 1 0 0 0 1
08 1 0 1 0.249 0 0 0 0.232 1 0 1 0.011 1 0

0 0 0 1 1 0 1 0 1 0

0 0.504 0.255 0 1 0 0 1

1987 0.750 0 0.745 0.504 1 0 1 0.250 0 0 0 0.241

0.250 0.496 0 0 0 0 1 1 0
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0 0 0 1

1 0 1 0.005 1 0

1 0 1 0
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0.230 0.517 0 0 1 0 0 0 1 0 0

0 0.534 0.199
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         
         ⇒ = + + +         
         • • • •         
 
 ⇒ = 
  

0 1 0 0 0 0 1 0 1
34 1 0 1 0.267 1 0 1 0.173 0 0 0.026 1 0

0 0 0 0 1 0 1 1 0 1 0

0 0.583 0.211 0 1 0 0 1

1991 0.846 0 0.789 0.583 1 0 1 0.211 1 0 0 0.154

0.154 0.417 0 0 0 0 0 1 0
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0 0

0 0 1 0.052 1 0 1

1 1 0 1 0

0 0.592 0.223 0 1 0 0 1 0 0 0 1

1992 0.811 0 0.777 0.592 1 0 1 0.219 1 0 0 0.185 0 1 0.004 0

0.189 0.408 0 0 0 0 0 1 0 1 1 0 1 1 0
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0 0.536 0.163 0 1 0 0 0 0 1 0 1

1993 0.840 0 0.837 0.536 1 0 1 0.301 1 0 1 0.160 0 0 0.003 1 0

0.160 0.464 0 0 0 0 0 1 0 1 1 0 1 0

0 0.500 0.185

1994 0.803 0 0.815 0.5
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This sequence of pull decompositions includes three years, 1985-1987, of complete 

structural stability; i.e., in this time interval all extreme tendencies are repeated and, 

moreover, their weights (barycentric coordinates) preserved their rank-size ordering. 

Nevertheless, the places of “bottle neck” problems are stable only partially. In years 

1988-1989 the main extreme tendency which is stable in the previous three years are 

replaced by extreme tendency which was only third in the previous three decompositions, 

and the main extreme tendency in previous three years became the second in the next two 

years. The decomposition simplex which was stable in 1985-1987 is replaced in 

1988-1989 by decomposition simplex including as vertices the previous main extreme 

tendencies. In years 1990-1994 the structural stability of pull decomposition is only 

partial; the decomposition simplexes in these years includes the same main extreme 

tendency as in 1985-1987. Other tendencies and the corresponding “bottle necks” 

undergo the different catastrophic changes.  

The consideration of the average 1985-1994 pull decomposition 
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1985 1994 0.790 0 0.778

0.210 0.476 0

0 1 0 0 0 0 1 0 1
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       •       

  

shows that the ten years polyhedral catastrophic dynamics represents the oscillation of the 

simplexes of the  actual normalized pull migration states near the simplex of the average 

normalized pull migration state.   

VI. Reconstruction of Central Places Geometry on the basis of Barycentric 

Calculus. 

VI.1.Main assumptions of the Christaller, Losch&& and Beckmann-McPherson 

models in the classical theory of the Central Place systems.  

The Central Place theory of Christaller and Losch&&  has been in existence more 

then five decades (Christaller, 1933, and ,Losch&& ,1940). Although at present 



there is no doubt about the conceptual usefulness of the Central Place theory, its 

essential deficiency relates to its applicability to the analysis of an actual central 

place system. Moreover the classical Central Place theory represents the 

challenge to the New Urban Economics and New Economic Geography which  

both fail to reproduce and incorporate the spatial basis of the classical theory (cf. 

David, 1999). In this chapter we try to close the existing gap between the pure 

theoretical Christaller and Losch&& models and the structure of an actual central 

place system; we propose an alternative hierarchical model based on the idea of 

mixed hierarchy of the Cental Place system (Christaller, 1950, p.12; Woldenberg, 

1968) and on the Beckmann-McPherson model of Central Place system 

(Beckmann, McPherson, 1970), which are the intermediate links between the 

Christaller and Losch&& models. 

Our scheme of analysis is based on the concept of the center of gravity and its 

barycentric coordinates in a plane and within the convex polyhedron (simplex) 

in multi-dimensional space. 

It is interesting to note that the barycentric coordinates appeared in a latent and 

mysterious form in the geometry of the Central Place theory – in the form of the 

rhombic coordinates x and y in the primary Christaller triangular lattice (Dacey, 

1964, 1965) or in the form of the Tinkler, 1978, coordinate triples (x, y, x+y), 

where x,y are the rhombic coordinates. Neither Dacey nor Tinkler realized that 

the triple (x, y, z) where z = 1 –x - y present three barycent ric coordinates in a 

plane.  

The introduction of the barycentric coordinates essentially simplifies the 

geometry of the Central Place theory. Moreover, the imbedding of an actual 

central place system into the many-dimensional polyhedron of all possible states 

of the central place system and the evaluation of the barycentric coordinates 

for an actual central place system allows the application of the Superposition 

Principle presented earlier in the Chapter III. The Superposition principle allows 

the construction of a model of the hierarchical structure of an actual state of a 

central place system as a convex combination of the Beckman- McPherson 

models, which are the “building blocks”- extreme states of the central place 

system. 

Before the presentation of this hierarchical decomposition model, it might be 

useful to present briefly the ideas of Christaller, 1933, 1950, Losch&& , 1940, 



Beckman , Mc-Pherson, 1970, Woldenberg, 1968, 1979, Parr, 1978a,b, 1981 and 

Sonis, 1985, 1986. All these ideas are concerning the concept  of mixed central 

place hierarchies. 

The spatial description of the original Chrisraller Central Place model is based 

on three generic geometric properties of central places associated this Central 

Place system: 

1. The first property is that all hinterland areas of the central places at the same 

hierarchical level form a hexagonal covering of the plane with the centers on 

the homogeneous triangular lattice  presenting the centers of the hexagons 

from the Christaller primary covering. 

2. The second property is that the size of the hinterland areas increases from the 

smallest (on the lower tier of Central Place hierarchy) to the largest (on the 

highest tier of hierarchy) by a constant nesting factor k. 

3. The third property is that the center of a hinterland area of a given size is also 

the center of an hinterland of each smaller size  (Christaller, 1933). 

By definition the nesting factor is the ratio between the areas S of the hexagons 

belonging to some hexagonal covering of the plane to the area  s of hexagons  

belonging to the primary Christaller covering by smallest hexagons with the 

property: the distance between the centers of smallest hexagons equals 1: 

                                                
S

k
s

=                                                       (VI.1) 

It is easy to see that if d is the distance between the centers of adjacent hexagons 

of some hexagonal covering of the plane then the area of each hexagon is equal 

to 22 3S d= , so the area of smallest hexagon from the Christaller primary 

covering equal 2 3s = ; thus, the nesting factor equals to the square of the 
distance between the centers of adjacent hexagons of  hexagonal covering of the 

plane:  

                                              2k d=                                               (VI.2) 

4. The nesting factors 3,4,7 play the most important role in the Christaller 

Central Place theory: they express one of the Christaller’s three princip les, 

namely, marketing (k = 3), transportation (k = 4) and administrative (k = 7) 

principles. The nesting factors 3,4,7 generate three geometrical sequences of 

the hexagonal market area sizes: 1,3,9,27,…, 3n ,…; 1,4,16,64,…, 4n ,…; 



1,7,49,343,…,7n ,…, As an example the three-tier Christaller Central Place 
hierarchies are represented on the figure VI.2. 

<Figure VI.2. Three-tier Christaller Central Place hierarchies corresponding to 

the sequences of the nesting factors 1,3,9; 1,4,16 and 1,7,49.> 

It is possible to interpret these Christaller principles as principles of optimal 

organization of central place market areas: marketing principle represents the 

minimal number of small market areas (3) included in a bigger market area; the 

transportation principle present such optimal organization of space where the 

transportation network between two bigger central places passes through the 

smaller central place; the administrative principle presents such optimal 

organization of space where the administrative hinterland of the larger central 

place includes almost completely the set of administrative hinterlands of smaller 

central places.  

Christaller, 1950, himself came to realize that the marketing, transportation and 

administration principles could be expected to act simultaneously in 

geographical space. He suggested modifying his original model by a mixing of 

the nesting factors 3,4,7 into the grouping non- integer  nesting factor k = 3.3 

which generates the geometric progression 1,3.3,10,33… 

Woldenberg, 1968, elaborated on analogy between the hierarchical structure of 

fluvial systems and the hierarchical structure of the hinterlands of the central 

place systems, so as to be able to generate the sequences of nesting factors for 

sizes of market areas for central place systems. With the help of numerical 

computer model Woldenberg, 1979, compared the results of computer 

simulations with a wide set of actual central place hierarchies and mentioned 

certain d ifficulties that rise in attempting to describe an actual hierarchy in terms 

of the numerical computer model. The week points of these generic models are 

the non-uniqueness of the procedure of grouping and an empirism in the 

underlying theoretical reasoning.  

The Loschian&& hexagonal landscape (Losch, 1940)&& is the superposition of all 

possible coverings of a plane by hexagons whose centers are coincide with the 

vertices of the triangular lattice and the sizes of market areas are integers. The  

Loschian&& model defines a set of the Kanzig-Dacey nesting factors (Dacey, 

1964): 

                                          2 2k x y xy= + +                                               (VI.3) 



where x, y are arbitrary integers (rhombic or barycentric coordinates of the 

central places), so nesting factors in the Loschian&& landscape are 

                        k = 1, 3, 4, 7, 9, 12, 13, 16, 19, …                                    (VI.4) 

The geometric procedure for construction of the Loschian&& landscape is simple 

and straightforward: for the derivation of a part of the Loschian&& landscape which 

corresponds to the hexagonal covering with a nesting factor 2k d= one should 
chose on the Christaller primary lattice two points with the distance d between 

them, to derive the segment connected these two centers and from its midlle 

point to draw a  perpendicular segment of the size 
3

d
. The end point of this 

perpendicular segment  is the vertex of the hexagon and, thus defines the 

position of whole hexagon and all hexagons from the corresponding coverings. 

Losch && himself constructed the coverings corresponding to 150 nesting factors. 

Parr indicated (Parr, 1970, p.45) that these Loschian&& landscape nesting factors 

also present the optimal organizations of space similar to Christaller marketing, 

transportation and administrative principle; for example, the nesting factors 13 

and 19 have the same property of administrative convenience as factor 7, while 

factors 9 and 16 have the same transportation efficiency as factor 4.  According  

Lloyd and Dicken, 1972, p. 49, “Losch&& suggested that this spatial arrangement 

of urban centers was consistent with what he saw to be a basic element in human 

organization: the principle of least effort.”  

The Beckmann-McPherson, 1970, Central Place model differs from the 

Christaller framework by applying variable nesting factors and by using the  

principle of  possible coverings of the plane by hexagons of variable integer 

sizes. Their centers are the vertices of the initial Christaller triangular lattice. 

The Christaller model is only a partial case of Beckmann-McPherson models. 

Simultaneously, the Beckmann-McPherson models are an incomplete case of 

the Loschian&& model – incomplete in the sense that the  Beckmann-McPherson 

models include only a small part of the hinterland areas from the 

Loschian&& landscape. In this chapter we will consider a set of 

Beckmann-McPherson Central place systems including a single largest central 

place and the finite number of hierarchical levels. So, the Beckmann-McPherson 

model is defined with the help of the sequence of the Kanzig-Dacey nesting 
factors (VI.2) 1 2, ,..., nk k k representing the nesting properties of the consecutive 

hierarchical levels.  



The existence of variable nesting factors on different hierarchical levels of the  

Beckmann-McPherson model represents the simultaneous action of the 

Christaller marketing, transportation and administrative principles and the 

corresponding Loschian&& optimization principles.  

Parr, 1970, described the way to compare the theoretical models with the 

structure of the actual central place system. His idea was to use the 

Beckmann-McPherson Central place model as the best fitting approximation of 

an actual central place hierarchy. Parr also met with difficulties which arise from 

the omission of the analysis of the discrepancy between the actual central place 

hierarchy and its best fitting Beckmann-McPherson approximation. 

Although the superposition model of central place hierarchy developed below 

includes the superposition, mixing and best fitting of the theoretical central place 

hierarchies, the underlying rationale is different – it based on the principle of 

superposition in the analysis of states of linear economic systems (Sonis, 1970, 

1985, 1986; see, the chapter IV of this study): the superposition model of the of 

the central place hierarchy reflects the existence of different extreme tendencies 

of the spatial organization of central places, developing within an actual central 

place system. Thus, we will insert an actual central place hierarchy into the 

convex polyhedron of all admissible central place hierarchies. The vertices of 

this polyhedron are the extreme tendencies acting within an actual central place 

hierarchy.  Each extreme tendency represent the mutual action of the optimal 

Christalled marketing, transportation and administrative principles, together 

with their Losch&&  generalizations in the form of  Beckmann-McPherson Central 

place models. These models are the “building blocks” of the superposition 

model, which is a weighted sum (center of gravity = convex combination) of 

Beckmanm-McPherson theoretical models. The weight of each 

Beckmann-McPherson Central place model represents a the degree of 

realization of the corresponding extreme tendency within the superposition of all 

relevant extreme tendencies. The competition and interference between different 

extreme   tendencies generate the sequence of interdictions (“bottle neck” 

problems) generated by the collisions between the optimal 

Christaller- Losch&& principles on the same hierarchical level of the actual central 

place hierarchy.  

Below we will represent the complete theoretical treatment and the detailed 

computer algorithm for the construction of an actual central place hierarchy in 



the form of the superposition model.   

VI.2. The covering theorem. 

The  properties of hexagonal coverings of the plane in  the Christaller- Losch&& , 

Central Place  theory are based on the following theorem from elementary 

geometry: 

The covering theorem: There are only three possible coverings of the plane by 

the regular polygons with n sides: by triangles (n=3), quadrates (n=4) and 

hexagons (n=6). 

VI.3.  The construction of the central place geometry on a basis of barycentric 

coordinates on a plane. 

The barycentric coordinates, i.e., coordinates of the center of gravity, are 

connected to the concept of the center of gravity introduced at first by 

Archimedes in the second century B.C. The barycentric coordinates appeared in 

the remarkable book of Mobius&& , 1837, as a basis for a projective geometry. The 

construction of the barycentric coordinates in a plane is based on a choice of the 

Möbius triangle within the Möbius plane.  This plane is in the two-dimensional 
space defined by three barycentric coordinates, , , ,    1x y z x y z+ + = .  The scale 

element of this plane is the Möbius equilateral triangle with the unit scale on 

each side.   

VI.4. The Kanzig-Dacey formula. 

If the point (v, u, w) is the origin (0, 0, 1 ) of the lattice then the square of distance 

between (x, y, z) and (0, 0, 1) gives the Kanzig-Dacey formula for the nesting 

factors in the Loschian&& central place landscape: 

                                                   2 2k x y xy= + +  

VII. The superposition model of central place hierarchy. 

The superposition model of central place hierarchy is the application of the  formalism 

of the Superposition Principle (see Ch. IV) to the analysis of the structure of an actual 

central place system. At first we describe the dual hierarchical structures of the central 

place system; then we immerse an actual central place system into the convex 

polyhedron of all admissible central place system. This immersion gives the possibility 

to apply the analytical formalism of the decomposition of an actual central place 

hierarchy into the convex combination of the Beckmann-McPherson extreme 

hierarchies which are the results of the Parr “best fitting” procedure .An important 



example is the analysis of the original Christaller Munich Central place system. 

Furthermore, the polyhedral catastrophic dynamics of the central place hierarchies are 

described.  

The hierarchy of hinterlands (market areas) is a “hierarchy by inclusion”, or by the size 

of market areas: the market areas of the same size belong to the same hierarchical level, 

and the order of hierarchical levels and the dominance relationships are defined by the 

inclusion of the market area of a smaller size in the market area of a bigger size. This  

hierarchy implies the triplicate interpretation of variable nesting factors: i) the nesting 

factor is the ratio of areas of hinterlands belonging to the different consecutive 

hierarchical levels; ii) the nesting factor is the number of market areas of the jth 

hierarchical level included in only one market area of (j+1)th hierarchical level; iii) the 

nesting factor is  the ratio of frequencies of market areas from jth and (j+1)th 

hierarchical levels.  The numerical description of the market place hierarchy can be 

given by the vector of market place frequencies in the actual central place system:  

m 1 2 1( , ,..., ,1)nm m m −= , where n is the number of hierarchical levels in a central place 

system and , 1,2,..., ,jm j n= is the frequency of market areas from jth level. The ratios 

                              
1

, 1,2,..., 1j
j

j

m
k j n

m +

= = −                                       (VII.1) 

are the variable nesting factors. In the Christaller central place system  

1 23,4,7; 9,16,49,..., 3 , 4 , 7m m m
mk k k= = = ; in the Losch&& or in the 

Beckmann-McPherson central place system jk are the Kanzig-Dacey integers: 

   1, 3, 4, 7, 9, 12, 13, 16, 19,...jk = ; 

 in an actual central place system the nesting factors are arbitrary positive numbers, not 

necessary integers.  

It is obvious that 

                           1 1... , 1,2,..., 1j j j nm k k k j n+ −= = −                             (VII.2) 

VII.2. The polyhedron of admissible central place hierarchies for an actual central 



place system. 

Let us consider an actual central place system given by a vector of market area 

frequencies   0 0 0
0 1 2 1( , ,..., ,1)nm m m m −= or by the sequence  

                           0 0 0
0 1 2 1( , ,..., )nk k k k −=                                                      (VII.4) 

of average nesting factors calculated with a help of the formula (VII.1). For the 

evaluation of the hierarchical structure of an actual central place system we shall put it 

into the convex polyhedron of all admissible central place hierarchies. For this, we will 

choose on each hierarchical level j the pair of Kanzig-Dacey theoretical nesting factors 

',j jK K  in such a way that the segment [ ',j jK K ] will include the average nesting 

factors 0
jk : 0 '

j j jK k K≤ ≤ . This choice of theoretical nesting factors defines the convex 

polyhedron of all admissible central place hierarchies: it includes all sequences of 

average nesting factors k 1 2 1( , ,..., )nk k k −= such that: 

                               ' , 1,2,..., 1j j jK k K j n≤ ≤ = −                                  (VII.5) 

This system of inequalities presents geometrically the (n-1)-dimensional rectangular 

parallelepiped, whose vertices have the integer Kanzig-Dacey coordinates ' or j jK K ; 

thus, these vertices correspond to the Beckmann-McPherson central place models. The 

actual central place hierarchy (VII.4) corresponds to the inner point of this polyhedron.  

Let us introduce the slake variables, presenting the deflection of some central place 

hierarchy from the theoretical one on each hierarchical level  j : 

                 '0; 0, 1,2,..., 1j j j j j jy k K z K k j n= − ≥ = − ≥ = −           (VII.6) 

Then each admissible central place hierarchy k 1 2 1( , ,..., )nk k k −= can be presented as a 

three-row matrix with non-negative components: 



                                      
1 2 1

1 2 1

1 2 1

...

...

...

n

n

n

k k k

X y y y

z z z

−

−

−

 
 =  
  

                               (VII.7) 

and the actual central place hierarchy (VII.4) corresponds to the matrix 

                           

0 0 0
1 2 1

0 0 0
0 1 1 2 2 1 1

' 0 ' 0 ' 0
1 1 2 2 1 1

...

...

...

n

n n

n n

k k k

X k K k K k K
K k K k K k

−

− −

− −

 
 = − − − 
 − − − 

               (VII.8) 

VII.3. The decomposition of an actual central place hierarchy. 

According to the Superposition Principle (see Ch. IV), the hierarchical analysis of an 
actual central place system represented by the non-negative matrix 0X is reduced to the 

decomposition of this matrix into the weighted sum of matrices 1 2 1, ,..., :rX X X +  

                        0 1 1 2 2 1 1,... r rX p X p X p X r n+ += + + + ≤                   (VII.9) 

where each matrix iX represents the extreme state of the central place system, 

corresponding to some Beckmann-McPherson model and the weights ip  have a 

property:  

                            1 2 1... 1;0 1;r ip p p p r n++ + + = ≤ ≤ ≤                    (VII.10) 

If we take into consideration only the first row of each matrix in the decomposition 

(VII.9), we obtain the decomposition  of the actual central place hierarchy 

0 0 0
0 1 2 1( , ,..., )nk k k k −= into the convex combination of the Beckmann-McPherson central 

place hierarchies ik  with the same weights ip : 

                          0 1 1 2 2 1 1,... r rk p k p k p k r n+ += + + + ≤                       (VII.11) 

We interpret the decomposition (VII.9-11) in the following way: in each actual central 

place system there is a set of substantially significant tendencies towards the optimal 

organization of space in the form of Beckmann-McPherson hierarchies. Geometrically 

these tendencies define the simplex enclosed into the polyhedron of admissible central 
place hierarchies whose vertices correspond to the  assemblage of the matrices iX .An 

actual central place hierarchy 0X is the center of gravity of this simplex with the 



weights ip .  It is possible to interpret the weights ip in a probabilistic form as the 

frequencies of the  partial realization of some combination  of the 

Chistaller- Losch&& optimization principles in the hierarchical structure of the actual 

central place system.  

The important fact is the non-uniqueness of the decomposition (VII.9-11) which 

follows from the existence of a set of different simplexes including the actual hierarchy 

0X . This non-uniqueness ensues from the fundamental methodological principle that 

the description of an actual state of a  complex system under discussion depends on the 

point of view of investigator (Sonis, 1982; see also Ch.IV). Our view-point in this 

chapter the point of the best approximation of an actual central place hierarchy be the 

set of closest Beckman-McPherson models. Analytically this means that in the 

decomposition 

(VII.9-11) the weight ip will be the biggest possible and the following condition holds:  

        1 2 1 1 2 1... 1; 0 ... 1;r rp p p p p p r n+ ++ + + = < ≤ ≤ ≤ ≤ ≤               (VII.12) 

VII.4. The best fitting approximation procedure and the algorithm of decomposition. 

The best fitting procedure of this chapter is a simplification of the procedure proposed 

by Parr, 1978a. This procedure will be used for the derivation of the central place 

hierarchy on each hierarchical level and in this way will be the basis for the 

construction of the best fitting simplex which contains the actual central place 

hierarchy matrix 0X corresponding to the vector 0 0 0
0 1 2 1( , ,..., )nk k k k −= of average 

nesting factors. The best fitting procedure is as follows: for each hierarchical level i the 

segment 0 '
i i iK k K≤ ≤ between the theoretical Kanzig-Dacey nesting factors ',i iK K can 

be chosen, which includes the average nesting factor 0
ik . In this way the first best 

fitting Beckman-McPherson model 1 1 1
1 1 2 1( , ,..., )nk k k k −= can be constructed with the 

help of “best fitting” formulae: 

                        

'
0

1

'
' 0

  
2

  
2

i i
i i

i

i i
i i

K K
K if k

k
K K

K if k

 +≤= 
+ >

                                (VII.13) 



In this procedure the values 
'

2
i iK K+

define the boundaries of the domain of structural 

stability of the decomposition (VII.9-11). 

The weight  ip  of the Beckmann-McPherson model 1X can be found by the 

requirement to choose the biggest positive ip  (0< ip <1) satisfying the condition 

0 1 1 0X p X− ≥ . 

The place of the components of the matrices 0 1 and X X , giving the minimum in 

(VII.14), defines the hierarchical level on which there exists the strongest interdiction 
to the extreme tendency represented by the chosen  Beckmann-McPherson model 1X , 

on part of other tendencies acting in the actual central place hierarchy.  

The residual 'X , defined by the equality 

                                        ( ) '
0 1 1 11X p X p X− = −                            (VII.15) 

represents the mutual action of other tendencies developing in the central place 
hierarchy with the weight 11 p− . This means geometrically that we construct a straight 
line that passes the vertex 1X and the point 0X of the actual central place hierarchy and 

crosses the opposite face of the parallelepiped of admissible central place hierarchies at 
the point 'X . Moreover, if one hangs the weights 1 1 and 1p p−  on points 

'
1  and X X then the center of gravity of the segment with end points '

1  and X X will 
coincide with the point 0X . 

For study of the residual 'X , one should apply the previous “best fitting” procedure to 

the 'X , and so forth… 

VII.6. Hierarchical analysis of the Christaller original central place system in Munich, 

Southern Germany. 

After the decades of empirical studies, the pure Christaller- Losch&& theoretical 

hierarchies of several hierarchical levels with the same nesting factors, have rarely if 

ever observed. The reason for this is that each actual central place hierarchy is the 

superposition 0f various theoretical hierarchies. It is interesting to see that even 

Christaller’s original study of the Munich central place hierarchy confirms the 

phenomenon of superposition. 

The Christaller original Munich central place hierarchy can be presented (see 

Woldenberg, 1979, Table V, p. 446) with the help of the following vector of market area 



frequencies ( )0 519,249,127,39,12,3,1m = with the corresponding sequence of 

average nesting factors ( )0 2.0843,1.9606,3.2564,3.25,4,3k = . The polyhedron of 

admissible central place hierarchies is defined by the inequalities:    

                                    

' '
1 2 1 2 1 2

' '
3 4 3 4 3 4

'
5 5 5

'
6 6 6

1 , 3

4 , 4

4

3

K K k k K K

K K k k K K

K K k

K K k

= = ≤ ≤ = =

= = ≤ ≤ = =

= = =

= = =

 

This polyhedron includes all matrices of the form (see VII.8): 

                            
1 2 3 4 5 6

1 2 3 4

1 2 3 4

4 3

1 1 3 3 0 0

3 3 4 4 0 0

k k k k k k

X k k k k

k k k k

= = 
 = − − − − 
 − − − − 

 

The Munich central place hierarchy is represented by a matrix: 

                           0

2.0843 1.9606 3.2564 3.25 4 3

1.0843 0.9606 0.2564 0.25 0 0

0.9157 1.0394 0.7436 0.75 0 0

X
 
 =  
  

 

The result of the analysis of the actual central hierarchy of Munich is: 

                 

0 1 2 3 4 50.4803 0.2633 0.1946 0.0554 0.0064

3 3 3 3 4 3 1 1 3 3 4 3

0.4803 2 2 0 0 0 0 0.2633 0 0 0 0 0

0 0 1 1 0 0 2 2 1 1 0 0

1 1 4 4 4 3 3 1 4 4 4 3

0.1946 0 1 1 0 0 0.0554 2 1 1 0 0

2 2 0 0 0 2 0 0 0

3 1 4

0.0064

X X X X X X= + + + + =

   
   = + • +   
      
   
   + • + • +   
   • • •   

+
3 4 3

2 1 0 0

2 1 0 0

 
 • • 
 • • 

 

The first row of this matrix equality gives the decomposition of the vector of average 



nesting factors: 

                 

( )

( )
( )
( )
( )
( )

0

1 2 3 4 5

2.0843,1.9606,3.2564,3.25,4,3

   0.4803 0.2633 0.1946 0.0554 0.0064

   0.4803 3,3,3,3,4,3

   0.2633 1,1,3,3,4,3

   0.1946 1,1,4,4,4,3

   0.0554 3,1,4,4,4,3

   0.0064 3,1,4,3,4,3

k

k k k k k

= =

= + + + + =

= +

+ +

+ +

+ +

+

 

These decompositions means that the Munich central place hierarchy consists of five 

extreme tendencies. The first most prominent tendency corresponds to the 

Beckmann-McPherson model with nesting factors ( )1 3,3,3,3,4,3k = . This tendency 

consists of the economizing of the number of market areas on almost each hierarchical 

level; only the second hierarchical level corresponds to economizing of transportation 

routes. This tendency is very closed to a perfect Christaller hierarchy (3,3,3,3,3,3) and 

maybe, this was a reason for the introduction by Christaller of his market principle. 
Nevertheless, the weight of this extreme tendency is equal to 1 0.4803p =  only, i.e., it 

accounts only for 48.03% of the actual central place phenomenon. The second extreme 

tendency, corresponding to the Beckmann-McPherson model with the vector of nesting 

factors ( )2 1,1,3,3,4,3k = , interdicts the first tendency on three lower hierarchical 

levels and represents the tendency of merging of these hierarchical levels, since the 
vector of nesting factors 2k includes the nesting factors equal to 1.The second extreme 

tendency accounts for an additional 26.33% of the phenomenon. The third extreme 

tendency ( )3 1,1,4,4,4,3k =  counteracts the first and second tendencies by implying 

the passage from market principle to the transportation principle on the forth and fifth 

hierarchical levels. It explains additionally 19.46% of vthe phenomenon, so first three 

extreme tendency together explain 93.82% of the actual central place hierarchy. The 

forth and fifth extreme tendencies are not so essential, since they explain together only 

6.18% of the rest of phenomenon. 

It is possible to present the cumulative action of the market and transportation 

optimization principles of all extreme tendencies separately on each hierarchical level, 

by accounting the weight of nesting factors 3 and 4 on each hierarchical level. In this 



way we see that on the six hierarchical level only the market optimization principle is 

acting; on fifth level only the transportation principle appears; on the third and fourth 

hierarchical levels the market and transportation principles are acting in proportion 

75%/25%. On the first and second hierarchical levels the market principle counteracted 

by the tendency of merging of these hierarchical levels. 

Thus, the decomposition analysis of the  Christaller example of the Munich, South 

Germany, central place hierarchy, , hints on the origins of appearance of Christaller 

optimization principles in the Central Place Theory.  

 VIII. Further directions of a study. 

Here we describe some further directions of this study, which are not reflected in this 

synopsis. The form of the superposition principle is the Feedback Loops 

decomposition analysis of hierarchy of spatial production cycles in spatial economic 

system represented by matrices of economic flows (see Sonis and Hewings, 2001). 

(This hierarchy of feedbacks and satisfying the “matrioshka” imbedding principle 

representing the different levels of aggregation of flows). The hierarchy of 

spatial/functional linkages is visualized with the help of artificial economic landscapes 

based on minimum information multiplier product matrices (see Sonis and Hewings, 

1997).  

The ideas of Combinatorial Topology in the form of structural Q-analysis are used for 

the analysis of interconnections between the chains of interregional flows (see Sonis at 

al, 1999)  

The complication of networks as synergetic augmentation process representing the 

dynamics of self-organization in multi-regional Input-Output systems is presented in 

Sonis and Hewings, 1998a,b. 
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