
Bode, Eckhardt; Bickenbach, Frank

Conference Paper

Markov or not Markov - this should be a question

42nd Congress of the European Regional Science Association: "From Industry to Advanced
Services - Perspectives of European Metropolitan Regions", August 27th - 31st, 2002,
Dortmund, Germany
Provided in Cooperation with:
European Regional Science Association (ERSA)

Suggested Citation: Bode, Eckhardt; Bickenbach, Frank (2002) : Markov or not Markov - this should
be a question, 42nd Congress of the European Regional Science Association: "From Industry to
Advanced Services - Perspectives of European Metropolitan Regions", August 27th - 31st, 2002,
Dortmund, Germany, European Regional Science Association (ERSA), Louvain-la-Neuve

This Version is available at:
https://hdl.handle.net/10419/115564

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/115564
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Markov or not Markov – This should be a question 

 

Frank Bickenbach and Eckhardt Bode 

Kiel Institute of World Economics, Kiel, Germany 

 

Paper to be presented at  

the 42nd Congress of the European Regional Science Association  

Dortmund, August 27-31, 2002 

 

December 2001 

 

Abstract: 

Although it is well known that Markov process theory, frequently applied in the literature on income 
convergence, imposes some very restrictive assumptions upon the data generating process, these 
assumptions have generally been taken for granted so far. The present paper proposes, resp. recalls 
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1. Introduction 

Since the late 1980s the issue of convergence or divergence of per-capita income and productivity 

has received considerable public attention, and has been addressed in a multiplicity of scientific 

papers. Depending on the underlying concept of convergence (unconditional or conditional β-

convergence, σ-convergence, stochastic convergence), the statistical method employed (descriptive 

statistics, econometric approaches for cross-section, time-series, or panel data, Markov chain, or 

stochastic kernel estimations), and the geographic scope of analysis (countries, regions in single or 

groups of countries), the conclusions vary widely, ranging from rapid convergence to club 

convergence, and divergence. De la Fuente (1997), Durlauf and Quah (1999), and Temple (1999) 

have provided excellent reviews of the vast literature.  

Most empirical approaches are based on hypotheses about the processes of interest rather than just 

describing them in a positive analysis. Often, some sort of a law (a ‘law of convergence’, a ’law of 

motion’) is postulated to be valid even beyond the respective time period under consideration. The 

supposed relevance for future developments certainly has contributed to the popularity of respective 

approaches in the scientific as well as in the public sphere, as compared to simple descriptive 

statistics like the coefficient of variation. A politician, e.g., worrying about whether poor regions 

within his country, or poor countries in the world, may actually run the risk of being caught in a 

poverty trap will be strongly interested in a prediction for the future rather than just a description of 

the past. 

In standard convergence regressions, as proposed by Barro and Sala-i-Martin (1991), and Mankiw 

et al. (1992), neoclassical growth theory is used to derive the hypothesis that income levels tend to 

converge. Having identified empirically a tendency towards (β-) convergence in the past, the 

underlying theoretical model suggests that convergence will continue until all regions will have the 

same per-capita income level (unconditional β-convergence) or, at least, an income level 

representing their specific behavioral and technical conditions (conditional β-convergence).  

In Markov-chain approaches, as proposed by Quah (1993a; 1993b), the ‘law of motion’ driving the 

evolution of the income distribution is usually assumed to be memoryless and time-invariant. Having 

estimated probabilities of moving up or down the income hierarchy during a transition period of given 

length a stationary income distribution is calculated which characterizes the distribution the whole 
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system tends to converge to over time. Although several authors (such as Quah himself, or Rey 

2001b) emphasize that the stationary distribution represents merely a thought experiment it is often 

necessary to clarify the direction of the evolution since the estimated transition probability matrix by 

itself is not really informative about the evolution of the income distribution.1 

The power of convergence regressions with respect to both describing comparative income growth 

processes in the period of analysis, and assessing the validity of neoclassical growth theory has been 

discussed extensively in the literature. Quah (1993a), and Durlauf and Quah (1999), e.g., have 

seriously challenged these approaches for several reasons. One reason is that the regression 

parameter of interest is biased towards convergence due to Galton’s fallacy. Another reason is that 

convergence regressions cannot discriminate between neoclassical growth theory and alternative 

theoretical approaches, some of which having completely different implications. As a consequence, it 

may be useful to refrain from identifying the ‘law of convergence’, and from making inferences about 

the future on that basis. Just describing what happened in the past by switching to the concept of σ-

convergence may be more appropriate. The evolution of the standard deviation, or of the coefficient 

of variation, is a reliable, unbiased indicator of convergence during the period of interest (Friedman 

1992), provided the income distribution under consideration is normal, which can be tested for.  

The power of the Markov chain approach, by contrast, has not yet been debated seriously.2 The 

underlying statistical assumptions, namely the Markov property and time-invariance have just been 

taken for granted in empirical investigations so far. This is all the more surprising as the assumptions 

are quite restrictive, and as appropriate statistical tests are available in principle. The present paper 

will recall and illustrate a few test statistics that allow for assessing the reliability of the estimates and, 

in particular, of the stationary income distribution. Section 2 briefly sketches the Markov chain 

approach, and discusses relevant tests of the Markov property, of spatial independence, and of 

homogeneity of the estimated transition probabilities across space and time. Section 3 illustrates the 

tests by analyzing the evolution of the income distribution across the 48 coterminous U.S. states from 

1929 to 2000. Section 4 concludes.  

                                                 
1 See, e.g., Quah (1996a); (1996b); Neven and Gouyette (1995); Fingleton (1997); (1999); Bode (1998a); (1998b); 

Magrini (1999); Rey (2001b); Bulli (2001). 
2 Exceptions are Magrini (1999) and Bulli (2001). 
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2. The Markov chain approach 

1. General approach 

A (finite, first-order, discrete) Markov chain is a stochastic process such that the probability pij of a 

random variable X being in a state j at any point of time t+1 depends only on the state i it has been in 

at t, but not on states at previous points of time (Kemeny and Snell 1976: 24 ff.): 

 P{X(t+1)=j | X(0)=i0,...,X(t-1)=it-1,X(t)=i}= P{X(t+1)=j|X(t)=i} = pij. (1) 

If the process is assumed to be constant over time the Markov chain is completely determined by the 

Markov transition matrix 
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which summarizes all N² transition probabilities pij (i, j = 1, …, N), and an initial distribution 

h0 = (h10 h20 … hN0), Σjhj0=1, describing the starting probabilities of the various states.  

For illustration, let X be regional relative per-capita income, defined as yrt = Yrt/[(1/R)ΣrYrt] for 

region r and period t (r = 1, …, R; t = 0, …, T). The normalization by the national average is to 

control for global trends and shocks. Divide the whole range of relative per-capita income into N 

disjunctive relative income classes (states). Then, a Markov transition probability is defined as the 

probability pij that a region is a member of income class j at t+1, provided it was in class i at t. The 

second row of the transition matrix (2), e.g., reports the probabilities that a member of the second-

lowest income class (i=2) will descend into the lowest income class during one transition period 

(p21), stay in the same class (p22), change into the next higher income class (p23), move upward two 

classes (p24), and so on. Once having moved to another income class a region will behave according 

to the probability distribution relevant for that class. The initial probability vector h0, finally, describes 

the regional income distribution at the beginning of the first transition period, starting at t=0. 

Since the whole process is assumed to be time-invariant the transition matrix can be used to describe 

the evolution of the income distribution over any finite or infinite time horizon. The regional income 
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distribution after m transition periods (from t to any t+m) can be calculated by simply multiplying the 

transition matrix m times by itself, using the income distribution at time t as a starting point, i.e. 

ht+m=htΠΠ m. Moreover, if the Markov chain is regular the distribution converges towards a 

stationary3 income distribution h* which is independent of the initial income distribution h 

( *hÐh =
∞→

m

m
lim ). Comparing the initial income distribution (h0) to the stationary distribution (h*) is 

informative as to whether a system of regions converges or diverges in per-capita income. Higher 

frequencies in median-income classes of the stationary than the initial distribution indicate 

convergence, and higher frequencies in the lowest and highest classes indicate divergence.  

The transition matrix can be estimated by a Maximum Likelihood (ML) approach. Assume that there 

is only one transition period, that the initial distribution h does not contain any information about the 

Markov process and, thus, the transition probabilities pij (h=ni/n is given), and let nij denote the 

empirically observed absolute number of transitions from i to j. Then, maximizing 

 ∑
=

=
N

ji
ijij pnL

1,

lnln  s.t. Σj pij=1, pij≥0 (3) 

with respect to pij gives  

 ∑=
j ijijij nnp /ˆ   (4) 

as the asymptotically unbiased and normally distributed Maximum Likelihood estimator of pij (see, 

e.g., Anderson and Goodman 1957: 92; Basawa and Prakasa Rao 1980: 54 f.). The standard 

deviation of the estimators can be estimated as (Bode 1998b) 

 ( ) 2/1
ˆ /)ˆ1(ˆˆ iijijp npp
ij

−=σ .  (5) 

Obviously, the reliability of estimated transition probabilities depends on two aspects: First, the data-

generating process must be Markovian, i.e. meet the assumptions of Markov chain theory (Markov 

property, time-invariance). Otherwise, the estimators ijp̂  are not allowed to be interpreted as 

Markov transition probabilities, and cannot be used to derive a stationary distribution. And second, 

the estimates have to be based on a sufficiently large number of observations. Otherwise, the 

uncertainty of estimation is too high to allow for reliable inferences. 

                                                 
3 In the literature, ‘ergodic’, or ‘limiting’ are used as synonyms for ‘stationary’. 
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In what follows we will concentrate on some of those assumptions of Markov process theory which 

are statistically testable. We will not deal with problems of inappropriate discretization of the income 

distribution which are discussed in Magrini (1999) and Bulli (2001).4 

In practice, the estimation of Markov chains is subject to the trade-off between increasing the 

number of observations to obtain reliable estimates, and increasing the probability of violating the 

Markov property. Given that data availability is limited in the geographic as well as in the time 

dimension it would, in principle, be preferable to estimate the probabilities from a data set pooled 

across time and space, using as many transition periods and regions as possible. With regard to the 

Markov property, however, the regions should not be too small. The smaller the regions, the higher 

the intensity of interaction, and thus the correlation of income levels, between neighboring regions 

tends to be. On the other hand, extending the geographical coverage of the sample increases the 

danger of lumping together regions whose development patterns are heterogeneous. Single regions, 

or certain groups of regions (like the southern states of the U.S.) may follow development paths that 

are different from the paths of other regions. 

Likewise, the longer the time period under consideration, the higher the risk of structural breaks, i.e. 

regime changes which seriously affect the evolution of the income distribution. As Fingleton (1997) 

notes, the Markov chain approach is well suited to capture an uneven stream of small shocks that 

affect economies from time to time. Large, one-off shocks, however, are not consistent with time-

invariance of transition probabilities. As a consequence, the evolution prior to the shock may not be 

informative for the subsequent evolution of the income distribution; the stationary income distribution 

(h*) estimated from a transition matrix for the entire sample may be misleading.  

2. Some test statistics 

The late 1950s and early 1960s witnessed a growing interest in the concept of Markov chains. A 

considerable number of journal articles and books dealing with test statistics for Markov chains were 

published (e.g. Anderson and Goodman 1957; Goodman 1958; Billingsley 1961a; 1961b; see also 

                                                 
4 Magrini (1999) and Bulli (2001) have argued that the usual ad-hoc discretization of the underlying continuous 

income distribution will probably remove the Markov property of the process. The crucial property of a 
Markov process, namely that future developments during any transition period t to t+1 do not depend on 
anything else but the own starting value at t, will be violated. As a result, the estimated probabilities cannot 
be interpreted as Markov transition probabilities, and the stationary distribution will be misleading. 
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Basawa and Prakasa Rao 1980). Most prominently, chi-square, and Likelihood-Ratio (LR) tests 

were discussed. Both compare transition probabilities estimated from the entire sample to those 

estimated from sub-samples obtained by dividing the entire sample into at least two mutually 

independent groups of observations. The criteria according to which the sub-samples are defined 

depend on the hypothesis to be tested against. Taken literally, the tests just compare multinomial 

distributions (rows of transition matrices) rather than Markov processes. A test of, e.g., whether two 

sub-samples (r = 1, 2) follow the same Markov process does not take into account whether or not 

the initial distributions (h0r) are likely to emerge from that Markov process.  

The present paper will focus on the chi-square test; the LR test is asymptotically equivalent to the 

chi-square statistic. For details on the LR tests, see Anderson and Goodman 1957: 106 ff.; Kullback 

et al. 1962.  

1. Tests for the entire transition matrix 

There are several properties of a Markov process that can be tested for in the context of a data set 

pooled across several periods of time and several regions.  

First, homogeneity over time (time-stationarity) can be checked by dividing the entire sample into T 

periods, and testing whether or not the transition matrices estimated from each of the T sub-samples 

differ significantly from the matrix estimated from the entire sample. More specifically, it tests 

H0: ∀t: pij(t)=pij (t = 1, …, T) against the alternative of transition probabilities differing between 

periods: Ha: ∃t: pij(t)≠ pij.  

Assuming that there are at least two non-zero transition probabilities in each row (i) of the transition 

matrix for the entire sample, and that the number of observations is positive for each of the T sub-

samples, the chi-square statistic reads 
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where ijp̂  denotes the probability of transition from the i-th to the j-th class estimated from the entire 

sample (pooled across all T periods), and )(ˆ tpij  is the corresponding transition probability estimated 

from the t-th sub-sample. Since the )(ˆ tpij  are assumed to be mutually independent across sub-



 9

samples under the H0, the N² parameters can be estimated similar to (4) as )(ˆ tpij = nij(t)/ni(t). ni(t) 

denotes the absolute number of observations initially falling into the i-th class within the t-th sub-

sample. Only those transition probabilities are taken into account which are positive in the entire 

sample, i.e. Bi = {j: ijp̂ >0}; transitions for which no observations are available in the entire sample 

are excluded. Note that ni(t) may be zero: rows (i) for which no observations are available within a 

sub-sample do not contribute to the test statistic.  

Q(T) has an asymptotic chi-square distribution with degrees of freedom equal to the number of 

summands in Q(T), except those where ni(t)=0, minus the number of estimated transition probabilities 

ijp̂ , both corrected for the number of restrictions (Σjpij(t)=1 and Σjpij=1. Consequently, the degrees 

of freedom can be calculated as Σiai(bi-1)-(bi-1) where bi (bi =# Bi)5 is the number of positive 

entries in the i-th row of the matrix for the entire sample, and ai is the number of sub-samples (t) in 

which observations for the i-th row are available (ai= # Ai; Ai = {t: ni(t)>0}).  

Second, homogeneity in the spatial dimension, implying H0: ∀r: pij(r)=pij (r = 1, …, R) can be tested 

for against the Ha of transition probabilities varying across regions, i.e. Ha: ∃r: pij(r)≠ pij, by  
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where ci =# Ci; Ci = {r: ni(r)>0}. 

Third, the Markov property can be addressed directly by testing whether or not the process under 

consideration is memoryless, i.e. whether the transition probabilities are independent of the past.  

Fourth, and methodically quite similar, it can be tested whether the transition probabilities are 

independent across space, i.e., whether or not there is spatial dependence among neighboring 

regions.  

More specifically, the Markov property and independence across space can be addressed by testing 

whether or not the estimated transition probabilities depend on  

– the state k (k = 1, …, N) a region was in at time t-1, 

– the state s (s = 1, ..., S) a region’s neighboring regions were in at time t. 
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The test principles are similar to those sketched in eq. (6) and (7) above. For tests of spatial 

independence sub-samples are defined as in the concept of spatial Markov chains proposed by Rey 

(2001b). Given the definition of states i which divide the sample into N classes according to the 

regions’ own income levels at t, Rey has suggested to define an additional set of states s for 

(average) relative income in neighboring regions at t, as illustrated in Figure 1. All regions with poor 

neighbors, e.g., constitute one sub-sample (s=1); those with medium-income neighbors a second, 

and those with rich neighbors a third one.  

In the same way, the Markov property can be tested for by defining as additional states income 

classes the regions were in at time t-1: Regions that were poor at t-1 are allocated to the first sub-

sample (k=1), those with median income to the second, and so on.  

 

 

Figure 1 — Concept of spatial Markov chains by Rey (2001b) 

income class  
neighbors (s) 

initial distribution transition matrices 

s=1 (poor neighbors) h1|1 (poor regions) 
⋅⋅⋅ 

hN|1 (rich regions) 

p11|1 ⋅⋅⋅ p1N|1 

  ⋅⋅⋅ 
pN1|1 ⋅⋅⋅ pNN|1 

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ 

s=S (rich neighbors) h1|S (poor regions) 
⋅⋅⋅ 

hN|S (rich regions) 

p11|S ⋅⋅⋅ p1N|S 
  ⋅⋅⋅ 
pN1|S ⋅⋅⋅ pNN|S 

Under the H0 (time, resp. spatial independence, implying, ∀k: pij|k=pij, resp. ∀s: pij|s=pij) the 

transition matrices for the sub-samples can be estimated jointly because they are expected to be 

identical irrespective of the initial distribution of regions among the different sub-samples. The ML 

estimators are kikijkij nnp ||| /ˆ = , resp. sisijsij nnp ||| /ˆ =  (Anderson and Goodman 1957: 92). The 

                                                                                                                                                         

5 bi =# Bi means: bi is the number of elements in set Bi. 
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appropriate chi-square test statistic for time-independence is similar to (6) (just replace t and T by k 

and N), the test statistic for spatial independence is similar to (7) (replace r and R by s and S).  

2. Tests for single states 

The chi-square test statistics discussed above are quite flexible in that they can also be used to test 

whether or not a single state (i) in the overall sample (i-th row of the transition matrix for the entire 

sample) violates the underlying assumptions. Since the transition probabilities are assumed to be 

asymptotically independent across states under the H0, define all observations in the i-th state to 

constitute an independent sample of its own, and perform the tests just introduced for this sample 

only. Homogeneity over time of the i-th state, implying H0: ∀t: pj| i(t)=pj| i (t = 1, …, T), can be 

tested against non-stationarity (Ha: ∃t: pj| i(t)≠ pj| i) by (Anderson and Goodman 1957: 98) 

 
( )∑∑

∈ ∈

−
=

i iDt Bj ij

ijij
i

T
i p

ptp
tnQ

ˆ

ˆ)(ˆ
)(

2
)(  ∼ asy χ²((di-1)(bi-1)) (8) 

where Di = {t: ni(t)>0}, di =# di, and, as above, bi =# Bi,  Bi = {j: ijp̂ >0}.  

Similarly, a test of spatial homogeneity of a single state i, i.e., H0: ∀r: pj| i(r)=pj| i (r = 1, …, R) against 

Ha: ∃r: pj| i(r)≠ pj| i, is 
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In (9), Ei = {r: ni(r)>0}, and ei =# Ei. 

Note that (8) is similar to (6), and (9) is similar to (7), the only difference being that (8) and (9) 

compare only single rows in the transition matrices for all sub-samples to the corresponding row in 

the matrix for the entire sample, while (6) and (7) compare whole matrices. Consequently, the 

statistics Q from (6) and (7) can be derived from (8) and (9) simply by summing up the Qi across all 

states, i.e., ∑=
i

T
i

T QQ )()( , and ∑=
i

R
i

R QQ )()( . 

(8) and (9) can also be applied to test for the Markov property and spatial independence; again, just 

a few indices have to be replaced. (8) can be used to test, e.g., the hypothesis that all regions that 

were poor at the beginning of the transition period under consideration (t to t+1) behave similarly 
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irrespective of their income level in the past (at t-1). And (9) can be used to test, e.g., the hypothesis 

that all poor regions behave similarly irrespective of the income level of their neighbors at t.  

3. Tests for single sub-samples 

In some cases one might be interested in performing even more detailed tests comparing single sub-

samples to the entire sample. For example, one might want to know whether or not a specific period 

differs significantly from the pattern estimated for the entire time span, or whether or not a specific 

region has evolved in line with the overall pattern. Such tests can be performed by using the chi-

square test statistics (6) and (7) for a comparison of just two sub-samples (T=2, or R=2), namely the 

sub-sample of interest (t, or r) and the pool of the remaining observations in the entire sample. Since 

all sub-samples are assumed to be independent of each other, and to have the same distribution 

under H0, any sub-sample may be isolated from the entire set of observations in this way.  

Likewise, it can be tested whether or not a single state (i) within a single sub-sample (the t-th or r-th) 

differs significantly from the corresponding state estimated from the entire sample. This just requires 

defining all observations within the i-th state to constitute an independent sample of its own, split up 

this sample into two sub-samples (e.g., t and the rest), and compare both of them using (8), or (9). 

4. Tests for a specified transition matrix 

Finally, one may test whether or not the estimated transition matrix is equal to an exogenously given 

transition matrix, i.e., whether or not 0
ijij pp =  holds for all i,j = 1, …, N. The appropriate test 

statistic, known as χ² test of goodness of fit (Cochran 1952; Anderson and Goodman 1957: 96 f.), 

reads  
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Fi = {j: 0
ijp >0} and fi =# Fi, i.e., the test is done only for those transition probabilities that are 

positive under the H0.  

For all the tests discussed above to be sufficiently exact, the definition of sub-samples in the time 

resp. the spatial dimension must be such that the numbers of observations from which the transition 
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probabilities are estimated are sufficiently high to allow for reliable estimates (Cochran 1952). If the 

entire sample is quite small relative to the number of classes i, it does not leave too much room for 

defining additional sub-samples. Likewise, one cannot expect reliable results from testing whether or 

not a single row within a single sub-sample differs from the rest if there are only a few observations 

(ni(t)) available for estimating the transition probabilities in this row. 

3. Convergence among U.S. states 1929-2000 

To illustrate the above-mentioned tests we use a data set of relative per-capita income pooled across 

the 48 coterminous U.S. states and 71 annual transition periods from 1929-1930 to 1999-2000. 

Relative per-capita income is calculated as per-capita State Personal Income at current prices, 

divided by the unweighted average across all 48 coterminous U.S. states.6  

We arbitrarily divide the entire sample (3 408 observations) into five income classes with equal 

frequencies (quintiles) in order to ensure the number of observations per class to be sufficiently high 

to obtain reasonable estimates.7 Table 1 gives the estimated (5x5) transition probability matrix and 

the stationary distribution obtained for the entire sample. Since the stationary income distribution 

shows somewhat higher probabilities in income classes around the median and lower probabilities in 

the extreme income classes than the initial distribution the estimates may be interpreted as reflecting 

convergence, if, indeed, the process under consideration is Markovian.  

                                                 
6 The data is from the Bureau of Economic Analysis, Regional Accounts Data, released September 24, 2001 

(http://www.bea.doc.gov/bea/regional/spi/). 
7 Note that the bounds of classes are fixed across the entire time-span under consideration.  
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Table 1 — Estimated transition matrix for 48 U.S. states 1929-2000, annual transitions 

income upper initial distribution transition probabilities (t to t+1) 
class bound absolute relative 1 2 3 4 5 

1 0.82951 681 0.2 0.915 0.078 0.006 0.001 0 
2 0.94741 682 0.2 0.065 0.828 0.103 0.003 0.001 
3 1.03740 682 0.2 0.004 0.095 0.798 0.100 0.003 
4 1.15897 682 0.2 0 0.010 0.100 0.837 0.053 
5 ∞ 681 0.2 0 0 0 0.068 0.932 

stationary distribution 0.172 0.212 0.219 0.215 0.182 

Source: BEA, Regional Accounts Data; own estimation. 

 

1. Test of homogeneity in time 

To test for time-homogeneity we divide the 71 transition periods into 14 intervals (periods) of five 

annual transitions each. That is, we estimate 14 different transition probability matrices (T=14), each 

based on (5*48=) 240 observations,8 in order to compare them simultaneously to the matrix for the 

entire time span (see Table 1). Using the chi-square test statistic (6) above we obtain Q=365.3, 

which clearly rejects the H0 of time-homogeneity (prob<0.01, 195 degrees of freedom). That is, the 

transition probabilities for the 48 U.S. states differ significantly over time; pooling over the entire time 

span of 71 transition periods is not appropriate.  

There may, however, be one or more epochs in which the transition probabilities can be assumed to 

be constant. If there is no a priori information on the temporal location of major structural breaks that 

may have affected the evolution of the income distribution significantly, it may be useful to separately 

compare each of our 14 periods to the matrix for the whole time span using the test statistic (6) for 

T=2, as discussed in Section 2.2.3. First, we define the first period (1929-35) as one sub-sample, 

the remaining 13 periods (1935-2000) as a second one, and compare both to the entire sample. 

Afterwards, the second period (1935-40) is separated from the rest (1929-35, 1940-2000), and so 

on. The prob-values for the resulting 14 chi-square test statistics are plotted against the respective 

                                                 
8 The first period comprises 6 transition periods (1929-35) and 288 observations. 
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first years of the 14 periods in Figure 2. They show that significant deviations from the transition 

matrix for the entire sample concentrate on the years before 1950, and the late 1990s.  

Figure 2 – Prob-values of chi-square tests of homogeneity over time – 48 U.S. states 1929-
2000, annual transitions, divided into periods of 5-years 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Starting year of the period

pr
ob

-v
al

ue
 c

hi
-s

qu
ar

e 
te

st

1929 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995

 

Source: BEA, Regional Accounts Data; own estimation. 

 

Table 2 — Estimated transition matrix for 48 U.S. states 1950-1995, annual transitions 

income upper initial distribution transition probabilities (t to t+1) 
class bound absolute relative 1 2 3 4 5 

1 0.85552 432 0.2 0.907 0.088 0.005 0 0 
2 0.95438 432 0.2 0.074 0.838 0.088 0 0 
3 1.03740 432 0.2 0.002 0.081 0.824 0.090 0.002 
4 1.13509 432 0.2 0 0.005 0.100 0.859 0.037 
5 ∞ 432 0.2 0 0 0 0.058 0.942 

Source: BEA, Regional Accounts Data; own estimation. 

 

To check whether at least 1950-1995 can be assumed to form a homogeneous sample we re-

estimate the whole transition matrix for the reduced sample (Table 2), and test again for homogeneity 

over time. The resulting test statistic obtained from (6) is Q=112.0 which, at 96 degrees of freedom, 
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does not indicate statistically significant differences between the transition matrices for the entire 

sample and the 9 periods of 5 years’ length (prob=0.126). Consequently, the sample of 48 U.S. 

states may be pooled over the 45 annual transitions from 1950 to 1995, but not over a longer time 

span since structural breaks obviously occurred in the aftermath of World War II, and in the second 

half of the 1990s. The former is well-documented in the literature: Carlino and Mills (1993), and 

Loewy and Papell (1996), e.g., have identified structural breaks in the 1940s using unit-root tests. 

The latter, by contrast, should be taken with greater care since per-capita income figures for the 

1990s are still based on interim estimates.  

2. Test of spatial homogeneity 

Tests of homogeneity in the spatial dimension based on the test statistic (7) can be illustrated by 

comparing transition matrices for different regions to that for the entire sample. While the 

H0: ∀r: pij(r)=pij is straightforward the Ha requires an exact specification of the potential spatial 

structure of heterogeneity. Several plausible sources come into mind: First, each region may follow its 

own Markov process independent of other regions. Or, second, several regions may constitute 

homogeneous spatial clusters, e.g., because they share common locational advantages and 

disadvantages, but different clusters may follow different Markov processes. 

In what follows we will concentrate on testing against an alternative of the second type because 45 

observations per U.S. state (annual transitions 1950-1995) are not sufficient to estimate up to 25 

transition probabilities reliably. Taking the 8 BEA regions9 to be independent sub-samples, the chi-

square statistic calculated according to (7) gives Q=338 (Table 3) which indicates that there are 

significant differences between the BEA regions (prob<0.01, 73 degrees of freedom).  

More details are given in Table 3 which reports the transition matrix for the entire sample (same as in 

Table 2), the matrices for the 8 BEA regions, and the statistics of the tests discussed in Sections 

2.2.1. to 2.2.3. First, using eq. (9) in Section 2.2.2 we test for spatial homogeneity of single rows of 

the matrix for the entire sample, asking whether or not a single income class behaves similarly across 

                                                 
9 For a detailed definition see the Bureau of Economic Analysis at http://www.bea.doc.gov/ bea/regional/ 

docs/regions.htm. 
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BEA regions. The results can be found in the north- 
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Table 3 — Tests of spatial homogeneity across BEA regions, 48 U.S. states 1950-1995, 
annual transitions 

income No of transition probabilities test of homogeneity 
class obs 1 2 3 4 5 d.o.f. Qi, Q prob 

entire sample 
1 432 0.907 0.088 0.005 0 0 8 111.84 0.00 
2 432 0.074 0.838 0.088 0 0 10 44.79 0.00 
3 432 0.002 0.081 0.824 0.090 0.002 28 57.52 0.00 
4 432 0 0.005 0.100 0.859 0.037 21 54.85 0.00 
5 432 0 0 0 0.058 0.942 6 68.94 0.00 

whole matrix 73 337.95 0.00 

New England 
1 9 0.556 0.444 0 0 0 2 14.58 0.00 
2 73 0.027 0.918 0.055 0 0 2 4.35 0.11 
3 44 0 0.068 0.841 0.091 0 4 0.34 0.99 
4 59 0 0 0.051 0.915 0.034 3 2.22 0.53 
5 85 0 0 0 0.024 0.976 1 2.29 0.13 

whole matrix 12 23.77 0.02 

Mideast 
1 0 0 0 0 0 0 – – – 
2 0 0 0 0 0 0 – – – 
3 2 0 0 0 1 0 4 20.25 0.00 
4 53 0 0 0.038 0.887 0.075 3 5.06 0.17 
5 170 0 0 0 0.029 0.971 1 4.16 0.04 

whole matrix 8 29.47 0.00 

Great Lakes 
1 0 0 0 0 0 0 – – – 
2 6 0 0.667 0.333 0 0 2 4.83 0.09 
3 60 0 0.033 0.867 0.100 0 4 2.50 0.64 
4 99 0 0 0.091 0.859 0.051 3 1.32 0.72 
5 60 0 0 0 0.100 0.900 1 2.27 0.13 

whole matrix 10 10.92 0.36 

Plains 
1 28 0.464 0.464 0.071 0 0 2 83.54 0.00 
2 59 0.254 0.644 0.102 0 0 2 33.16 0.00 
3 165 0.006 0.042 0.848 0.097 0.006 4 8.47 0.08 
4 62 0 0.032 0.258 0.710 0 3 34.77 0.00 
5 1 0 0 0 1.000 0 1 16.32 0.00 

whole matrix 12 176.25 0.00 

to be continued 



 19

Table 3 continued 

income No of transition probabilities test of homogeneity 
class obs 1 2 3 4 5 d.o.f. Qi, Q prob 

Southeast 
1 345 0.965 0.035 0 0 0 2 69.32 0.00 
2 120 0.042 0.900 0.058 0 0 2 4.78 0.09 
3 43 0 0.047 0.860 0.093 0 4 1.00 0.91 
4 31 0 0 0.097 0.871 0.032 3 0.18 0.98 
5 1 0 0 0 1.000 0 1 16.32 0.00 

whole matrix 12 34.76 0.01 

Southwest 
1 27 0.815 0.185 0 0 0 2 3.50 0.17 
2 96 0.042 0.875 0.083 0 0 2 1.98 0.37 
3 54 0 0.167 0.796 0.037 0 4 7.87 0.10 
4 3 0 0 0.667 0.333 0 3 10.86 0.01 
5 0 0 0 0 0 0 – – – 

whole matrix 11 24.21 0.01 

Rocky Mountains 
1 23 0.826 0.174 0 0 0 2 2.33 0.31 
2 78 0.077 0.782 0.141 0 0 2 3.41 0.18 
3 46 0 0.261 0.674 0.065 0 4 22.56 0.00 
4 62 0 0 0.081 0.855 0.065 3 2.07 0.56 
5 16 0 0 0 0.375 0.625 1 30.65 0.00 

whole matrix 12 61.02 0.00 

Far West 
1 0 0 0 0 0 0 – – – 
2 0 0 0 0 0 0 – – – 
3 18 0 0 0.889 0.111 0 4 1.79 0.77 
4 63 0 0 0.048 0.952 0 3 5.82 0.12 
5 99 0 0 0 0.040 0.960 1 0.72 0.40 

whole matrix 8 8.34 0.40 

Source: BEA, Regional Accounts Data; own estimation. 

 

eastern corner of Table 3 (labeled “test of homogeneity” for the “entire sample”): The test 

hypothesis that BEA regions behave similarly within an income class (H0: ∀r: pj| i(r)= pj| i) is clearly 

rejected for all five classes with very low error probabilities (prob<0.01). Second, we compare the 

transition matrix for each BEA region to that of the entire sample by pooling the respective other 7 

BEA regions into a second sub-sample, as has been described in the first paragraph of Section 
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2.2.3. The results of the test statistics which are similar to (7), assuming R=2, are given in the rows 

labeled “whole matrix” at the bottom of each BEA region-specific section in Table 3. Only in the 

Great Lakes, and the Far West region the per-capita income distribution does evolve, by and large, 

in line with the entire sample; the error probabilities being 0.36 (Great Lakes) and 0.4 (Far West), 

respectively. For the other BEA regions, by contrast, the error probabilities are below 0.05, 

indicating that these regions are not well represented by the figures estimated for the U.S. as a whole. 

And finally, we compare single income classes for single BEA regions to the corresponding income 

class estimated for the U.S. as a whole by proceeding as described in the second paragraph of 

Section 2.2.3. The test statistics reported in Table 3 to the right of the BEA region-specific transition 

matrices draw a fairly mixed picture.10 For example, in the Rocky Mountains region it seems to be 

the regions with median, and with very high income (income classes 3 and 5) that behave differently 

from the U.S. average. For both classes an above-average probability of becoming poorer is 

obtained ( )(ˆ32 Rockyp =0.261, )(ˆ54 Rockyp =0.375, compared to 0.081, and 0.058 for the entire 

sample).  

3. Test of the Markov property 

As noted earlier the Markov property requires the transition probabilities from t to t+1 to depend 

only on a region’s initial state at t but not on its state at t-1 (or any earlier point in time). This 

property can be tested against some sort of first-order serial autocorrelation, i.e. against the 

hypothesis that regions belonging to the same income class at t behave differently depending on their 

state at t-1. We define five sub-samples k = 1, ..., 5 for states the regions were in at t-1, such that 

i(t-1) = k(t). E.g., regions that were in the first income class at t-1 are allocated to the first sub-

sample (k=1), those that were in the second class are put into k=2, and so on. For each of these 

sub-samples we estimate a separate matrix from observed transitions from t to t+1 in the usual way. 

The estimated transition matrices for the entire sample (income class at t-1 = ‘all’) and for the five 

sub-samples as well as the various test statistics are given in Table 4.11 The general test comparing 

                                                 
10 Note that several of the test statistics are quite poorly reliable since the numbers of underlying observations 

are small. 
11 Note that the matrix for the entire sample (“income class at t-1 = ‘all’”) differs slightly from that in Table 2 

because the first transition period (1950-51) is needed for the serial lag.  
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the matrices for all five sub-samples to that for the entire sample simultaneously  
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Table 4 — Tests of the Markov property, 48 U.S. states 1951-1995, annual transitions 

income class at No of transition probabilities (t to t+1) test of Markov prop 
t-1 t obs 1 2 3 4 5 d.o.f. Qi, Q prob 

all 1 422 0.908 0.088 0.005 0 0 4 235.7 0.00 
all 2 423 0.073 0.839 0.087 0 0 6 24.54 0.00 
all 3 422 0.002 0.078 0.827 0.090 0.002 12 76.04 0.00 
all 4 423 0 0.005 0.097 0.865 0.033 6 64.48 0.00 
all 5 422 0 0 0 0.059 0.941 2 35.40 0.00 

 whole matrix 30 436.2 0.00 

1 1 391 0.928 0.072 0 0 0 2 43.43 0.00 
1 2 37 0.243 0.730 0.027 0 0 2 18.25 0.00 
1 3 2 0 0.500 0.500 0 0 4 5.02 0.29 
1 4 0 0 0 0 0 0 0 – – 
1 5 0 0 0 0 0 0 0 – – 

 whole matrix 8 66.71 0.00 

2 1 30 0.667 0.300 0.033 0 0 2 24.24 0.00 
2 2 350 0.057 0.860 0.083 0 0 2 8.75 0.13 
2 3 38 0 0.289 0.684 0 0.026 4 38.83 0.00 
2 4 0 0 0 0 0 0 0 – – 
2 5 0 0 0 0 0 0 0 – – 

 whole matrix 8 71.82 0.00 

3 1 1 0 0 1.000 0 0 2 210.5 0.00 
3 2 34 0.059 0.735 0.206 0 0 2 6.51 0.05 
3 3 340 0.003 0.059 0.868 0.071 0 4 23.64 0.33 
3 4 38 0 0.053 0.342 0.605 0 3 50.80 0.00 
3 5 1 0 0 0 1.000 0 1 15.92 0.00 

 whole matrix 12 307.4 0.00 

4 1 0 0 0 0 0 0 0 – – 
4 2 2 0 1.000 0 0 0 2 0.38 0.83 
4 3 42 0 0.024 0.643 0.333 0 4 34.56 0.00 
4 4 361 0 0 0.075 0.898 0.028 3 29.22 0.00 
4 5 16 0 0 0 0.313 0.688 1 19.14 0.00 

 whole matrix 10 83.30 0.00 

5 1 0 0 0 0 0 0 0 – – 
5 2 0 0 0 0 0 0 0 – – 
5 3 0 0 0 0 0 0 0 – – 
5 4 24 0 0 0.042 0.792 0.167 3 14.80 0.00 
5 5 405 0 0 0 0.047 0.953 1 27.42 0.00 

 whole matrix 4 42.21 0.00 

Source: BEA, Regional Accounts Data; own estimation. 
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(similar to eq. 6 in Section 2.2.1) produces Q=436.2 which, at 30 degrees of freedom, indicates 

extremely significant differences (prob<0.01). Consequently, the evolution of the income distribution 

across U.S. states cannot be assumed to be independent of the past. This is not only true for the 

entire sample but also for each of the five income classes, as the test statistics in the north-eastern 

part of Table 4 indicate. If the H0 of time independence was true, the rows of the matrices for the 5 

sub-samples would be equal to the corresponding row of the matrix for the entire sample, and the 

tests would not indicate significant differences. This is clearly not the case; there is not a single 

income class for which the previous income level is irrelevant. The following four examples may serve 

as an illustration:12  

– Take, e.g., the first row in the matrix for the second sub-sample (income class at t-1=2, and at 

t=1) representing regions that descended from the second to the first income class just the period 

before (t-1 to t). These regions have a considerably higher probability of becoming richer again 

( 2|12p̂ =0.300) than regions that were poor before ( 1|12p̂ =0.072), and than regions on average 

12p̂ =0.088. 

– Similarly, regions that just scaled up from the lowest to the second-lowest class have a 

considerably higher probability of falling back again than regions that have already been in the 

second class for a longer time; the respective probabilities being 1|21p̂ =0.243, 2|21p̂ =0.057, and 

21p̂ =0.073. 

– At the upper end of the income hierarchy, very rich regions that were very rich before tend to 

have a higher probability of staying very rich than very rich regions that were poorer before, i.e. 

5|55p̂ =0.953 > 4|55p̂ =0.688.  

– Finally, consider the third income class in t: The probability of staying in that class if a region was 

in there before ( 3|33p̂ =0.868) is higher than both the probabilities of regions that were poorer, or 

richer before: 2|33p̂ =0.684, and 4|33p̂ =0.643. 

                                                 
12 The definition of classes for the tests of the Markov property has produced a very obvious outlier, namely 

North Dakota’s transition from 1979 to 1980 and 1981. This is the only observation falling in the first class of 
the third sub-sample (income class at t-1=3). The per-capita income declined sharply from 1979 to 1980; South 
Dakota descended from the third to the lowest income class. In the next period, income rose again; the state 
returned to the third class. Since leaps of this kind across two class boundaries have been very rare among 
the poorest regions they are penalized strongly by the test statistic. Eliminating this outlying observation from 
the data set does not change the overall conclusions significantly, however. 
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Obviously, history matters a lot. At least some of the movements between classes are temporary; the 

probabilities estimated from the entire sample are rather poor predictors of the real behavior of 

regions, at least in several cases. 

4. Test of spatial independence 

Although the Markov approach requires stochastically independent observations income dynamics in 

one region may be affected by geographic spillovers from respective neighboring regions. As Rey 

and Montouri (1999) and Rey (2001a), (2001b) have shown by means of several statistical 

indicators, spatial dependence among neighboring U.S. states is quite strong: There seem to be sort 

of spillovers among neighboring states such that income dynamics in one state is not independent of 

whether its neighbors are – on average – comparatively rich or poor. Similar results have been 

obtained for regions in various other countries (e.g. Fingleton and McCombie 1998, Bode 1998b, 

2001, 2002) as well as at the international level (Keller 2000, Fingleton 2000). For empirically 

illustrating the test of spatial independence proposed in Section 2 we distinguish 5 spatial Markov 

chains by (again arbitrarily) dividing the sample (48 states, 1950-1995, 2 160 observations) into 5 

income classes s = 1, …, S for different income levels in neighboring regions. An observation is 

allocated to s=1 if the average relative per-capita income at time t in the neighboring regions falls into 

the first quintile across all observations, i.e. if the region-year under consideration is among the 432 

observations (20 per cent of the entire sample) for region-years having the poorest neighbors. For 

each of the resulting spatial Markov chains we test the hypothesis that the transition probabilities are 

equal to the transition matrix in Table 2.  

The results strongly support earlier findings: the whole system is not independent across space, the 

test statistic Q=144 being highly significant (prob <0.01; 47 d.o.f.; Table 5). For three out of five 

income classes of the entire sample the income level in a region’s geographic neighborhood is 

important. The tests comparing single rows across all sub-samples (see Section 2.2.2., eq. 9) 

indicate that there are significant differences for regions with low, above-median, and high income 

(classes 1, 4, and 5; north-eastern part of Table 5). And there is not a single among the five sub-

samples for different income levels of neighbors that does not show significant differences to the 

entire sample, as the test statistic discussed in Section 2.2.3 indicates (rows labeled “whole matrix”). 

Obviously, e.g., a poor state has a substantially lower probability of becoming richer if its neighbors 
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are poor as well ( 1|12p̂ =0.032), compared to the average across all states which is estimated to be 

12p̂ + 13p̂ =0.093. Similarly, a very rich state has a lower probability of becoming poorer if its 

neighbors are very rich as well ( 5|54p̂ =0.024, compared to 54p̂ =0.058).  
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Table 5 — Tests of spatial dependence among immediate neighbors, 48 U.S. states 1950-
1995, annual transitions 

income No of transition probabilities test of homogeneity 
class obs 1 2 3 4 5 d.o.f. Qi, Q prob 

entire sample 
1 432 0.907 0.088 0.005 0 0 8 48.17 0.00 
2 432 0.074 0.838 0.088 0 0 8 13.84 0.09 
3 432 0.002 0.081 0.824 0.090 0.002 16 19.21 0.26 
4 432 0 0.005 0.100 0.859 0.037 12 25.70 0.01 
5 432 0 0 0 0.058 0.942 3 37.09 0.00 

whole matrix 47 144.0 0.00 
poor neighbors (s=1) 

1 253 0.968 0.032 0 0 0 2 27.36 0.00 
2 121 0.033 0.893 0.074 0 0 2 4.77 0.09 
3 43 0 0.140 0.791 0.070 0 4 2.53 0.64 
4 15 0 0 0.133 0.867 0 3 0.83 0.84 
5 0 0 0 0 0 0 0 – – 

whole matrix 11 35.48 0.00 
neighbors with below-median income (s=2) 

1 67 0.731 0.239 0.030 0 0 2 34.12 0.00 
2 103 0.107 0.806 0.087 0 0 2 2.12 0.35 
3 136 0 0.044 0.897 0.059 0 4 7.71 0.10 
4 115 0 0 0.087 0.870 0.043 3 1.17 0.76 
5 11 0 0 0 0.455 0.545 1 32.58 0.00 

whole matrix 12 77.70 0.00 
neighbors with median income (s=3) 

1 75 0.840 0.160 0 0 0 2 6.23 0.04 
2 71 0.141 0.761 0.099 0 0 2 5.83 0.05 
3 102 0.010 0.069 0.794 0.118 0.010 4 7.98 0.09 
4 96 0 0 0.083 0.875 0.042 3 1.01 0.80 
5 88 0 0 0 0.080 0.920 1 0.95 0.33 

whole matrix 12 21.99 0.04 
neighbors with above-median income (s=4) 

1 33 0.970 0.030 0 0 0 2 1.67 0.43 
2 89 0.079 0.831 0.090 0 0 2 0.04 0.98 
3 106 0 0.085 0.792 0.123 0 4 2.48 0.65 
4 81 0 0.025 0.198 0.716 0.062 3 22.29 0.00 
5 123 0 0 0 0.065 0.935 1 0.16 0.69 

whole matrix 12 26.64 0.01 
rich neighbors (s=5) 

1 4 0.750 0.250 0 0 0 2 1.33 0.51 
2 48 0 0.896 0.104 0 0 2 4.38 0.11 
3 45 0 0.156 0.778 0.067 0 4 4.12 0.39 
4 125 0 0 0.056 0.928 0.016 3 7.25 0.06 
5 210 0 0 0 0.024 0.976 1 8.70 0.00 



 27

whole matrix 12 25.77 0.01 

Source: BEA, Regional Accounts Data; own estimation. 

5. Are these tests purely academic exercises? 

To exemplify the sensitivity of empirical results to violations of the requirements of the method we will 

finally compare the stationary distribution calculated from the transition matrix for the entire sample 

(48 states, 1950-1995) to those from the transition matrices for single BEA regions (see Table 3). A 

similar discussion of the effects of spatial dependence on stationary distributions can be found in Rey 

(2001b). Note that the following exercises are purely illustrative. 

A conventional interpretation of the stationary distribution for the U.S. as a whole (Table 6, first 

row), as has been adopted frequently in the literature, would conclude that there is some good news 

for states that are lagging behind, and some bad news for the leaders: Apparently, there is 

convergence among U.S. states. Compared to the initial distribution (0.2 in each class) the 

populations in the extreme classes have decreased.13  

With a view to the BEA region-specific limiting distributions, this conclusion may be appropriate for 

the Plains, indeed, although the tendency towards concentrating at the median (of all 48 states) 

appears to be much stronger there. For the rest of the BEA regions, however, the general picture 

seems to be of very limited relevance. The figures suggest that New England, 

 

Table 6 — Stationary income distributions calculated from estimated transition matrices for 
8 BEA regions 1950-1995, annual transitions 

BEA-region income class 
 1 2 3 4 5 

USA 0.186 0.225 0.236 0.210 0.144 

New England 0.011 0.186 0.150 0.267 0.385 
Mideast 0 0 0.010 0.277 0.712 
Great Lakes 0 0.036 0.363 0.399 0.202 
Plains 0.108 0.216 0.496 0.176 0.003 
Southeast 0.255 0.213 0.267 0.257 0.008 

                                                 
13 Shaded cells in Table 6 indicate peaks of the distributions. 
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Southwest 0.128 0.571 0.285 0.016 0 
Rocky Mountain 0.177 0.401 0.217 0.175 0.030 
Far West 0 0 0.300 0.700 0 

Source: BEA, Regional Accounts Data; own estimation. 
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Mideast, and Far West states as well as those at the Great Lakes have little reason to worry about 

falling back to mediocrity. And the supposedly good news for the south and the Rocky Mountain 

states may be way too optimistic. It seems as if the majority of them continue to be comparatively 

poor. Of course, one has to bear in mind that there may have been a structural break in the 1990s, 

and that in the evolution of the income distributions within BEA regions may not be homogeneous 

which has not been tested for. 

4. Conclusions 

Although Markov process theory offers a couple of desirable features for convergence analysis such 

as the possibility to determine a stationary income distribution, it requires some very restrictive 

assumptions to be met. Quite surprisingly, these assumptions have generally been taken for granted in 

the convergence literature so far. This is all the more surprising, as appropriate tests have been 

available since the late 1950s, and are quite simple to implement. The present paper has proposed, 

resp. recalled a number of tests to assess the properties of estimated Markov transition matrices.  

In summary, these tests turn out to be useful tools. The chi-square statistic discussed in this paper is 

very flexible in use. It can be used for a wide variety of tests, ranging from tests of the Markov 

property and spatial dependence to homogeneity of observed processes over time and space. It can 

be used to compare whole systems of transition matrices as well as single rows in transition matrices 

for single sub-samples. All tests, however, require the number of observations to be large enough to 

allow for reasonably accurate estimates of transition probabilities.  

As has been illustrated, the evolution of the income distribution across the 48 coterminous U.S. 

states from 1929 to 2000 clearly does not follow a Markov process. Rather, income growth has 

been autoregressive in both time, and space. Regional clusters of states apparently have followed 

different laws of motion (if any), and there has been a structural break in the aftermath of World War 

II, that has significantly affected the evolution of the income distribution. Another structural break 

may have occurred in the 1990s. These features should be taken into consideration when making 

inferences about the evolution of the regional income distribution in the U.S. 
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