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Abstract
In recent years interest has been growing in testing for stochastic non-linearity in

macroeconomic time series. There are several inference procedures available. But not
much is known about their behaviour on real world small-sized settings. This paper
surveys some of these tests. Their performance is compared using monthly Austrian
unemployment data that cover the period January 1960 to December 1997. It is found
that the test procedures surveyed are complementary rather than competing. Several
useful guidelines are provided for applying the increasingly complex test procedures
in practice.



1 Introduction

Univariate time series modelling is a major interest of (regional) economists. These models
have the advantage that behavioural patterns can be predicted simply by analysing the past
history of a variable, reflecting these patterns. The most important aspect of building such a
model is learning about the intrinsic time patterns of a variable or its underlying generating
process.

Model identification is the key to model building and the most difficult stage in the
iterative identification–estimation–diagnosis model building strategy. Historically, only a
few time series tests have been available to assist in this respect and these were mostly
tests for linear models. In recent years there has been a growing interest of economists in
non-linear models, including autoregressive conditional heteroscedastic [ARCH] models,
threshold autoregressive [TAR] models and bilinear models.

Discussion of non-linearity is made more complicated by the usual problems with
macroeconomic time series. The data are usually discrete in time, contain often high levels
of measurement with unknown properties, are affected by temporal aggregation and may
have been filtered to remove a seasonal component. Many macroeconomic time series also
have long memory properties, including deterministic and stochastic trends, which also
have to be considered in the model identification stage.

Non-linearity is the necessary condition for non-linear modelling. Today several non-
linear identification tests are available (for example, see Cromwell, Labys, and Terraza
[1994]). Although the existence of these tests enables us to model univariate time series
more adequately, a larger task meets us in attempting to decide which of several test proce-
dures for detecting non-linearities, in fact, should be employed. The purpose of this contri-
bution is to provide some practical guidelines in applying these increasingly complex test
procedures in order to identify univariate time series models. Our goal is to survey some of
these tests proposed in the time series literature and to apply and compare them on a real
macroeconomic time series. The comparison is based on monthly unemployment rates in
Austria1. The monthly sample is from January 1960 to December 1997. There are 456
observations in the data set.

The section that follows gives some background information by introducing some def-
initions and the inference methods selected to test for stochastic non-linearity. The tests
are described in greater detail then in section 3. Section 4 follows with the presentation of
empirical results. Some conclusions are drawn in the final section.

2 Background

2.1 Some basic definitions

The definition of a time series begins with the notion of a stochastic process that is defined
as an ordered set of random variables indexed by time:x1,x2, . . . ,xT . An observed time
series is a realisation of some underlying stochastic process. In this sense, the relationship
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between realisation and process in time series analysis is analogous to the relationship
between sample and population in cross-section analysis. A realisation [or time series] is
used to build a model of the process that generated the series.

A most important property of a time series is that it be stationary. A time series is said
to be stationary in the wide sense, or second-order stationary, when the mean, variance and
covariance of the process are constant, but not higher order moments. Because most real
world data are non-stationary, performing transformations of the data and testing for sta-
tionarity should conincide. The most common transformation is that of differencing, that
is, subtracting a past value of a variable from its current value. Ifxt is a zero mean third-
order stationary time series, then the meanm = E(xt) = 0, the second order covariance
cxx(q) = E(xt+qxt) and the third order covariancescxxx(q, r) = E(xt+qxt+r ,xt) are indepen-
dent oft. If cxx(q) = 0 for all non-zeroq, the series is white noise. A white noise series
in which x1,x2, . . . ,xT are independent random variables. Gaussian white noise series are
necessarily pure white noise series.

In addition to stationarity, whiteness and pure whiteness, another often assumed char-
acteristic of a time series is linearity, which may be defined in different ways. We conform
here to the more conventional definition that a linear stochastic process is a linear filter of
independent and identically distributed (iid) inputs. For example, an autoregressive moving
average [ARMA] process is a finite order linear process.

Non-linearity may appear in different forms. Additive non-linear dependence arises
through persistence in conditional mean of the process. Examples of such processes are
the threshold autoregressive [TAR] models (see Tong and Lim [1980]), the exponential au-
toregressive models (see Ozaki [1980]) and the bilinear models (see Granger and Andersen
[1978]). Multiplicative non-linear dependence arises when the source of non-linearity is in
the variance of the process. Examples of such processes are the ARCH models (see Engle
[1982]) and the generalizations of ARCH models (for example Bollerslev [1986], Engle,
Lilien, and Robins [1987], and Sentana [1995]).

Non-linear stochastic models have the potential of improving forecasts and thus of
providing stronger candidates against which to compare models found by a less purely
statistical research strategy. But it is important to note that only in the case of additive
non-linear dependence non-linear models can be utilized to generate improved point pre-
dictions, while in the case of multiplicative non-linear dependence they can be exploited to
construct superior prediction intervals.

2.2 The tests selected

We use four inference methods to test for stochastic non-linearity with the Austrian unem-
ployment rate data: a test originally proposed by Brock, Dechert, and Scheinkman [1987]
and described to more detail in Brock et al. [1996], henceforth BDS test, a test introduced
by McLeod and Li [1983], the socalled McLeod-Li test, a test developed by Hsieh [1989],
the socalled Hsieh test, and a test suggested by Teräsvirta, Lin, and Granger [1993], hence-
forth the Ter̈asvirta-Lin-Granger test.
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The BDS test does not provide a direct, but an indirect test for non-linearity. It is a
test for independence and can be used to test for residual non-linear structure, after linear
structure has been removed from the data through prewhitening. The BDS test produces
a viable test of linearity against the omnibus alternative of non-linearity when the data are
prefiltered by ARMA fit (Barnett et al. [1997]). We use the test for this purpose.

Also the McLeod-Li test is an indirect test and based on the fact that by fitting a linear
model to the data, the inherent non-linearity has been swept into the residuals. While the
BDS test makes use of the concept of correlation integral, the McLeod-Li test applies a
standard Ljung-Box-Pierce Portmanteau test for serial correlation to the squared residuals
from ARMA representation. The test is sensitive against multiplicative, less so against
additive non-linearity.

Once it is established that some type of non-linearity exists, the Hsieh-test discriminates
between additive and multiplicative non-linearity. The test requires to set up multiplicative
non-linearity as the null hypothesis which implies that the third order correlation coeffi-
cients equal zero. The correlation is based on the residuals from a linear specification.
Once again, the test is based on the assumption that the inherent non-linearity has been
swept into the residuals.

The Ter̈asvirta-Lin-Granger test has the useful property that if the null hypothesis of
linearity is rejected it will provide a non-linear model specification that is potentially rel-
evant for forecasting. This non-linear model produced by the test should, however, not be
accepted as the true model but only as a useful approximation. The question of how to form
better approximations is still very much an open question. In the next section the tests will
be described in some more detail.

3 Test descriptions

3.1 The Brock-Dechert-Scheinkman [BDS] test

The test developed by Brock, Dechert, and Scheinkman [1987] has been applied in macroe-
conomic time series modelling (Brock and Sayers [1988] and Peel and Speight [1998]) and
elsewhere (see, for example, Craig, Kohlhase, and Papell [1991]). It is a test that exam-
ines the underlying probability structure of a time series searching for any kind of depen-
dence. It was inspired by the Grassberger-Pocaccia correlation integral (see Grassberger
and Procaccia [1983]), but it is a test for any kind of structure in a series, linear stochastic,
non-linear stochastic, or deterministic chaos.

It is set up as follows. Letut be a sequence of residuals of lengthT. Define the
embedded subvector as

um
t = (ut , . . . ,ut−m+1), t = 1,2, . . . ,T−m+1 (1)

The choice of the embedding dimensionmfor the dimensionality of the vector is subjective.
But note thatm−1 data points are lost because it is required that all vectors have equal
length.
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The dependence ofut is analysed by means of the concept of the correlation integral,
a measure that examines the distances between points, sayum

t andum
s , in the abovem-

dimensional space. For each embedding dimensionmand choice of the metric bounde the
correlation integralC(e,m,T) is defined as the fraction of close points(um

t ,um
s ):

C(e,m,T) =
2

Tm(Tm−1) ∑
t<s

Ie(um
t ,um

s ) (2)

whereTm = T−m+1, t andsrange from 1 toT−m+1 in the summation and are restricted
such thatt < s. Ie(um

t ,um
s ) is an indicator function which equals 1 if‖um

t −um
s ‖< e, where

‖.‖ is the sup norm over the subvector. The sup norm is given by‖u‖= max1<i≤m|ui |.
Brock, Dechert, and Scheinkman [1987] show convergence in distribution for statistics

of the form
C(e,m,T)−C(e,1,T)m lim dist N(0,s2(e,m)) (3)

with

s2(e,m) = 4[4Km+2
m−1

∑
j=1

Km− jC2 j +(m−1)2C2m−m2KC2m−2]. (4)

C andK can be consistently estimated byC(e,1,T) and

K(e,T) =
1

Tm(Tm−1)(Tm−2) ∑
t 6=s,t 6=r,r 6=s

Ie(um
t ,um

s )Ie(um
s ,um

r ) (5)

Thus, they suggest as the test statistic

BDS(e,m,T) =
T

1
2

m(C(e,m,T)−C(e,1,T)m)
s(e,m)

(6)

for some selectedmande. The statistic is divided by the asymptotic standard deviation so it
is distributed asymptotic normal with mean 0 and variance 1 under the null of independent,
identically distributedut ’s.

The BDS statistic is a function of two arguments: the embedding dimensionm and
the metric bounde (i.e., the maximum difference between pairs of observations counted
in computing the correlation integral). The values of the two arguments are finite and
arbitrary in the definition of the test statistic. But an important relation exists between the
two and the small sample properties of the statistic. For a givenm, e can not be too small
becauseC(e,m,T) will capture too few points, nor shoulde be too large in order to prevent
C(e,m,T) from involving too many data points (Cromwell, Labys, and Terraza [1994]). In
practice,m is typically chosen over the range of 2 to 15, ande to lie between 0.5 and 2
standard deviations of the time series to be tested. Care must be undertaken in interpretation
because tests performed for different values ofmande may give contradictory information.

Under the null hypothesis, Brock, Dechert, and Scheinkman [1987] show that forT
large, BDS(e,m,T) will be normally distributed with mean 0 and a variance that is a
complicated function ofm and e. The null hypothesis of independence is rejected if
BDS(e,m,T) is large. The definition of large should depend on the sample size. The
test procedure can be performed in four steps:
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(i) Choose a grid of values form ande,

(ii) ComputeBDS(e,m,T) as given by (6),

(iii) For a selected significance levela, the critical values to test the null hypothesis
of independence are based on the number of observations divided by the selected
embedded dimensionm:

• if (T −m+ 1)/m > 200 use the standard normal distribution for the critical
valuet,

• if (T −m+ 1)/m≤ 200 use the critical valuet from tables in Brock, Hsieh,
and LeBaron [1991].

(iv) Reject the null hypothesis of independence if|BDS(e,m,T)|> t

The BDS test does not provide a direct test for non-linearity, because the distribution
of the test statistic is not known, either in finite samples or asymptotically, under a null
hypothesis of non-linearity. The asymptotic distribution is known under the null of inde-
pendence. Thus, the hypothesis of non-linearity is nested within the alternative hypothesis
that includes both linear and non-linear processes. If all linear possibilities have been re-
moved by fitting the best possible linear model, the BDS test can be utilized to test the
residuals for remaining non-linear dependence.

If the null hypothesis is rejected then the alternative hypothesis implies the existence of
non-linear dependence, and one can proceed to employ other tests to resolve the question if
this non-linear dependence is of additive or multiplicative kind or a mixture of both kinds.

3.2 The McLeod-Li test

It was noted in Granger and Andersen [1978] that for a linear stationary process

corr(x2
t ,x

2
t−k) = (corr(xt ,xt−k))

2 for all k (7)

and, thus, departures from this would indicate non-linearity. The McLeod-Li test is a Box-
Ljung-Pierce Portmanteau test for non-linear dependence (McLeod and Li [1983]) that is
conducted by examining the Ljung-Box-Pierce statistic of the squared residuals from an
ARMA representation2. The test procedure can be conducted in four steps:

(i) Select lag lengthk based on the sample frequency and estimate the autocorrelation
function ofu2

t :

ruu(k) =
∑t(u2

t −s2)(u2
t+k−s2)

∑t(u2
t −s2)2 (8)

wheres2 is the variance ofu2
t .
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(ii) Compute the Ljung-Box-Pierce (Box and Jenkins [1970]) statistic for the firstk au-
tocorrelations ofu2

t to test the null hypothesis of independence:

Quu(k) = T(T +2)
k

∑
i=1

1
(T− i)

r2
uu(i) (9)

(iii) For a selected significance levela, find the critical valuet for testing the null hy-
pothesis using the chi-square distribution, withk degrees of freedom.

(iv) Reject the null hypothesis of linear dependence ifQuu(k) > t.

Rejection of the null hypothesis indicates the existence of non-linear dependence. The
main disadvantage of the test procedure is that the selection ofk is entirely based on the
researcher’s knowledge of the memory of the process, that is, the correlation between the
current and previous periods. Besides this problem of lag selection the test examines the
presence of serial correlation ofu2

t only under the alternative. This depends on the as-
sumption that the data are distributed normally and are stationary. If one or both of these
assumptions are incorrect, then the power of the test decreases.

The Mc-Leod-Li test is not a direct test for either multiplicative or additive non-
linearity, since the distribution of the test statistic is not known – either in finite samples
or asymptotically – under a null hypothesis of multiplicative or additive non-linearity. The
asymptotic distribution is known under the hypothesis of linear dependence. The hypothe-
ses of multiplicative and additive non-linearity are nested within the alternative hypothesis.

In conventional statistical methodology, one tests a hypothesis by equating it with the
null hypothesis or with the total alternative hypothesis, not by using the power of the test
to try to discriminate between subsets of the alternative hypothesis. Monte Carlo evidence
(see Lee, White, and Granger [1993]) shows that the McLeod-Li test has a strong power
against multiplicative non-linearity, but less power against other forms of non-linearity.
Thus under the above non-standard approach the McLeod-Li test may be expected to pro-
vide evidence for the presence of non-linearity in conditional variance3.

3.3 The Hsieh test

Hsieh [1989] proposed a test to discriminate between additive and multiplicative non-
linearity. Letut be a vector of residuals,ut , of a linearly filtered seriesxt . Multiplicative
non-linearity implies that the conditional expectation of the residuals given past lags of the
variable,xt , and the residuals,ut , is zero:

E(ut |xt−1, . . . ,xt−k,ut−1, . . . ,ut−k) = 0 (10)

Additive non-linearity implies that the same conditional expectation is non-zero.
The test requires to set up multiplicative non-linearity as the null hypothesis. This

implies that the third-order correlation coefficient,ruuu(r,s), equals 0 for allr,s> 0. The
test is implemented as follows:
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(i) Define the third-order moments of the residuals

ruuu(r,s) = E(
utut−rut−s

s3
u

) (11)

and estimateruuu(r,s) by the statistic

ruuu(r,s) =
(1/T)∑t utut−rut−s

[(1/T)∑t u2
t ]1.5 (12)

(ii) In order to test the null hypothesis thatut posesses a multiplicative non-linearity
compute the test statisticH(r,s) given by

H(r,s) =
√

Truuu(r,s)√
V(r,s)

(13)

with

V(r,s) =
(1/T)∑t u2

t u2
t−ru

2
t−s

[(1/T)∑t u2
t ]3

(14)

Hsieh [1989] has shown that – with the null and other auxiliary assumptions derived
from the central limit theorems for martingale differences –

√
Truuu(r,s) is asymp-

totically normally distributed with zero mean and variance consistently estimated
by (14). Thus,H(r,s) follows a standard normal distribution with zero mean and
variance one.

(iii) For a selected significance levela, find the critical valuet for testing the null hy-
pothesis of multiplicative non-linearity, using the standard normal distribution.

(iv) Reject the null hypothesis, if|H(r,s)|> t.

If the null hypothesis of multiplicative non-linearity is rejected then the alternative
hypothesis implies the existence of additive non-linearity. The test has the disadvantage
that several lags have to be tested and that the choice of lagsr ands for the test statistic
is ambiguous. The test is evaluated for a grid of values ofr ands, and one looks to the
majority of the test results to sopport an outcome (Cromwell, Labys, and Terraza 1994).

3.4 The Ter̈asvirta-Lin-Granger test

The test suggested by Teräsvirta, Lin, and Granger [1993] is an indirect test for non-
linearity.4 The authors consider the specific non-linear model

xt = p ′wt +f(g ′wt)+ut (15)

wherewt = (1,xt−1, . . . ,xt−p)
′ denotes a vector of dependent variables including a constant,

p ′ = (p0,p1, . . . ,pp) andg ′ = (g0,g1, . . . ,gp) are parameter vectors, andut ∼ iid(0,s2) is
an error term. Setf(g ′wt) = qy(g ′wt) where

y(g ′wt) = (1+exp(−g ′wt))
−1−1/2. (16)
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Then, (15) can be interpreted as a non-linear autoregressive model of orderp in which the
interceptp0+qy(g ′wt) is time varying and changes smoothly. Note thatg = 0 leads to the
linear modelxt = p ′wt . Thus, the null hypothesis is

H0 : g = 0. (17)

Note that model (15) is not identified under the null (17), but under the alternative. This
motivates Ter̈asvirta, Lin, and Granger [1993] to replacef in (15) by a Taylor expansion
aroundg = 0 in order to derive an applicable test for (17).

Thus, model (15) becomes

xt = p̃ ′wt +
p

∑
i=1

p

∑
j=i

di j xt−ixt− j +
p

∑
i=1

p

∑
j=i

p

∑
k= j

di jkxt−ixt− jxt−k + ũt (18)

wheredi j = di jqgig jg0 with di j = 1/36 if i = j and di j = 1/18 otherwise, anddi jk =
di jkqgig jgk with di jk = 1/36 if i = j = k, di jk = 1/18 if i = j, j = k or i = k, anddi jk = 1/6
otherwise. The null hypothesis corresponding to (17) is

H ′
0 : di j = 0,di jk = 0 i = 1, . . . , p; j = i, . . . , p;k = j, . . . , p. (19)

The test procedure can be performed in the following steps:

(i) Select the orderp of the autoregressive process by a conventional selection criterion,
regressxt on 1,xt−1, . . . ,xt−p and compute the residuals ˆut and the sum of the squared
residualsSSR0 = ∑t û2

t .

(ii) Regress ˆut on 1,xt−1, . . . ,xt−p andm auxiliary regressors corresponding to the non-
linear terms in (18). Compute the residuals ˆvt and the sum of squared residuals
SSR= ∑t v̂2

t .

(iii) In order to test the null hypothesis of linearityH ′
0 according to (19), compute the test

statistic

TLG=
(SSR0−SSR)/m

SSR/(T− p−1−m)
(20)

(iv) For a selected significance levela find the critical valuet for testing the null hypoth-
esis using theF-distribution withm andT− p−1−m degrees of freedom.

(v) Reject the null hypothesis of linearity ifTLG> t.

The test possesses the useful property that if the null hypothesis of linearity is rejected
it will provide a non-linear model that is potentially useful for forecasting. Of course,
this non-linear model produced by the test procedure should not be accepted as being the
true model but only as a useful approximation. The question of how to construct better
approximations is still an open question (see Granger [1991]).
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Table 1: Summary statistics for Austrian unemployment rates,xt and∆12xt

Time Series N Mean Variance Minimum Maximum
Raw data series,xt 456 3.7253 4.5531 0.8 9.2
Seasonal differenced series,∆12xt 444 0.0975 0.2411 -1.9 1.7

4 Data and empirical results

4.1 Raw and differenced data series

In recent years, much attention has been paid to identifying the appropriate time series char-
acteristics of various macroeconomic aggregates. An interesting example in this respect is
the empirical investigation of unemployment. Empirical studies in this area typically rely
on linear specifications, the standard approach involving the estimation of ARMA pro-
cesses. This approach reflects the view that macroeconomic data may be adequately de-
scribed by stable linear processes driven into recurrent oscillations by successive random
shocks (Peel and Speight [1998]). But a number of theoretical models have been prepared
that suggest that unemployment may be a non-linear process (see, for example, Burgess
[1992]).

This motivates to analyse the above test procedures on unemployment data, using the
Austrian definition of the unemployment rate. The monthly sample is from January 1960
to December 1997 (456 data points). Figure 1 provides a visual representation of the time
series with the y-axis defined as the unemployment rate and the x-axis as the time index.
From an eyeball inspection of the plotted series, it seems obvious that this series is non-
stationary and seasonal. In fact, the series level appears to increase in annual steps in the
1980s and 1990s. The Augmented Dickey-Fuller, the Phillips-Perron, the Kwiatkowski-
Phillips-Schmidt-Shin and the Dickey-Hasza-Fuller test confirm that the series is season-
ally non-stationary. Seasonal differencing, i.e. applying the seasonal filter∆sxt = xt −xt−s,
with s = 12, makes the series stationary. The seasonally differenced series is plotted in
Figure 2. Table 1 presents summary statistics for both the original and the seasonally dif-
ferenced series.

Our primary concern is to detect non-linear departure from a linear process. The BDS
test, the McLeod-Li test and the Hsieh test – in contrast to the Teräsvirta-Lin-Granger test
– require the extraction of linear structure by the use of an estimated filter. Typically, an
AR(p) model is fitted to the series and the test then applied to the estimated residuals.
For the purpose of model identification selection criteria such as the Akaike Information
Criterion [AIC] are usually employed (see Brockwell and Davis [1991]). Minimisation of
the AIC suggests model orderp = 26 for the seasonally differenced series. Furthermore,
the model contains no intercept, reflecting the fact, that unemployment rates do not tend to
rise or fall in the long run.
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Figure 1: Monthly observations of the Austrian unemployment rate, from January 1960 to
December 1997
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Figure 2: Seasonally differenced series,∆12xt , Austrian unemployment rates
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4.2 Empirical results

The following is a summary of the results obtained by applying the BDS test, the McLeod-
Li test, the Hsieh test, and the Teräsvirta-Lin-Granger test, with each test judged relative to
the null hypothesis that it is designed to test.

Results with the BDS test

The first test used is the BDS test that examines the underlying probability structure of
the time series searching for any kind of dependence in the series. The BDS statistic will
reject any deviation from independence. Evidence from the AR(26) model shows that the
seasonally differenced series is not independent. In this situation the BDS statistic can be
used as a test for residual non-linear structure, after linear structure has been removed by
fitting the AR(26) model.

The BDS-statistic has been computed over a grid of embedding dimension (m =
2, . . . ,15) ande ’s (e = 0.5su,1.0su) wheresu is the standard deviation of the residual
time series). The results are summarized in Table 2. Rejection of the null hypothesis of
independence indicates structure beyond the fitted linear model. When(T−m+1)/m ex-
ceeded 200 we used the standard normal distribution for the critical value, otherwise we
looked up the critical value from tables in Brock, Hsieh, and LeBaron [1991] to assess the
significance.

The results obtained are unambiguous. The rejection of the null is extremely strong
for e = 0.5su ande = 1.0su. Much of the Monte Carlo research that has been published
on the BDS test (see, for example, Brock, Hsieh, and LeBaron [1991]) has emphasized
the potential dependence of the properties of the test on the a priori linear filter. Thus, we
considered a sparsely specified ARMA model with two AR coefficients at lags 1 and 12
and three MA coefficients at lags 11, 12 and 13 as an alternative linear filter. But the results
did not change when varying the linear filter.

If the null hypothesis of the BDS test is rejected, other tests should be used to allow the
class of relevant alternatives to be narrowed down. If the null hypothesis is accepted then
there would be little point to continue further, since an acceptance of linearity by the BDS
test is a strong result.

Results with the McLeod-Li test

The McLeod-Li test is a Portmanteau test for non-linear dependence that examines the
Ljung-Box-Pierce statistic of the squared residuals from an AR(26) representation. The
results with the test, displayed in Table 3, fork = 5, . . . ,26, provide clear evidence against
the null hypothesis of linearity. The strength of this conclusion is evident from the fact that
the critical value of the test at the 0.05 level is reached in all displayed cases. This result
corroborates the inference that the data contain non-linearities, and in particular provides a
strong indication for non-linearity in conditional variance.
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Table 2: BDS(e,m,T) for m = 2, . . . ,15 and four different values ofe: Data are
prewhitened by AR(26) fit

m e = 0.0905 e = 0.1810
2 5.6946 (0.0000)*** 6.3186 (0.0000)***
3 6.2463 (0.0000)*** 6.5120 (0.0000)***
4 6.5737 (0.0000)*** 6.7165 (0.0000)***
5 6.3121 (0.0000)*** 6.3626 (0.0000)***
6 6.1554 (0.0000)*** 5.6167 (0.0000)***
7 5.5415 (0.0000)*** 4.5242 (0.0000)***
8 4.7303 (0.0000)*** 3.8954 (0.0001)***
9 3.7160 (0.0002)*** 3.2697 (0.0011)**
10 6.5993 (0.0000)*** 3.0386 (0.0024)**
11 16.2679 (0.0000)*** 3.3001 (0.0010)***
12 35.6241 (0.0000)*** 3.6136 (0.0003)***
13 73.1271 (0.0000)*** 4.6322 (0.0000)***
14 140.1451 (0.0000)*** 6.2985 (0.0000)***
15 239.2324 (0.0000)*** 8.2771 (0.0000)***

Note: The BDS statistic is asymptotically standard normal under the null
hypothesis of independence. If(T −m+ 1)/m≤ 200 we use the critical
values from tables in Brock, Hsieh, and LeBaron [1991]. Prob-values are
included in parentheses. ***, ** and * denote significant values at the 0.1%,
1% and 5% confidence levels, respectively.

Table 3: McLeod-Li test: Ljung-Box-Pierce statistics, residuals of an AR(26) model

k Q(k) k Q(k)
5 15.2538 (0.0093)** 16 55.1627 (0.0000)***
6 22.1388 (0.0011)** 17 59.5608 (0.0000)***
7 26.9507 (0.0003)*** 18 66.2256 (0.0000)***
8 29.2521 (0.0003)*** 19 72.2936 (0.0000)***
9 29.4720 (0.0005)*** 20 72.8171 (0.0000)***
10 29.7238 (0.0009)*** 21 72.8940 (0.0000)***
11 35.6877 (0.0002)*** 22 72.9240 (0.0000)***
12 45.5349 (0.0000)*** 23 81.3158 (0.0000)***
13 54.9075 (0.0000)*** 24 95.1295 (0.0000)***
14 55.0969 (0.0000)*** 25 96.3822 (0.0000)***
15 55.1211 (0.0000)*** 26 97.0221 (0.0000)***

Note: The test statistic Q(k) is chi-square-distributed withk degrees of freedom. Prob-
values are included in parentheses. *** and ** denote significant values at the 0.1%
and 1% confidence levels, respectively.
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Figure 3: Hsieh test, residuals of an AR(26) model (prob-values×100)

Results with the Hsieh test

The Hsieh test discriminates between additive and multiplicative non-linearity once it is
established that some type of non-linearity exists in the data. Again, the test is based on
the assumption that by fitting an AR(26) model to the seasonally differenced time series,
the inherent non-linearity has been swept into the residuals. The test is used to evaluate the
null hypothesis of multiplicative non-linearity, using the standard normal distribution. The
test is a third moment test which has the disadvantage that several lags have to be tested
and that the selection of lagsr ands for the test statistic is ambiguous. Thus, the test results
are displayed in Figure 3 for a grid ofr,s= 1, . . . ,15.

The figure shows asymptotic prob-values for the test, a low prob-value suggesting re-
jection of the null hypothesis of multiplicative non-linear dependence in favour of the al-
ternative hypothesis of additive non-linearity. The test produced only 6 rejections out of
120 cases. The results of the Hsieh test can be considered only as extremely weak evidence
against the null hypothesis of multiplicative non-linearity.

Results with the Teräsvirta-Lin-Granger test

The final test used is the Teräsvirta-Lin-Granger test which does not need to extract linear
structure by the use of an estimated filter. The disadvantage of this test is that the researcher
has to fixp, and that the size of the regressions can grow quite large very rapidly, that is,
the numbermof regressors used in the auxiliary regressions of the test procedure increases
more than proportionally withp.
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The test procedure starts with selecting the orderp of the autoregressive process. In
doing so, we followed the rule of minimizing AIC (see Brockwell and Davis [1991]).
The resulting AR model is of order 26, leading tom= 2,266 regressors in the non-linear
auxiliary regression. Thus, computation of the TLG-statistic is not feasible anymore in this
situation. To make the testing applicable to form, we modify the test procedure as follows:

(i) Select the orderp of the autoregressive process by a conventional selection criterion,
regressxt on 1,xt−1, . . . ,xt−p and compute the residuals ˆut and the sum of the squared
residualsSSR0 = ∑t û2

t .

(ii) Select a smaller subset, (xt−q1
,xt−q2

, . . . ,xt−qn
| q1,q2, . . . ,qn ≤ p), of

(xt−1, . . . ,xt−p) for appropriateq1,q2, . . . ,qn.

(iii) Regress ˆut on 1,xt−1, . . . ,xt−p andm̃ auxiliary regressors corresponding to the the
second-order and third-order expansions ofxt−q1

,xt−q2
, . . . ,xt−qn

. Compute the

residuals ˆvt and the sum of squared residualsSSR= ∑t v̂2
t and the test statistic

T̃LG=
(SSR0−SSR)/m̃

SSR/(T− p−1− m̃)
(21)

(iv) For a selected significance levela find the critical valuet for testing the null hypoth-
esis using theF-distribution withm̃ andT− p−1− m̃ degrees of freedom.

(v) Reject the null hypothesis of linearity if̃TLG> t.

Note that the modification of the test procedure has the advantage, that the number ˜m
of regressors used in the non-linear part of the auxiliary regression is now in a reasonable
range. It is straightforward to show that this modification does not affect the statistical
properties of the test procedure.

The results with the modified Teräsvirta-Lin-Granger test are summarized in Table 4,
for various subsets(xt−1), (xt−2), (xt−10), (xt−1,xt−10), (xt−1,xt−2,xt−10) and
(xt−1,xt−2,xt−10,xt−12). The null hypothesis of linearity is rejected, suggesting non-
linearity in the mean. The rejection is very strong except in the second case.

Figure 4 shows asymptotic prob-values for the modifed test for a grid ofq1,q2 =
1, . . . ,15 with q1 > q2. A low prob-value suggests rejection of the null hypothesis of lin-
earity in favour of the alternative hypothesis of non-linearity in the mean. This is unam-
biguously the case for(q1,q2) with q1 = 1,10 and 12. This result underlines that it may
be sufficient to consider specific lag combinations(q1,q2) to reject the null hypothesis of
linearity.

5 Conclusions

We find some consistency in our inferences across the methods of inference, although there
are some clear differences among the power functions of the tests. It may be possible that
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Table 4: The modified Teräsvirta-Lin-Granger test: The test statistic̃TLG for several sets
(xt−q1

, . . . ,xt−qn
)

q1 q2 q3 q4 m̃ T− p−1− m̃ T̃LG
1 2 415 13.9272 (0.0000)***
2 2 415 4.2322 (0.0152)*

10 2 415 11.4322 (0.0000)***
1 10 7 410 8.4546 (0.0000)***
1 2 10 16 401 5.0293 (0.0000)***
1 2 10 12 30 387 3.6521 (0.0000)***

Notes: The test statistic̃TLG of the modified Ter̈asvirta-Lin-Granger test is asymptotically
F-distributed withm̃ andT − p− 1− m̃ degrees of freedom. Prob-values are included in
parentheses. ***, ** and * denote significant values at the 0.1%, 1% and 5% confidence
levels, respectively.
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greater robustness across inference procedures might be obtained at much greater sample
size that are, however, rare in practice. Some of the test procedures can be considered as
complementary rather than competing. None of the tests uniformly dominates the others.
Using all of them jointly may produce deeper insights into the nature of the non-linearity
that may exist in the data.

The BDS test is an omnibus test that tests linearity against all possible alternatives.
Monte Carlo simulations indicate that the test is very sensitive to departures from linearity,
but also emphasize that it may depend on the linear filter used for prewhitening. The highly
significant test results and, thus, rejection of the null hypothesis may partly be caused by
multiplicative non-linearity present in the data.

Only if non-linearity is rejected with the BDS test or if the test leads to ambiguous re-
sults it becomes reasonable to make use of other more focused tests for non-linearity. The
McLeod-Li test is sensitive against multiplicative non-linearity, less so against additive
non-linearity. The Hsieh test and the Teräsvirta-Lin-Granger test are specifically designed
to detect additive non-linearity. The Teräsvirta-Lin-Granger test has high power to distin-
guish among non-linear processes that are non-linear in the mean and those that are not
[such as ARCH processes]. But the Hsieh test should be run before proceeding to the
modified Ter̈asvirta-Lin-Granger test because of the a priori knowledge required in choos-
ing q1,q2, . . . ,qn. Note that simply rejecting linearity is not likely to exhaust the useful
information available in the data about non-linearity.

It is important to emphasize that we cannot be sure that there are not other features
of the unemployment series that lead to the observed results. Especially, the possible
presence of ARCH effects cannot be ruled out. ARCH effects may have two effects in
general. First, they may cause the size of the test statistic to be incorrect while still result-
ing in a diagnostic bounded in probability under the null hypothesis, as is the case of the
Ter̈asvirta-Lin-Granger test. Second, they may directly lead to rejection despite linearity
in the mean. Lee, White, and Granger [1993] suggest two strategies that can be undertaken
in this situation. The first strategy may be followed to remove effects of the first type by
using a heteroskedasticity consistent matrix operator in calculating the test statistic. The
second strategy involves specifying the form of the ARCH effect and jointly modelling
non-linearity in the mean and heteroskedasticity when performing the tests. Joint mod-
elling is necessary because using an ARCH with a linear filter may bias the test against the
alternative. Note that the use of ARCH with a non-linear model may make one incorrectly
not find actual non-linearity in the case of the BDS test. So it might be necessary to revise
this test procedure, not affected by heteroskedasticity.

Consequently, we can take the empirical results of this study as indicating that either
neglected non-linearity or ARCH effects may be present in the Austrian unemployment
time series. Thus, further investigation is required. The results achieved are only a first step
on the way to analysing inference procedures able to unambiguously detect non-linearity
in real world small sized time series.
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Notes

1The results presented in this paper are part of a larger Ph.D. project of the first author, supervised by the
second.

2Instead of using the residuals from a linear representation, the raw data can be examined through the use
of thek autocorrelation functions.

3The ARCH test of Engle [1982], which is asymptotically equivalent to the McLeod-Li test, shares
the same shortcoming, assuming a correct conditional mean specification, including potential additive non-
linearity (see Lumsdaine and Ng [1999] for more details and robustification of the ARCH test statistic).

4The test is also known as Teräsvirta’s neural network test due to the fact it has been motivated by White’s
neural network test (see White [1989] and Lee, White, and Granger [1993]), the test statistic, however, is not
based on neural network concepts such as neural network approximation theory.
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