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Abstract

The paper sheds some light on the issue of geographically mediated knowledge

spillovers from university research activities to regional knowledge production in high

tech industries in Austria. Knowledge spillovers occur because knowledge created by

university is typically not contained within that institution, and thereby creates value for

others.

The conceptual framework for analysing geographic spillovers of university research on

regional knowledge production is derived from Griliches (1979). It is assumed that

knowledge production in the high tech sectors essentially depends on two major

sources of knowledge: the university research that represents the potential pool of

knowledge spillovers and R&D performed by the high tech sectors themselves.

Knowledge is measured in terms of patents, university research and R&D in terms of

expenditures. We refine the standard knowledge production function by modelling

research spillovers as a spatially discounted external stock of knowledge. This enables

to capture intraregional and interregional spillovers. Using district-level data and

employing spatial econometric tools evidence is found of university research spillovers

that transcend the geographic scale of the political district in Austria. It is shown that

geographic boundedness of the spillovers is linked to a decay effect.

JEL Classification: O31, H41, O40

Keywords: knowledge production function, patents, high tech R&D, spatial

econometrics
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1. Introduction

Technology – in form of a new product or process – invariably combines codified

information drawn from previous experience and formal scientific activity with

uncodified knowledge that is industry-specific or even firm-specific, and shows some

degree of tacitness. Following Polanyi (1967), tacitness refers to those elements of

knowledge that persons have which are ill-defined, uncodified and which they

themselves can not fully articulate and which differ from person to person, but which

may to some degree be shared by collaborators who have a common experience. In

most cases a piece of knowledge can be located between these two extremes.

Knowledge is not created codified and is always at least partly tacit in the minds of

those who create it. Codification is required because knowledge creation is a collective

process that requires complex mechanisms of communication and transfer (Saviotti

1988). As tacit components – such as common practice based on modes of

interpretations, perceptions and value systems – in the firm’s knowledge base

increase, knowledge accumulation becomes more experienced based. Such forms of

knowledge can only be shared, communicated or transferred through network types of

relationships (Fischer 2001). This kind  of knowledge has to be carefully distinguished

from information in the usual sense. It will often require more complex mechanisms of

communication and transfer. It can more easily be appropriated privately and requires

special learning processes.

Spillovers stem  from specific features of knowledge. In particular,  knowledge is a non-

rivalrous and partially excludable good. Non-rivalry implies that a new piece of

knowledge can be utilized many times and in many different circumstances, for

example by combining with knowledge coming from another domain. Lack of
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excludability, on the other hand, implies that it is difficult for firms that have devoted

resources to R&D fully to appropriate the benefits and prevent others from using the

knowledge without compensation or with compensation less than the value of the

knowledge (Teece 1986). While knowledge is subject to spillovers, however, it is only

imperfectly excludable. With  the use of patents or other devices such as secrecy

knowledge producing firms capture at least part of the social benefits associated with

the production of knowledge, and this is an incentive for their R&D investment (OECD

1992). The interest of users of knowledge (i.e. firms other than the knowledge

producing firm) is thus best served if – once produced – knowledge is widely available

and diffused at the lowest possible cost. This implies low appropriability for knowledge

producers or – put another way – an environment rich in knowledge spillovers.

The term spillover is used in economics to capture the idea that some of the economic

benefits of R&D activities accrue to economic agents other than the party that

undertakes the research. Competing firms that initiate a successful innovation, and

firms whose own research benefits from observation of the successes and failures of

others’ research efforts all garner such spillover benefits. These examples suggest that

such spillovers are created by a combination of the new knowledge resulting from a

R&D effort, and the commercialisation of the new technology in terms of a new product

or process that is successfully implemented in the market place (Jaffe 1996). Research

spillovers have been defined by Cohen and Levinthal (1989) to include any original

valuable knowledge generated in the research process that becomes publicly

accessible whether it be knowledge fully characterising an innovation or knowledge of

a more intermediate nature. They have been also termed disembodied or knowledge

spillovers to emphasize that they do not necessarily relate to knowledge embodied in

machinery or equipment. Knowledge spillovers are an example of a positive externality.

The concept of positive externalities is very closely related to the concept of public
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goods. In the limit the benefits of an activity may be so diffuse that no firm would

undertake the activity on their own, such as national defense. R&D fall in an

intermediate range in which the activity creates sufficient benefit  to the party

undertaking it that market forces generate some, but not enough of the activity.

Fundamental research of the quality and on the scale that can lead to major scientific

advances takes place in relatively few firms. It calls for high thresholds of R&D

investment and a corporate research environment conducive to developing and

discussing ideas with other researchers. Knowledge developed within firms also raises

proprietary issues. For such reasons, the advance towards reliable and public scientific

knowledge primarily takes place within the institutions (universities, learned societies

and academies) specially devised for the production of fundamental, general and public

knowledge.

The majority of technological process innovations and most product innovations,

especially in Pavitt’s (1984) science-based industries, such as chemicals,

biotechnology and electronics, do not occur without access to rather sophisticated

forms of scientific knowledge. In this context the role of universities is crucial.

Knowledge spillovers from university flow through a number of distinct channels. They

occur when graduates who have the requisite levels of scientific and technological

knowledge leave the university and take a job at a firm or start their own. They also

occur between academic researchers and industry sector researchers – even without

formal collaborative projects that bring the two together. In many technology-intensive

industries, such as the computer industry or biotechnology industry, the research

personnel of firms attend academic conferences, present academic papers and

regularly engage in academic discussion with researchers in universities. It is also true

that many industry sector researchers who do not attend academic conferences



5

nevertheless follow the academic literature and receive spillovers from reading

academic papers. It is moreover not uncommon for university professors to act as a

formal consultant to individual firms.

The empirical studies in the literature on the phenomenon of knowledge spillovers from

universities vary somehow in terms of research design, but they all find that investment

in R&D made by private corporations and universities spills over for economic

exploitation by third-party firms. The situation, however, is different in terms of the

significance of a local geographic spillover effect. Overall considered, the evidence is

either non-existent, weak or mixed, only pertaining to a few industrial sectors. Most of

the US-American studies – with a few exceptions notably Anselin, Varga and Acs

(1987) and Varga (1998) – use the idea suggested by Jaffe (1989) to utilize the product

of the logarithm of state-level university expenditures with the logarithm of a geographic

index. The latter is achieved as the uncentred correlation coefficient between university

research and professional employees in R&D laboratories for the SMSAs in the state.

The resulting index is rescaled so that its mean is zero. While the coincidence index

may make intuitive sense, it is unrelated to the existing body of research on measures

of spatial accessibility (see, for example, Frost and Spence 1995, Weibull 1976). In this

study we utilize a measure of knowledge accessibility to overcome the above

deficiency, a measure that is more tightly integrated with the existing body of spatial

interaction theory and may enable to improve the results on analysing the phenomenon

of geographically mediated knowledge spillovers from universities.

While the cost of transmitting information may be increasingly invariant to distance,

presumably the cost of transmitting – particularly tacit – knowledge rises with distance.

If knowledge spillovers are as important as much of the theoretical literature assumes

(see, for example, Romer 1990, Krugman 1991a, b) suggests, then knowledge
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spillovers should be observed in the national innovation systems, especially in high

technology industries where such spillovers are likely to play the most important role.

The purpose of this contribution is to shed some light on this issue in Austria. The study

is empirical in nature and has an explanatory dimension.

We consider two major sources of corporate knowledge production in the high

technology sectors – R&D performed by the high technology sectors and the pool of

university research for the high technology sectors – and model geographically

mediated research spillovers as a spatially discounted external stock of knowledge

within a knowledge production function framework as introduced by Griliches (1979). In

the following section of the paper, we introduce the conceptual framework for analysing

geographic knowledge spillovers, the formal model  underlying the knowledge

production function and the specification of the geographic scope of spillovers. We next

briefly describe the variables and the data set and  outline subsequently some

methodological issues in specifying and estimating the model, before presenting the

empirical results of our study. The paper concludes with a brief summary and

evaluation of our findings.

2. The Conceptual Framework

Our interest is focused on regional  corporate knowledge production in the high

technology sectors in Austria as an aggregate, and on university research spillovers.

Corporate knowledge is difficult to define and even more difficult to measure (see

Radding 1998). In this study we follow Jaffe (1989) and others to use patents as a

quantitative and rather direct indicator of invention to proxy the output  of the

knowledge production process. We are aware that the use of patent counts to identify
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the effect of spatially mediated spillovers is not without pitfalls. The use might be

particularly sensitive to what Scherer (1983) has termed the propensity to patent. There

is evidence that the propensity to patent does not appear to be invariant across

industries (see, for example, Fischer, Fröhlich and Gassler 1994). For example,

technology in the pharmaceuticals sector allows easy copying of newly developed

drugs, and thus patent protection is essential. In other sectors, such as for example

aerospace, the propensity to patent is typically smaller.

The existence of knowledge spillovers suggests that production of knowledge by a

particular firm or industry not only depends on its own research efforts, but also on

outside efforts or – more generally – on the knowledge pool available to it. Following

the standard literature in the field (see Griliches 1979, Jaffe 1989), we assume that

corporate knowledge production in the high technology sectors essentially depends on

two major sources of knowledge: industrial R&D performed in the high technology

sectors and academic basic research. Academic basic research, however, will not

necessarily result in useful knowledge for every industry. But scientific knowledge from

certain scientific fields or academic institutes is expected to be more important for high

technology industries. In particular, the transfer sciences1 tend to play a major role in

bridging the gap between the type of knowledge produced by basic science and the

type of knowledge needed by high tech firms in their knowledge producing activities. To

capture the relevant pool of knowledge, scientific fields were assigned to relevant high

technology sectors using the survey of industrial R&D managers by Levin et al. (1987).

Our conceptual framework for analysing geographic knowledge spillovers utilises the

two factor Cobb-Douglas knowledge production function as introduced by Griliches

(1979) and widely utilized in recent studies (see, for example, Audretsch and Feldmann

1994; Anselin, Varga and Acs 1997). The production function describes the relationship
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between various inputs and the output of the knowledge production process at the

micro- or macro-level.

K = α0 R
α1 Uα2 ε (1)

where K is measured in terms of patents as a proxy for new corporate knowledge

generated by high tech firms, R is industry R&D and U university research [relevant for

high technology industries] measured in terms of expenditures, with α0  a constant, and

α1 and α2 as associated parameters. ε is a vector of stochastic error terms. If we would

have had more and better data we could try a more complex description of the

production process, using more general functional forms such as the CES or the

translog, and using more parameters to be estimated.

Introducing a spatial dimension into the model, the knowledge production function

reads in log-linear form as follows

log Ki = α0 + α1 log Ri + α2 log Ui + εi (2)

where i = 1,..., N indexes the spatial unit of observation (political districts in Austria in

this study). University research spillovers are modelled as an external stock of

knowledge, represented by variable U. It is assumed that these spillovers do not reach

beyond the geographic boundaries of the spatial unit chosen. A positive and significant

coefficient for α2 indicates the presence of localised spatial spillovers from university

research on regional knowledge production. The higher the value of this coefficient, the
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more intensive the effect of university-to-firm knowledge flows on regional knowledge

production.

The above model appears to be unsatisfactory if the spatial range of interaction

between industry R&D and university research reaches beyond the spatial unit where

R&D is performed. To capture potential interregional knowledge spillovers that

originate from universities outside the R&D district we introduce a measure of

accessibility2, U
iA , to university knowledge for each industry R&D district i (i = 1,...,N)

with respect to all university districts j ≠ i (j =1,..., N1 < N) in the Austrian national

innovation system:

∑
≠

−=
ij

ß
jij

U
i dUA (3)

where Uj is defined as before, dji is a measure of impedance from j to i or, in other

words, the economic or technological distance from j to i as perceived by high

technology industry located in i to get in touch with knowledge producers at university

in j. In this study we use road distance as a crude proxy for d. ß > 0 is a parameter

reflecting distance deterrence. Evidently, Equation (3) is closely related to accessibility

indices derived from spatial interaction theory (see, for example, Weibull 1976). When

an industry district i and an university district j coincide, no distance decay is applied to

the U variable in order to avoid the familiar self-potential problem (see Frost and

Spence 1995).

In a similar manner, the accessibility measure AR
i  may be introduced as
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∑
≠

−=
ij

ß
jij

R
i dRA (4)

to capture potential interregional knowledge spillovers between R&D laboratories

located in districts i and j ≠ i. Ri is as before, dji  is a measure of impedance, and ß >0 is

a distance deterrence parameter. Then the knowledge production function model

becomes

log Ki = α0 + α1 log Ω i + α2 log Φ i + ε i (5)

with

R
iii AR logloglog +=Ω  (6)

and

U
iii AU logloglog +=Φ (7)

Model (5) – (7) may be termed Basic Model for Regional Corporate Knowledge

Production. University research spillovers are modelled as a spatially discounted

external  stock of knowledge [see Equation (7)]. Variable Φ  consists of two

components. The first captures knowledge spillovers that do not reach beyond the

geographic boundaries of the political district, and the second those that transcend the

geographic scale of the political district. The accessibility measure assumes that these

follow a clear distance decay pattern. A positive and significant coefficient for α2
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indicates the presence of localised geographic spillovers from university research on

regional knowledge production. The higher the value of this coefficient, the more

intense the effect of university-to-firm knowledge flows on regional knowledge

production. By contrast, the lack of significance of α2  would suggest that all knowledge

production is generated internally to the high tech sectors, with or without cooperation

between R&D laboratories [variable Ω in Equation (5)].

The lack of significance of α2 in Equation (2) would suggest that all knowledge

production is generated internally to the high tech sectors, that is exclusively through

the variable log Ri. This does not exclude the presence of additional knowledge

externalities of the Marshall-Arrow-Romer or the Isard-Jacobs type (see Glaser et al.

1992, Echeverri-Carroll and Brennan 1999, Karlsson and Manduchi 2001). Marshall-

Arrow-Romer externalities promote knowledge spillovers across firms and, thus,

stimulate knowledge production in that particular industry, while Isard-Jacobs

externalities foster knowledge generation due to the diversity of knowledge resources

located in the region. The exchange of complementary knowledge across diverse firms

and economic agents leads to increasing returns to new economic knowledge.

Skilled workers endowed with a high level of human capital are a mechanism through

which such knowledge externalities materialize. The concentration of skilled labour in

one place facilitates intra-industry flows of information and knowledge because

timeliness and face-to-face communication are important for generating new

knowledge. To capture such externalities we add variable Zi to Patent Equation (5) that

measures the concentration of high technology employment in region i as a proxy for

intra-industry information and knowledge exchange.
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This leads to the following model which may be termed Extended Model for Regional

Corporate Knowledge Production:

log Ki = α0 + α1 log Ω i + α2 log Φ  i + α3 Zi + ε i (8)

together with Equations (6)-(7). Zi denotes the share of high technology employment in

the national total; Ω i, Φ  i, α0, α1, α2, α3 and εi  are in the same notation as above.

3. Data and Variable Definitions

One major issue to be confronted in implementing a model consisting of Equations (5)–

(7) or (8) with (6)–(7) is identifying an appropriate unit of observation. The use of

provinces as the unit of observation is conceptually problematic. Thinking of

geographic spillovers as occuring similarly in Vienna and Carinthia, for example, strains

credulity. There is no way around to utilize a finer spatial scale such as the scale of

political districts, that is the finest spatial resolution at which the relevant data are

available or may be estimated at least. The location of universities in only seven out of

the 99 political districts, however, makes it difficult to estimate Equations (5)-(7) due to

the very low degree of freedom. To overcome this problem the variables log Ω i and log

Φ i in Equations (5) and (8), respectively, have to be replaced by variables such as





 += R

iii ARloglogΩ  (6')

and





 += U

iii AUloglogΦ (7')
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These variables represent those spatially discounted spillover pools that are associated

with industrial R&D and university research in region i, respectively. Evidently in this

way, the technical problem can be overcome but at the loss of a clear distinction

between intra- and interregional spillovers.

Account of corporate patent applications has been used to construct the dependent

variable in the geographic knowledge production functions [K in Equation (5) and

Equation (8)]. We obtained a tape from the Austrian Patent Office containing the

following information: the exact application date, name of the assignee(s), address of

the assignee(s) including the zip-code, name of the inventor(s), location of the

inventor(s), one or more International Patent Classification (IPC) codes, an assignment

code indicating whether the organisation is foreign or domestic and some information

on the technology field of the patent application. Corporate patents were taken to be all

patents that – based on their assignment code – were assigned by the applicant to

either a domestic or foreign corporation located in Austria. An extensive effort was

made to identify patent-applying subsidiaries. Several protocols were adopted to

ensure that patents were in fact linked to the correct company or subsidiary. Postal

code information made it possible to trace patent activity back to the region of

knowledge production. In the case of multiple assignees we followed the standard

procedure of proportionate assignment. Consequently, the dependent variable patent

activity is a non-discrete variable and OLS rather than negative binomial regression

seems to be an appropriate estimation approach.

At the sector of scale, the patent data were assigned to the two-digit International

Standard Industrial Classification (ISIC) system. The absence of detailed R&D

spending data at a more micro-level impedes to utilise the more appropriate three- and

four-digit levels. The total for each political district that is used in the study is based on
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the application year 1993 rather than 1991, following Edwards and Gordon (1984) to

assume a time lag between the time when a particular R&D project starts and the

moment it leads to an invention.

Our interest focuses on the high technology sectors as an aggregate. Clearly, it is not

unambiguous to determine the high technology sectors. A number of different

classifications have been suggested in the literature (for example, Premus 1982,

Malecki 1986, Glasmeier 1991), In general, the objective is to identify sectors

dominated by the importance of non-routine functions, in contrast to standardised mass

production. A number of criteria have been suggested in the literature, such as, for

example, the percentage of scientists and engineers employed, and the number of

innovations per employee. We considered patents in six ‘high technology’ sectors,

broadly defined as Computers & Office Machines (ISIC 30); Electronics & Electrical

Engineering (ISIC 31-32); Scientific Instruments (ISIC 33); Machinery & Transportation

Vehicles (ISIC 29, 34-35); Oil Refining, Rubber & Plastics (ISIC 23, 25), and Chemistry

& Pharmaceuticals (ISIC 24) in the International Standard Industrial Classification

(ISIC) system. These six categories contain most of the three- and four-digit-ISIC

sectors that are typically categorised as high technology sectors. But at the two-digit

ISIC-level it is virtually impossible to designate industries as pure high technology. To

the extent that the sectoral mix in these sectors shows systematic variation over space

in its ‘pure’ high tech content, our results on the relationship between patents and

research could be affected. But we are confident that we will be able to detect such

systematic variations by means of careful specification tests for spatial effects (see

Anselin 1988a).
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We used the MERIT concordance table between patent classes (International Patent

Classes, IPC) and industrial sectors (ISIC) to match the patent data with the two-digit

ISIC codes that form the high technology sectors (Verspagen, Moergastel and

Slabbers 1994). It assigns the technical knowledge in the patent classes to the

industrial sector best corresponding to the origin of this knowledge. Knowledge on a

machine for food processing, for example, will be assigned to machinery (ISIC 29) and

not to the food sector. Appendix A gives the assignment of IPC patent classes to the

high technology industry sectors.

The R&D expenditure figures for high technology firms [variable R in Equation (6')] are

based on the definition of the Frascati/Oslo manual. They stem from a R&D survey

carried out by the Austrian Chamber of Commerce in 1991. The questionnaire was

sent to 5,670 manufacturing firms in Austria. The response rate was 34.04 percent. In

the survey firms were questioned in a very conventional way about their R&D activities.

The sample can be seen to cover nearly all firms performing R&D activities in Austria.

The ZIP code has been used to trace R&D activities back to the origin of knowledge

production. The expenditure data are broken down by the Industrial Classification

System of the Chamber of Commerce. Unfortunately, this scheme can be converted to

the International Standard Classification System only at the fairly broad two-digit ISIC-

level.

Finally, we need data on the amount of university research relevant to the two-digit

high-tech ISIC industries. There are great differences in the scope and commercial

applicability of university research undertaken in different scientific fields. Academic

research will not necessarily result in useful knowledge for every high tech industry. But

scientific knowledge from certain scientific fields [especially the transfer sciences] is

expected to be important for specific industries. To capture the relevant pool of
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knowledge scientific fields/academic disciplines are assigned to relevant industrial

fields of the two-digit high tech ISIC industries using the survey of industrial R&D

managers by Levin et al. (1987). For example, product innovation activities in drugs

(ISIC 24) is linked to research in medicine, biology, chemistry and chemical

engineering.

University research expenditure data disaggregated by scientific fields/ academic

disciplines are not available in Austria, but they may be estimated roughly on the basis

of two types of data provided by the Austrian Federal Ministry for Science and

Research: first, national totals of university research expenditures 1991 disaggregated

by broad scientific areas [natural sciences, technical sciences, social sciences,

humanities, medicine, agricultural sciences], and, second, data on the number of

professional researchers employed in 1991 [that is, university professors, university

assistants and contract research assistants] disaggregated by scientific areas and

political districts. University research expenditure disaggregated by scientific

field/academic discipline and political district has estimated by the following procedure

RANRDP = PAN
 PDP (9)

where RDP stands for university research expenditure in a specific discipline/scientific

field D and in political district P, RAN for national research expenditure in a particular

scientific area A, PAN  for the national total of professional researchers in scientific area

A, and PDP for the number of professional researchers working in university institutes

belonging to discipline D and located in political district P. The assignment of academic

disciplines/scientific fields to two-digit ISIC high technology industries is documented in

Appendix B.
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In the Extended Knowledge Production Function Model [see Equation (8) together with

Equations (6') – (7')] the variable Z was added to account for intra-industry information

and knowledge exchange in the high technology sectors. Z is operationalised as share

of high technology employment 1991 in the national total. The Austrian Central

Statistical Office was the source for this exogenous variable.

We use the Cobb-Douglas specification for the knowledge production function. The

implied log-linear form [see Equations (5), (6')–(7') and Equations (6'), (7') and (8)]

creates a particular sample selection problem in so far that only observations for which

all the variables (dependent and independent) are non-zero can be utilised. Thus, our

final data set only included those political districts for which there were patents and

R&D expenditures available. The estimation was carried out on 72 out of 99

observational units for which data are complete. These samples districts represent 100

percent of the university research expenditures (1991); 93.3 percent of the industry

R&D activities (1991) and 99.96 percent of the patent applications (1993) in the high

tech sectors. The data and specifications used are listed in Appendix C.

4. Estimation Issues

When models such as (5) and (8) along with (6')–(7') are estimated for cross-sectoral

data on neighbouring spatial units, the lack of independence across these spatial units

may lead to spatial dependence [spatial autocorrelation] in the regression equations

and, thus, cause serious problems in specifying and estimating the models. In the

existing literature these effects are typically ignored with a few exceptions, most

notably Anselin, Varga and Acs (1997, 2000). We assess these effects by means of a
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Langrange Multiplier [LM] test using six different spatial weights matrices W that reflect

different a priori notions on the spatial structure of dependence:

• the simple contiguity weights matrix [CONT],

• the inverse distance weights matrix [IDIS1],

• the square inverse distance weights matrix [IDIS2], and

• distance based matrices for 50 km [D50], 75 km [D75] and 100 km [D100] between

the administrative centres of the political districts.

This test is used here to assess the extent to which remaining unspecified spatial

knowledge spillovers may be present in the basic knowledge production function model

and in its extended version. Spatial dependence can be incorporated in two distinct

ways into the model: as an additional regressor in the form of a spatially lagged

dependent variable W K, or in the error structure. The former is referred to as a Spatial

Lag Model and the latter to as a Spatial Error Model. The Spatial Lag Model for

Regional Knowledge Production can be expressed in matrix notation as

K = ρ W K + X α + ξ (10)

where K is a (72,1)-vector of observations on the patent variable, W K is the

corresponding lag for the (72,72)-weights matrix W, X is a (72,M)-matrix of

observations on the explanatory variables, including a constant term [extended model:

M = 4], with matching regression coefficients in the vector α. ξ is a 72 by 1 vector of

normally distributed random error terms, with mean 0 and constant homoskedastic

variance σ2. ρ is the spatial autoregressive parameter. W K is correlated with the

disturbances, even when the latter are i.i.d. Consequently, the spatial lag term has to
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be treated as an endogenous variable and proper estimation procedures have to

account for this endogeneity. Ordinary least squares will be biased and inconsistent

due to the simultaneity bias.

The second way to incorporate spatial autocorrelation into the regression model for

knowledge production is to specify a spatial process for the disturbance terms. The

resulting error covariance will be non-spherical, thus ordinary least squares [OLS] while

unbiased will be inefficient. Different spatial processes lead to different error

covariances with varying implications about the range and extent of spatial interaction

in the model (Anselin and Bera 1998). The most common specification is a spatial

autoregressive process in the error terms that results into the following spatial error

model for regional knowledge production

K = X α + ξ (11)

with

ξ = λ W ξ + η (12)

that is a linear regression with error vector ξ, where λ is the spatial autoregressive

coefficient for the error lag W ξ. X is a 72 by M matrix of observations on the

explanatory variables, α  a M by 1 vector of regression  coefficients. The errors ξ are

assumed to follow a spatial autoregressive process with autoregressive coefficients,

and a white noise error η.
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The similarity between the Spatial Error Model (11) – (12) and the Spatial Lag Model

(10) for knowledge production complicates specification testing in practice, since tests

designed for a spatial lag specification will also have power against a spatial error

specification, and vice versa. But as evidenced in a large number of Monte Carlo

simulation experiments in Anselin and Rey (1991), the joint use of the Lagrange

Multiplier tests for spatial lag and spatial error dependence suggested by Anselin

(1988a, b) provides the best guidance for model specification. When both tests have

high values indicating significant spatial dependence in the data, the one with the

highest value [lowest probability] will indicate the correct specification. It is worthwhile

to note that the conventional R2 model performance measure is not applicable to the

spatial lag and the spatial error models. Instead, an adjusted R2 measure defined as the

ratio of the variance of the predicted values over the variance of the observed values

for the dependent variable can be used.

5. Empirical Results

Table 1 presents the results of the estimation of the cross-sectional regression of the

geographic knowledge production function for 72 political districts in Austria and the

distance friction parameter3 β=2. All variables are in logarithms. In addition to the Basic

Model [see Equations (5), (6')–(7')], reported in the first column of the table, we also

estimated the Extended Model [see Equation (8) with Equations (6')–(7')] that includes

a location quotient for high technology employment as a proxy for intra-industry

information and knowledge exchange to capture additional knowledge externalities of

the Marshall-Arrow-Romer or the Isard-Jacobs type [reported in column 2], and the

Spatial Error Model that incorporates spatial dependence into the error structure of the
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knowledge production function [reported in column 3]. All estimation and specification

tests were carried out with SpaceStat Software (Anselin 1995).

Locate Table 1 about here

An influence of Ω  on patent activities at the district level indicates knowledge

production internally to the high tech sectors including geographically mediated

spillovers between R&D laboratories. We interpret an influence of Φ  on patent activities

at the district level as evidence of the existence of geographically mediated academic

spillovers. All regressions yield highly significant and positive coefficients for both

university research and industry R&D [at p < 0.01], confirming the results obtained in

the US American studies mentioned above. The university research elasticities range

in magnitude from 0.128 for the Basic Model to 0.130 for the Spatial Error Model. The

university research effect is much smaller than the industry R&D effect. Knowledge

externalities of the Marshall-Arrow-Romer or the Isard-Jacobs type are twice as

important as industry R&D effects.

For all models, diagnostic tests were carried out for hetereoskedasticity, using the

White (1980) test. In addition, specification tests for spatial dependence and spatial

error were performed, utilising the Lagrange Multiplier test. The tests for spatial

autocorrelation were computed for six different spatial weights matrices [CONT, IDIS1,

IDIS2, D50, D75 and D100]. Only the results for the most significant diagnostic are

reported in Table 1. No evidence of hetereoskedasticity was found, but the Lagrange
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Multiplier test for Spatial Error Dependence shows a strong indication of

misspecification.

The starting point of modelling was the basic model for knowledge production. It

confirms the strong significance of university research and industry R&D spillovers as

well as of additional externalities on the level of patent activity in the high tech sectors

in a political district. There is a clear dominance of the coefficient of industry R&D over

university research, indicating an elasticity that is about three times higher. There is no

evidence of hetereoskedasticity, but the Lagrange Multiplier test for spatial error

dependence strongly indicates misspecification of the model.

When the location quotient for high technology employment is added [see columns 2

and 3], the model fit increases from R2 = 0.60 to R2 = 0.70, with a positive and

significant effect for the knowledge externalities of the Marshall-Arrow-Romer and

Isard-Jacobs type. Industry R&D and geographically mediated university research

spillovers remain positive and significant. But the addition of the variable causes the

elasticity of both to drop more or less substantially: industry R&D elasticity from 0.402

to 0.211 and university research elasticity from 0.128 to 0.100. There is no evidence of

hetereoskedasticity, but the Lagrange Multiplier test for spatial error dependence

strongly indicates misspecification4.

The correct interpretation should, thus, be based on the spatial error model that

removes any misspecification in the form of spatial autocorrelation. The other results.

are only reported for completeness sake. The significant parameter of the error term

[λ], the significant value of the Likelihood Ratio test in spatial error dependence as well

as the missing indication for spatial lag dependence and heteroskedasticity (Breusch-

Pagan test, see Breusch and Pagan 1979) are taken as evidence for the correctness of
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the model. There is little change between the interpretation of the model with and

without spatial autocorrelation which is to be expected. The main effect of the spatial

error autocorrelation is on the precision of the estimates, but in this case it is not

sufficient to alter any indication of significance.

In sum, the maximum likelihood [ML]-estimates in column 3 of Table 1 can be reliably

interpreted to indicate the influence of university research on patent activity in a political

district, not only of university research in the district itself, but also in the surrounding

districts. The geographic boundedness of university research spillovers is directly

linked to a distance decay effect.

6. Conclusions

The research question of whether knowledge spillovers are bounded by geographical

proximity or not has received increasing attention in recent years (see, for example,

Jaffe 1989, Anselin, Varga and Acs 1997, 2000, Echeverri-Carrol and Brennan 1999,

Karlsson and Manduchi 2001). There is general agreement that knowledge spills over,

but substantial disagreement as whether such knowledge spillovers are geographically

bounded or not (see Karlsson and Manduchi 2001). Indeed, the relationship between

knowledge spillovers and space is extremely complex and only partially understood.

This is partly due to the fact that knowledge spillovers are invisible and can be

analysed only indirectly5.

The key assumption we made in analysing the link between knowledge spillovers and

corporate patent activity is that knowledge externalities are more prevalent in high

technology industries where new technological and scientific knowledge plays a crucial
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role. Knowledge spillovers are captured by means of spatially discounted spillover

pools and, moreover, by a proxy for intra-industry information and knowledge

exchange.. Our empirical results clearly indicate the presence of geographically

mediated knowledge spillovers from university that transcend the geographic scale of

the political district in accordance with our conceptual framework. The results also

demonstrate that such spillovers follow a clear distance decay pattern. But these

externalities appear to be relatively small in comparison to the knowledge externalities

of the Marshall-Arrow-Romer and Isard-Jacobs type. It is also important to emphasise

that the statistical relationship is only suggestive. More detailed examination of

university data will  be required to determine if the university research spillover effects

materialise in reality.

The findings are important in that they highlight the relevance of modelling knowledge

spillovers in form of a spatially discounted external stock of knowledge. They also

demonstrate the importance of carefully specifying spatial effects by employing spatial

econometric tools. But, some cautionary remarks are in order as well. First, our

analysis is limited by the use of a single cross-section. Unfortunately, there is no

update of the 1991 industry R&D expenditure data for later points in time available,

precluding an extension of the cross-sectional framework to incorporate the time

dimension as well. Second, we have chosen to focus on those districts where patent

activity and R&D research in the high tech sectors were observed. This leaves aside

the issue of why certain locations have R&D and patent activity and others do not,

especially when one of the two is present, but the other not. Third, we were forced to

define the high tech sectors on the basis of two-digit ISIC industries. Many products

manufactured by our high tech industries are medium- or even low-tech. This

aggregation level, thus, masks considerable underlying heterogeneity and may be too

crude to capture university research effects. Finally, it is worthwhile noting that the
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results will be partially affected by the chosen spatial scale of analysis. Political districts

qualify as more appropriate spatial units of observation than provinces, but at the price

that intra- and interregional university spillovers can not be separated anymore within

our conceptual framework. No doubt, there is a need for studies that compare and

carefully contrast results at different levels of spatial aggregation in an attempt to detect

and measure the importance of knowledge spillovers.

7. Endnotes

1 The notion of transfer sciences involves a distinction between two classes of sciences: pure sciences and transfer

sciences. Characteristics of pure sciences include the exploration of the boundaries of knowledge without concern for

the practical implication of the findings. Transfer sciences share with the pure sciences a concern for predictive

science, but otherwise they have rather different characteristics. Their activity is driven principally by the urge to solve

problems. A large part of their findings comes from industry and their graduates are usually employed by industry

(OECD 1992). The communities of scientists active in research are very close to the professions most concerned by

application of their results. But it would be wrong to see them simply as applied science just downstream of

fundamental science. Their bridging function does not imply that they are not fields or disciplines with their own

organising principles. Transfer sciences may straddle the normal borders separating science and technology. Their

boundaries are not always clear-cut. They are often multidisciplinary (for example, material science). Their analytical

development largely reflects social and economic needs and their functions include those of any scientific discipline,

namely creation, transmission and organisation of certain types of knowledge together with the aim of undertaking or

improving technical projects (OECD 1992).

2 See Karlsson and Manduchi (2001) for a more comprehensive discussion of the issue of inter- and intraregional

knowledge accessibility.

3 The distance friction parameter has been optimized for the Basic Model. The result achieved is in accordance with

Sivitanidou and Sivitanides (1995). Note that the modelling results obtained are relatively insensitive to the choice of

β∈ [1, ...,4].

4 Exogeneity of R and U were also checked by applying the Durbin-Wu-Hausman test. The null hypothesis of

exogeneity was not rejected (p=0.22) suggesting that the single equation estimation methods utilized are correct.
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5 While Krugman (1991a, p.53) notes that knowledge spillovers leave no paper trail by which they may be measured

and tracked, Jaffe, Trajtenberg and Henderson (1993, p.578) emphasize that knowledge flows do sometimes leave a

paper trail, especially in the form of patented inventions.
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APPENDIX A Assignment of Patent Classes to the High Technology
Sectors at the 2-Digit ISIC-Level

ISIC
Category Industry Sector IPC Patent Classes

30 Computers & Office
Machinery

B41J, B41L [50%], G06C, G06E, G06F, G06G, G06J, G06K,
G06M, G11B, G11C

31-32 Electronics & Electrical
Engineering

A45D [40%], A47J [80%], A47L [40%], A61H [30%], B03C,
B23Q [10%], B60Q, B64F [20%], F02P, F21H, F21K, F21L;
F21M, F21P, F21Q, F21S, F21V, F27B [10%], G08B, G08G,
H01B, H01F, H01G, H01H, H01J, H01K, H01M, H01R, H01S,
H01T, H02B, H02G, H02H, H02J, H02K, H02M, H02N, H02P,
H03M, H05B, H05C, H05F, H05H, G08C, G09B [50%],
H01C, H01L, H01P, H01Q, H03B, H03C, H03D, H03F, H03G,
H03H, H03J, H03K, H03L, H04A, H04B, H04G, H04H, H04J,
H04K, H04L, H04M, H04N, H04Q, H04R, H04S, H05K

33 Scientific Instruments A61B, A61C, A61D, A61F, A61G [90%], A61H [40%], A61L
[60%], A61M, A61N, A62B [50%], B01L, B64F [10%], C12K
[25%], C12Q, F16P [60%], F22B [20%], F22D [20%], F22G
[20%], F22X [20%], F23N, F23Q [10%], F24F [20%], F41G,
G01B, G01D, G01F [60%], G01H, G01J, G01K, G01L, G01M,
G01N, G01P, G01R, G01S, G01T, G01V, G01W, G02B,
G02C, G02F, G03B, G03C, G03D, G03G, G03H, G04B,
G04C, G04F, G04G, G05B, G05C, G05D, G05F, G05G,
G06D, G07B, G07C, G07D, G07F, G07G, G09G, G12B,
G21F, G21G, G21H, G21K, H05G

29,34-35 Machinery &
Transportation Vehicles

A01B, A01C, A01D, A01F, A01G [10%], A01J [80%], A01K
[30%], A21B, A21C, A21D [30%], A22B [50%], A22C [70%],
A23C[10%], A23G [10%], A23N, A23P, A24C, A24D [50%],
A43D, A61H [30%], A62B [30%], B01B, B01D, B01F, B01J,
B02B [50%], B02C, B03B, B03D, B04B, B04C, B05B [50%],
B05C [95%], B05D, B05X [50%], B06B, B07B, B07C, B08B,
B09B [25%], B22C [10%], B23Q [70%], B25J, B27J, B28B
[60%], B28C [60%], B28D [70%], B29B [80%], B29C [80%],
B29D [50%], B29F [80%], B29G [50%], B29H [50%], B29J
[40%], B30B, B31B, B31C [90%], B31D [80%], B31F [80%],
B41B, B41D, B41F, B41G, B42C [50%], B60C [20%], B65 B,
B65C, B65G [40%], B65H, B66B, B66C, B66D, B66F, B66G,
B67B [50%],B67C, B67D, C02F [30%], C10F, C12H, C12L,
C12M, C13C, C13G, C13H, C14B [50%], C14C [50%],D01B
[50%], D01C [50%], D01D [50%], D01F [50%], D01G [50%],
D01H [50%], D02D, D02G [50%], D02H [50%], D02J [50%],
D03D [50%],D03J, D04B [50%], D04C [50%], D04D [50%],
D04G [50%], D04H [50%], D06C, D06F [70%], D06G, D06H
[70%], D21F, D21G, E01B [50%], E01C [50%], E01H [80%],
E02D [30%], E03B [30%], E04D [25%], E21B [45%], E21C,
E21D [50%], F01B, F01C, F01D, F01K, F01L, F01M, F01N,
F01P, F02B, F02C, F02D, F02F, F02G, F02K, F03B, F03C,
F03D, F03G, F03H, F04B, F04C, F04D, F04F, F15B, F15C,
F15D, F16C, F16J [80%], F16K, F16N, F16T, F23B, F23C,
F23D, F23G, F23H, H23J, F23K, F23L, F23M, F23Q [60%],
F23R, F24F [80%], F24J [30%], F25B, F25C, F25D, F25J,
F26B, F27B [90%], F27D, F28B, F28C, F28D, F28G, F41A,
F41B, F41C, F41D, F41F, F41H [50%], F42B, F42C, F42D
[50%], G01F [40%], G01G, G21J
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23,25 Oil Refining, Rubber &
Plastics

A47G [50%], A47K [40%], A61J [40%], A62B [20%], B29H
[50%], B60C [80%], C10B, C10C, C10G, C10L, C10M, D06N
[50%], F42D [50%]

24 Chemistry &
Pharmaceuticals

A01M [20%], A01N, A61J [30%], A61K [95%], A61L [40%],
A62D, B09B [75%], B27K [70%], B29B [20%], B29C [20%],
B29D [50%], B29F [20%], B29G [50%], B29K, B29L, B41M
[15%], B44D [50%], C01B, C01C, C01D, C01F, C01G, C02F
[50%], C05B, C05C, C05D, C05F, C05G, C06B, C06C, C06D,
C06F, C07B [95%], C07C [95%], C07D [95%], C07F [95%],
C07G [95%], C07H [90%], C07J, C07K, C08B, C08C, C08F,
C08G, C08H, C08J, C08K, C08L, C09B, C09C, C09D, C09F,
C09G, C09H, C09J, C09K, C10H, C10J, C10K, C10N, C11B
[50%], C11C [50%], C11D, C12D [90%], C12K [75%], C12N
[80%], C12P [50%], C12R [10%], C12S, C14C [50%], E04D
[25%], F41H [50%]

Note:       The assignment is based on the MERIT concordance table (Verspagen, Moergastel and Slabbers 1994)
between the International Patent Classification (IPC) and the International Standard Industrial Classification of
all economic activities (ISIC-rev.2) of the United Nations. The percentages in brackets in the last column of
the table give the share of the patents in the IPC-class assigned to the accessory ISIC-category if not all
patents in the IPC-class are assigned to the corresponding ISIC-category. A percentage of 80%, for example,
therefore means that all patents in the IPC-class are assigned to the corresponding ISIC-category

ctd.
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APPENDIX B   Linking Scientific Fields/Academic Disciplines  to the
2-Digit High Technology Sectors

ISIC
Category

Industry Sector Associated Scientific Fields/Academic Disciplines

30 Computers & Office
Machinery

Fields connected with Information Technologies: Micro-
Electronics, Automation and Robotics, Computer Sciences,
etc.

31-32 Electronics & Electrical
Engineering

Electrical Engineering, Micro-Electronics, Technical
Mathematics, Automation and Robotics, Computer Sciences,
etc.

33 Scientific Instruments Engineering Fields such as Mechanical Engineering, Electrical
Engineering, Micro-Electronics, Automation and Robotics,
Technical Mathematics, Computer Sciences, Physics-Related
Fields, Medicine-Related Fields, Biology-Related Fields,
Materials Sciences, etc.

29,34-35 Machinery &
Transportation Vehicles

Engineering Fields including Mechanical Engineering and
Electrical Engineering, Heat Science, Thermodynamics,
Material Sciences, Computer Sciences, Technical
Mathematics, Astronomy, Transport Science

23,25 Oil Refining, Rubber &
Plastics

Chemistry-Related Fields including Materials Sciences,
Chemical Engineering and Care Chemistry except for certain
sectors such as Quantum Chemistry, Biochemistry and
Geochemistry

24 Chemistry &
Pharmaceuticals

Chemistry-, Pharmaceuticals- and Medicine-Related Fields
including Microbiology, Pharmaceutical Chemistry,
Biochemistry, etc.

Source: On the basis of the survey of industrial R&D managers by Levin et al. (1987); only the most important
academic disciplines [scientific fields] are listed
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APPENDIX C Patent Applications (1993), Industry R&D (1991) and
University Research (1991) for 72 Austrian Political
Districts

Political District Patent Applications
[Variable K]

Industry R&D
[Variable R]

University Research
and Out-of-District
Access to University

Research
[Variable Φ  ]

Eisenstadt-Umgebung 3.00 35.45 1.24
Neusiedl am See 3.00 7.29 1.38
Oberpullendorf 1.00 3.80 0.52
Klagenfurt (Stadt) 19.50 3.29 36.14
Villach(Stadt) 8.00 16.16 0.13
Hermagor 1.00 0.34 0.09
Sankt Veit an der Glan 1.00 3.16 0.26
Spittal an der Drau 4.00 0.41 0.10
Villach Land 6.50 35.01 0.14
Wolfsberg 2.00 6.24 0.35
Feldkirchen 2.00 0.35 0.20
Krems (Stadt) 2.50 17.74 0.71
Sankt Pölten (Stadt) 7.50 21.34 1.01
Waidhofen (Stadt) 3.00 6.60 0.31
Wiener Neustadt (Stadt) 5.00 14.24 1.65
Amstetten 16.00 87.49 0.37
Baden 27.50 360.98 4.80
Gänserndorf 3.00 14.33 3.19
Korneuburg 12.50 46.70 9.82
Mödling 22.40 213.57 12.97
Neunkirchen 10.00 61.54 1.01
Sankt Pölten (Land) 3.50 4.61 1.45
Scheibbs 1.00 4.98 0.42
Tulln 2.80 34.12 3.29
Waidhofen an der Thaya 1.00 1.20 0.28
Wiener Neustadt (Land) 6.60 11.75 1.55
Vienna-Umgebung 14.60 323.08 25.35
Linz (Stadt) 62.30 1144.26 218.16
Steyr (Stadt) 28.60 1123.43 0.36
Wels (Stadt) 12.50 30.87 0.44
Braunau am Inn 8.50 14.73 0.13
Gmunden 19.10 103.77 0.20
Grieskirchen 10.00 49.42 0.24
Kirchdorf an der Krems 12.30 7.21 0.25
Linz-Land 10.70 111.67 2.74
Perg 13.00 26.41 0.44
Ried im Innkreis 5.30 11.96 0.17
Rohrbach 3.00 3.11 0.22
Schärding 5.00 10.34 0.14
Steyr-Land 8.00 10.43 0.28
Vöcklabruck 43.80 318.82 0.20
Wels-Land 5.00 77.04 0.28
Salzburg (Stadt) 34.30 36.70 117.1
Hallein 8.10 107.28 0.53
Salzburg-Umgebung 23.80         20.92          0.70
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Zell am See 5.00 4.57 0.12
Graz (Stadt) 84.30 399.49 1195.15
Bruck an der Mur 4.30 9.17 1.09
Deutschlandsberg 5.50 93.80 0.97
Feldbach 1.00 2.08 0.81
Fürstenfeld 2.00 12.38 0.61
Graz-Umgebung 8.50 347.15 8.75
Hartberg 1.00 5.53 0.65
Judenburg 12.00 42.26 0.38
Knittelfeld 3.00 20.34 0.48
Leibnitz 4.00 2.23 1.09
Leoben 3.00 5.93 98.51
Liezen 4.00 25.22 0.22
Mürzzuschlag 1.00 9.84 0.55
Voitsberg 10.00 7.88 1.57
Weiz 4.00 123.45 1.68
Innsbruck-Stadt 9.00 5.54 852.03
Innsbruck-Land 29.40 39.07 8.38
Kitzbühel 7.00 15.91 0.18
Kufstein 9.00 329.98 0.25
Lienz 3.00 8.73 0.08
Schwaz 15.00 80.21 2.58
Bludenz 1.00 17.86 0.06
Bregenz 12.00 66.74 0.04
Dornbirn 11.00 146.49 0.04
Feldkirch 14.00 90.23 0.05
Vienna 383.70 6999.29 3345.06

Notes: Industry R&D and University Research were measured in terms of expenditures, all figures are in millions of
1991 ATS; Patent and industry R&D data refer to high technology industries; University research data include
those academic institutes that are expected to be important for the high technology industries; Universities are
located in seven political districts: Vienna hosting six universities, Graz (Stadt), Innsbruck (Stadt), Salzburg
(Stadt), Linz (Stadt), Klagenfurt (Stadt) and Leoben; all the other political districts have only out-of-district
access to university research.

Sources: Patent data were compiled from the Austrian Patent Office database; Industry R&D data were compiled from
the 1991 Industry R&D Survey of the Austrian Chamber of Commerce; University research date were
estimated on the basis of information provided by the Austrian Federal Ministry for Science and Research

ctd.
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Table 1 Regression results for log (Patent Applications) at the level of Austrian political
districts (N = 72, 1993)

Model Basic
Model
(OLS)

Extended Model
(OLS)

Spatial Error
Model
(ML)

Constant

Log Ω

Log Φ
[University Research Spillover]

Log Z

Spatial Autoregressive
Coefficient λ

   0.608***
(0.182)

   0.402***
(0.504)

   0.128***
(0.040)

   3.741***
(0.783)

   0.211***
(0.065)

   0.100***
(0.037)

   0.512***
(0.125)

   3.315***
(0.764)

   0.213***
(0.064)

   0.130***
(0.037)

   0.438***
(0.121)

 0.366*
(0.190)

Adjusted R2 0.598 0.672 0.699

Multicollinearity Condition
Number

White Test for Heteroscedasticity

Breusch-Pagan Test for
Heteroscedasticity

Likelihood Ratio Test for Spatial
Error Dependence

Lagrange Multiplier Test for
Spatial Error Dependence

Lagrange Multiplier Test for
Spatial Lag Dependence

3.978

3.210

10.092
(D100)

0.551
(D50)

21.341

8.839

3.444
(D100)

0.889
(D75)

21.341

2.277

2.863
(D100)

0.382
(IDIS2)

Notes:  Estimated standard errors in parentheses; critical values for the White statistic respectively 5 and 9 degrees of
freedom are 11.07 and 16.92 (p = 0.05); critical value for the Breusch-Pagan statistic with 3 degrees of freedom
is 7.82 (p = 0.05); critical values for Lagrange Multiplier Lag and Lagrange Multiplier Error statistics are 3.84 (p =
0.05) and 2.71 (p = 0.10); critical value for Likelihood Ratio-Error statistic with one degree of freedom is 3.84
(p=0.05); spatial weights matrices are row-standardized: D100 is a distance-based contiguity for 100 kilometers;
D75 a distance-based contiguity for 75 kilometers; D50 a distance-based contiguity for 50 kilometers; IDIS2
inverse distance squared; only the highest values for a spatial diagnostics are reported; * denotes significance
at the 10 percent level, ** significance at the 5 percent level and *** significance at the one percent level

                                               
2 See Karlsson and Manduchi (2001) for a more comprehensive discussion on the issue of intern- and intraregional

knowledge accessibility
3 The distance friction parameter has been optimized for the Basic Model. The result achieved is in accordance with

Sivitanidou and Sivitanides (1995). Note that the modelling results obtained are insensitive to the choice of β∈ [1, ...,4].
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5 While Krugman (1991a, p.53) notes that knowledge spillovers leave no paper trail by which they may be measured

and tracked, Jaffe, Trajtenberg and Henderson (1993, p.578) emphasize that knowledge flows do sometimes leave a
paper trail, especially in the form of patented inventions.


