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Abstract 

In 1997, the third Conference of the Parties (COP3) to the United Nations Framework Convention on 

Climate Change was held. Commitments were set for reducing greenhouse gas emissions in developed 

countries.  Several models have been developed in order to analyze CO2 abatement policies.  These 

models should be categorized as global models considering the wide scale of global warming.  Some of 

those models, however, analyze the policies on a one-country basis and models of global content divide 

the world into certain regions.  It is not appropriate to implement the same policies to a region.  A multi-

country model is preferable to such models.  Thus, we have constructed a macroeconometric model 

linked with an energy model to assess CO2 abatement policies applying genetic algorithms to quantify the 

optimal policy in favor of the Kyoto Protocol.   

 

 

 

 

 
* This paper is prepared for the 41st European Congress of the European Regional Science Association, 

August 29th - September 1st, 2001, Zagreb, Croatia. 
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1.  Introduction 

Global warming is one of the important world policy issues.  In 1997, the Third Conference of the 

Parties (COP3) to the United Nations Framework Convention on Climate Change (UNFCCC) was held. 

Commitments were set for reducing greenhouse gases (GHGs) relative to the 1990 level in developed 

countries.  The Kyoto Protocol shows that developed countries as a whole must show a reduction of -5.2 

percent between the years 2008 and 2012.  As for major industrial countries, commitments are –8.0 

percent for the European Union (EU), -7.0 percent for the United States, -6.0 percent for Canada and 

Japan and +8.0 percent for Australia.  In the EU, the targets for Germany, the United Kingdom, Italy and 

France are at –21.0 percent, -12.5 percent, 0.0 percent and -6.5 percent of GHGs, respectively.  

In order to form and evaluate policies pertaining to the reduction of GHGs, several models have been 

developed.  In terms of their objectives, there are global models (e.g. Burniaux, Nicoletti and Oliveira-

Martins 1992; Duchin and Lange 1994; Duraiappah 1993; Edmonds and Reilly 1983; Lu and Kaya 

1988; Manne and Richels 1992; Manne, Mendelsohn and Richels 1995; Matsuoka, Kainuma and Morita 

1995; Nordhaus 1994, 2000) and domestic models (e.g. Jorgenson and Wilcoxen 1990, 1993a, 1993b; 

Proops, Faber and Wagenhals 1993).  It is true that these models show certain results on analyzing global 

warming, but it is also a fact that they hold a problem.  Global models are preferable to domestic models, 

as global warming is a world issue; however, global models treat the world as one country or divide the 

world into several regions.  It is not appropriate to implement the same policies to a region.  Hence, we 

need to analyze global warming in a multi-country context.  In this paper, we have constructed 

macroeconometric models linked with energy models that cover Japan, the United States, Canada, 

Germany, the United Kingdom, France, Italy and Australia.1  By using this model, we have assessed CO2 

abatement policies applying genetic algorithms to quantify the optimal policy in favor of the Kyoto 

Protocol.2 

This paper is organized as follows.  Section 2 discusses the theory of an optimal policy.  Section 3 

shows the methodology of genetic algorithms.  Section 4 presents the model structure.  Section 5 provides 

a preliminary estimation result of the US monetary policy. 

 

 

2.  Theory of Optimal Policy 

 

Social Welfare Function and Policy Reaction Function 

A social welfare function consists of a nation’s policy targets (e.g. economic growth, inflation rate, 
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government deficits and so forth).  This indicates the course of economic policies.  We usually formulate a 

social welfare function in a quadratic form as: 
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where iw = the weight assigned to iY , iY = the ith policy objective variable, *
iY = the desired value of the 

ith policy objective variables, jw = the weight assigned to iX , iX = the jth policy instrument and *
iX = 

the desired value of the jth policy instrument.  We obtain the optimal policy by minimizing equation (1) 

with respect to a policy instrument subject to an econometric model.   

Here we show the case of two policy objective variables and two policy instruments.  In this case we 

can write a social welfare function as follows: 
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Minimizing equation (2) by X1 subject to an econometric model yields 
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We suppose that conjectural variations between policy instruments are equal to zero, hence, the optimal 

policy on X1 can be obtained as: 
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Based on a similar methodology, Pissarides (1972) and Friedlaender (1973) analyzed the British and 

the U.S. macroeconomic policies, respectively. 
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3.  Theory and Application of Genetic Algorithms 

 

Theory of Genetic Algorithms 

Holland (1975) developed genetic algorithms which are based on biological evolutions.3   We can use 

them as one of the optimization techniques.  They are composed of the following five steps: initialization, 

evaluation, selection, crossover and mutation.  The computation of genetic algorithms is iterated from the 

second step to the fifth step until the fitness value reaches a certain criteria of the convergence.  Detailed 

explanations of the five steps are as follows: 

1. Step 1 (Initialization): To create the initial population of N chromosomes randomly. Each 

chromosome is a binary string of K bits.  We generate random number (r) between 0.0 and 1.0.  If r ��

0.5 or < 0.5, the bit becomes 1 or 0, respectively.  This process is repeated N ��K times. 

2. Step 2 (Evaluation): To evaluate the fitness for each chromosome by using a fitness value function.   

3. Step 3 (Selection): To select a new population by using a selection method.  In this paper, we use the 

roulette wheel selection method.  This method is based on the natural selection mechanism.  The sum 

of fitness values (F) can be written as: 
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N
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where fi = the fitness value of the ith chromosome.  The probability of selection for the ith chromosome 

(pi) can be obtained as: 
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Next, the cumulative probability for the ith chromosome (qi) can be written as: 
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We generate random numbers and if qi < r < qi+1 (i = 0, 1, �����N - 1, q0 = 0) satisfies, the (i + 1)th 
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chromosome is selected.  We repeat this process N times.  Hence, N chromosomes are selected as a 

new population. 

4. Step 4 (Crossover): To create offspring.  In order to create offspring, we select pairs of parent-

chromosomes randomly.  We set the probability of crossover (pc) and generate random numbers from 

the range between 0 and 1.  If ri < pc, the ith chromosome is selected as one of the parent-

chromosomes.  This procedure is repeated N times.  Once parent-chromosomes are selected, we 

create offspring.  We generate random integer numbers that are between 1 and K - 1.  These random 

integer numbers are crossover positions.  We replace bits after a crossover position between the parent-

chromosomes.  These new chromosomes (offspring) are added to, where parent-chromosomes are 

deleted from, the current population. 

5. Step 5 (Mutation): To create new chromosomes which do not exist in the current population.  We 

generate random numbers from the range between 0 and 1.  If r < pm (the probability of mutation), we 

change the bit from 0 to 1 or 1 to 0.  This procedure is applied to each bit. 

 

Application of Genetic Algorithms to Optimal Policy 

Genetic algorithms are one of the optimization methods.  Hence, we can apply them to empirical 

analyses on an optimal policy.   

In most cases, in order to estimate a policy reaction function, we minimize a quadratic loss function 

subject to a macroeconometric model.  Next, the policy reaction function is fed into the macroeconometric 

model.  We can simulate the economy under the optimal policy by using that system.4   

Instead of estimating a policy reaction function, we use it as a fitness value function in genetic 

algorithms.  Hence, genetic algorithms determine all parameters of a policy reaction function subject to a 

macroeconometric model.  We note that parameters of a policy reaction function explained by genetic 

algorithms are not fixed. 

 

 

4.  The Model Structure 

Our multi-country model consists of a macroeconomic block, a trade block and an energy block.  The 

macroeconomic block is constructed on the basis of the Klein’s (1983) skeleton model.  Eight countries’ 

macroeconomic blocks are linked to one other by the constant value share trade model.  The energy block 

explains the final energy demand and CO2 emissions using the real GNP that is determined in the 

macroeconomic block.  The final energy price is also linked to explain the general prices in the 
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macroeconomic block.  Here, we show the structure of the energy block.5 

Our energy block analyzes CO2 emissions of G7 members and Australia.  In this study, we estimated 

parameters by using panel data that combines eight countries' cross-sections and time series data between 

the years 1991 and 1996.  We treat energy as one of production inputs and estimate the parameters.  This 

model is a small econometric model that has twelve endogenous and five exogenous variables. 

Our model has three major sub-blocks: i) final energy demand and CO2 sub-block ii) prices sub-block 

iii) decomposition sub-block.  We divide energy into coal, natural gas, oil and non-fossil fuels.  The final 

energy demand and CO2 sub-block explains these four energy demands and the amount of CO2 

emissions.  In the prices sub-block, world coal and oil prices determine domestic coal, natural gas and oil 

prices.  Some indicators on CO2 emissions and the decomposition model are shown in the decomposition 

sub-block.   

 

Final Energy Demand and CO2 Sub-block 

CO2 emissions originate in the fossil fuel consumption and the use of fossil fuels is necessary in 

economic activities.  This means that economic growth is one of the fundamental causes of global 

warming.  Taking these factors into consideration, we derive at the final energy demand function from a 

two-level CES (Constant Elasticity of Substitution) production function whose inputs are capital stock, 

labor and energy.  This two-level CES production function can be written as:6  
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where Eft = final energy demand, At = the efficiency parameter, a1 and a2 = distribution parameters, and 

both b1 and b2 = substitution parameters.  By marginal-product conditions, we can derive at the following 

equation from the two-level CES production function:  
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where PKt = the user cost of capital and Pft = the final energy price.  This equation explains the final energy 

demand function.  As for transformation losses from the primary energy to the final energy, the primary 

energy is shown as a function of the final energy demand.  The primary energy supply function is: 

 

( )ftt EfE =1                  (11) 

 

where E1t = the primary energy supply.   

We can also define the primary energy supply as the summation of coal demand, natural gas demand, 

oil demand and non-fossil fuel demand.  This equation can be written as: 

 

NtOtGtCtt EEEEE +++=1              (12) 

 

where ECt = the coal demand, EGt = the natural gas demand, EOt = the oil demand and ENt = the non-fossil 

fuel demand.  These four energy shares determine their demands at the primary energy level.  Each energy 

demand can be written as follows: 

 

tGtGt EsE 1=             (13) 

 

tOtOt EsE 1=                (14) 

 

tNtNt EsE 1=         (15) 

 

where sGt = the natural gas share, sOt = the oil share and sNt = the non-fossil fuel share.  The coal demand is 

determined as the residual: 

 

NtGtOttCt EEEEE −−−= 1 .           (16) 

 

Natural gas and oil shares are functions of relative energy price and their lagged values.  These functions 

can be written as: 
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where i = C (coal), G (natural gas) and O (oil), j, k ���, and k ����with PCt = the domestic coal price, PGt = the 

domestic natural gas price and POt = the domestic oil price.  The non-fossil fuel share is one of the policy 

instruments and the coal share is residual of the others in this model. 

Each energy source has each CO2 emission coefficient.  CO2 emissions released from coal, natural gas 

and oil consumption can be estimated as the following equation: 

 

OtOGtGCtCt ERERERCO ++=,2          (18) 

 

where CO2,t = CO2 emissions, RC = the CO2 emission coefficient of coal, RG = the CO2 emission 

coefficient of natural gas and RO = the CO2 emission coefficient of oil.  In this paper we assume that RC, 

RG, RO equal 1.08 carbon ton per ton of oil equivalent (toe) of coal, 0.62 carbon ton per toe of natural gas 

and 0.86 carbon ton per toe of oil respectively.   

 

Prices Sub-block 

This block explains domestic prices of coal, natural gas and oil, the average price of the primary energy 

and the final energy price.  The three domestic energy prices depend on world coal price, world oil price 

and the exchange rate.  World coal and oil markets determine their world prices so world coal and oil 

prices are exogenous variables in this model.  Domestic coal, natural gas and oil prices can be written as: 

 

( )ttcoalCCt ePfP ,=          (19) 

 

( )ttoilGGt ePfP ,=           (20) 

 

( )ttoilOOt ePfP ,=        (21) 

 

where Pcoal, t = the world coal price in the US dollar and Poil,t = the world oil price in the US dollar.  As for 

imposing carbon taxes on the primary energy, prices of coal, natural gas and oil are reformulated as: 
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( ) ( )ttcoalCCCt ePfP ,1 τ+=          (19)� 

 

( ) ( )ttoilGGGt ePfP ,1 τ+=           (20)� 
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where �C = the carbon tax on coal, �G = the carbon tax on natural gas and �O = the carbon tax on oil.  Next, 

we define the average price of the primary energy as the weighted average of domestic coal, natural gas 

and oil prices. This can be written as: 

 

OtOtGtGtCtCtt PsPsPsP ++=1         (22) 

 

where P1t = the average price of the primary energy.  Finally, we assume that the final energy price is 

explained by the average price of the primary energy.  The equation of the final energy price can be written 

as follows: 
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Decomposition Sub-block 

 

We can break factors of CO2 emissions as the following equation: 
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where �t = (CO2,t/E1t), e1t = (Eft/E1t) and eEt = (Eft/Zt).  �t is CO2 emissions per one unit of the primary energy.  

High value of this indicator means a country consumes fossil fuels.  e1t shows the efficiency of energy 
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transformation.  If it is high, the transformation is efficient.  eEt is the energy intensity.  If an economy has 

energy-saving structure, this should be low. 

 

 

5.  Preliminary Estimation Result by Using Genetic Algorithms 

This section provides the preliminary estimation result of the US monetary policy (1991:1 – 1996:4) by 

using genetic algorithms.  We consider that the US monetary policy instrument is the federal fund rate, and 

target variables are the inflation rate, the unemployment rate and the money growth rate.  Since there are 

time lags for the effects of monetary policy, we assume that the Federal Reserve decides its monetary 

policy projecting the economic situations of three periods ahead.  This US social welfare function (FUSA) 

can be written as: 
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where tUSAPCPGR 92_4 = the four-period percentage change of the US private final consumption 

deflator (1992 = 100), tURUSA = the US unemployment rate, tUSAMGR 2_ = the percentage change of 

the US money supply, tRFFUSA = the federal funds rate, w1 = the weight of tUSAPCPGR 92_4 , w2 = 

the weight of tURUSA , w3 = the weight of tUSAMGR 2_ , wr = the weight of tRFFUSA and variables 

with asterisks denote those desired values.  In order to minimize equation (25) subject to the US 

macroeconometric model, we differentiate equation (25) with respect to tRFFUSA  and set the outcome 

equal 0 as follows:   
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Rearranging equation (26) yields the US monetary policy reaction function as:  
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In order to estimate the US monetary policy reaction function, we rewrite equation (27) as: 
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Since each multiplier is pre-determined for an estimation, equation (28) can be written as: 
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Table 1 provides the estimation result of the US monetary policy reaction function (equation 29).  P-

values indicate that all variables are statistically significant at a 1 per cent level.  Since the Durbin-Watson 
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statistic equals 0.773, it shows the positive first order autoregressive process.  The estimation result shows 

�1 > 0, �2 < 0 and �3 > 0.  The three multipliers must be 0
92_4

<
∂

∂ +

t

it

RFFUSA

USAPCPGR
, 0>

∂
∂ +

t

it

RFFUSA

URUSA
 

and 0
2_

<
∂

∂ +

t

it

RFFUSA

USAMGR
 (i = 0, 1, 2, 3).  Hence, these estimates are theoretically consistent. 

This policy reaction function can also explain the US monetary policy.  Yet, there is a risk that a sudden 

and large policy change can lead to economic instability.  Hence, we introduce a partial adjustment 

function in order to smooth movements of the federal funds rate.  A partial adjustment mechanism can be 

written as: 

 

( )1
**

1 −− −=− tttt RFFUSARFFUSARFFUSARFFUSA λ ,     (30) 

 

where � = adjustment parameter and **
tRFFUSA = federal funds rate that is explained by the US monetary 

policy reaction function.  Rearranging equation (30) yields  

 

( ) 1
** 1 −−+⋅= ttt RFFUSARFFUSARFFUSA λλ .          (31) 

 

This equation explains the federal funds rate. 

Next, we explain the process on applying genetic algorithms for an analysis of the US monetary policy.  

This analysis uses 30 bits of 50 chromosomes.  We assign the first to fifth bits for the constant term, sixth to 

tenth bits for ∑
=

+

3

0

92_4
i

itUSAPCPGR , eleventh to fifteenth bits for ∑
=

+

3

0i

itURUSA , sixteenth to 

twentieth bits for ∑
=

+

3

0

2_
i

itUSAMGR  and twenty-first to thirtieth bits for �.  Weights of the fitness value 

function vary between the plus and minus standard error of each parameter obtained by regression 

analysis.  The fitness value function of the US monetary policy can be written as follows: 
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and nbit
tjchromusa ,  denotes the nbitth bit of the jth individual of the US chromosome at time t. 

Regarding an adjustment parameter, all weights are 0.1.  Thus, when values of the ten bits are 1, it 

becomes 1.  The partial adjustment function can be written as: 

 

( ) 1,,
**
,,, 1 −−+⋅= tjtjtjtjtj RFFUSAVALUSARFFUSA λλ ,         (37) 

 

where ∑
=

⋅=
30

21

i,, 1.0
nbit

nbit
ttj chromusaλ . 

 

As shown in equation (37), the federal funds rate is estimated for each individual of a chromosome and 

time.  Hence, we evaluate each computed value of the federal funds rate by the following function: 

 

( )2
,

,
1

_
tjt

tj
RFFUSARFFUSA

FVALUSA
−

= .        (38) 

 

We select the chromosome that maximizes equation (38) as the best chromosome and compute the 
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optimal federal funds rate by using this maximized chromosome.  Table 2 shows the parameters 

computed by genetic algorithms.  Figure 1 provides estimated federal funds rate by genetic algorithms.  

We note that the crossover rate and the mutation rate are set as 0.25 and 0.01, respectively, and the number 

of the iteration is five. 

 

We apply this methodology in order to assess the optimal CO2 abatement policies in favor of the Kyoto 

Protocol. 

 

 

 

Notes: 
a E-mail: jzk02706@nifty.ne.jp 
b E-mail: hkosaka@sfc.keio.ac.jp 
1 According to our calculation based on EDMC (2001), these eight countries released roughly 40 percent 

of CO2 worldwide in 1990. 
2 This paper focuses on CO2 emissions among GHGs because approximately 60 percent of GHGs is 

carbon dioxide emissions. 
3 As for other explanations on genetic algorithms, see Goldberg (1989) and Michalewicz (1996).  
4 As for examples, see Fair (1984, 1994). 

6 This energy model is provided in Kosaka (1994). 
5 Formulation of this two-level CES production function is based on Lu and Kaya (1989). 
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Table 1  Estimation Result of the US Monetary Policy Reaction Function 

 

�  Variable Coefficient t-statistic p-value �  

 �0 3.721 5.100 0.000  

 �1 30.045 17.640 0.000  

 �2 -0.134 -5.068 0.000  

 �3 41.646 11.315 0.000  
      

 Adj. R2 0.923 
   

 S.E. 0.517 
   

�  D.W. 0.773 
�  �  �

 Estimation technique : Ordinary least squares   
 Sample: 1986:1 - 1997:3    

 

 

Table 2  Parameters Computed by Genetic Algorithms 

 

�  �  �0 �1 �2 �3 � �  
 1991:1 2.991 30.045 -0.144 39.796 0.600  
 1991:2 2.626 30.895 -0.124 43.496 0.700  
 1991:3 4.816 30.895 -0.164 41.646 0.700  
 1991:4 3.721 27.495 -0.124 39.796 0.600  
 1992:1 4.086 30.045 -0.144 43.496 0.500  
 1992:2 3.721 27.495 -0.144 41.646 0.500  
 1992:3 3.721 29.195 -0.154 41.646 0.700  
 1992:4 2.626 30.045 -0.144 37.946 0.700  
 1993:1 4.451 30.045 -0.104 43.496 0.100  
 1993:2 3.721 28.345 -0.134 45.346 0.600  
 1993:3 3.721 29.195 -0.154 47.196 0.600  
 1993:4 3.356 27.495 -0.124 39.796 0.500  
 1994:1 3.356 28.345 -0.124 41.646 0.700  
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 1994:2 4.086 30.895 -0.124 45.346 0.600  
 1994:3 3.721 27.495 -0.124 41.646 0.700  
 1994:4 4.816 30.045 -0.104 47.196 0.500  
 1995:1 4.086 30.045 -0.104 37.946 0.500  
 1995:2 4.451 30.045 -0.114 43.496 0.600  
 1995:3 4.086 30.045 -0.104 39.796 0.300  
 1995:4 3.721 29.195 -0.124 43.496 0.300  
 1996:1 3.356 27.495 -0.124 41.646 0.100  
 1996:2 2.991 30.045 -0.124 45.346 0.100  
 1996:3 3.721 30.045 -0.124 47.196 0.100  
�  1996:4 3.356 30.045 -0.114 37.946 0.700 �  

 

Figure 1  Actual and Predicted Values of RFFUSA (1991:1-1996:4) 
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Note: RFFUSA_GA = the federal funds rate that is computed by genetic algorithms. 

 

 

 


