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Abstract

This paper uses a panel VAR (PVAR) approach to estimating, analysing and forecasting
price dynamics in four different sectors – industry, services, construction, and agriculture –
across the four largest euro area economies – Germany, France, Italy and Spain – and the
euro area as a whole. By modelling prices together with real activity, employment and wages,
we can disentangle the role of unit labour costs and profit margins as the factors affecting
price pressures on the supply side. In out-of-sample forecast exercises, the PVAR model fares
comparatively well against common alternatives, although short-horizon forecast errors tend
to be large when we consider only the period of the recent financial crisis. The second part
of the paper focuses on Spain, for which prediction errors during the crisis are particularly
large. Given that its economy faced dramatic sectoral changes due to the burst of a housing
bubble, we use the PVAR model for studying the transmission of shocks originating from
the Spanish construction sector to other sectors. In a multi-country extension of the model,
we also allow for spillovers to the other euro area countries in our sample.
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1 Introduction

While forecasting price inflation is fundamental for private sector and policy decision-making, it

has always been a challenging exercise. Inflation forecasting can either be purely subjective or

require more or less sophisticated techniques. Faust and Wright (2013) review the state of the art

in inflation forecasting and state “an explosion in the number and variety of methods in recent

years”, ranging from traditional time series approaches to more structural economic models,

such as single Phillips Curve equations or complete Dynamic Stochastic General Equilibrium

models. Using an extensive set of possible predictors has also gained popularity in recent years

– e.g. methods based on factor-augmented vector autoregression (FAVAR) models, as proposed

by Bernanke et al. (2005) –, as have methods based on financial market indicators, which extract

forward-looking information about expected future inflation.

Owing to instability in inflation forecasting, however, it has often proved difficult to outper-

form even very simple models, such as a random walk (see, e.g., Atkeson and Ohanian, 2001).

The stability of inflation dynamics during the Great Recession has also called into question the

usefulness of fundamentals-based approaches, such as Phillips-Curve equations, in predicting

inflation dynamics (see Ball and Mazumder, 2011; Bassetto et al., 2013).

Rather than from continuously increasing the degree of complexity of forecasting techniques,

forecast accuracy might benefit from the informational content of disaggregated data. Since the

disaggregated contain at least as much information as the aggregated time series, increasing the

information set on which forecasts are based could improve the accuracy of out-of-sample (OOS)

forecasts, at least theoretically. Since inflation and other macroeconomic variables represent

contemporaneous aggregates, it seems plausible that the use of disaggregated data facilitates an

increase in forecast accuracy (compare Luetkepohl, 1984b). Further, disaggregated information

can be helpful in retrieving common drivers of the aggregated series. Finally, forecast errors of

disaggregated components might partially cancel out (compare Theil, 1954).

In this paper, price dynamics are analysed from the supply side of the economy. We consider

disaggregation along the sectoral dimension for the four largest euro area economies – Germany,

France, Italy and Spain – and the euro area as a whole. The aim is to provide a model for

estimating, analysing and forecasting price dynamics in four different sectors – industry, services,

construction and agriculture.

The supply-side sectoral approach in this paper has several important advantages. First, we
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can test whether combining disaggregated forecasts based on sectoral data is superior to meth-

ods based on economy-wide time series.1 Second, a disaggregated approach provides information

about sector-level price dynamics in the euro area, which allows for a close monitoring of disag-

gregated prices. This close-up perspective of price dynamics has received increasing attention

since the global financial crisis, given the role of relative prices in the build-up of macroeconomic

imbalances. Third, as our approach aims at modelling prices together with real activity, wages

and employment, it also enables us to disentangle the factors affecting price dynamics from the

cost side by accounting for pressures coming from both labour costs and profit margins.2 Figure

1 reveals that there is nontrivial heterogeneity across countries regarding the sources of price

pressures. In the decade preceding the crisis, for instance, unit labour costs rose strongly in

Spain, while they were comparatively subdued in Germany. Finally, encompassing the supply

side yields forecasts of additional variables, such as unit labour costs and profit margins, which

are crucial for assessing future developments in the competitiveness between sectors or countries

and for anticipating the investment decisions of firms in the near future, respectively.

Our approach relies on estimating VAR models that can account for the potential static

and dynamic interdependencies between the variables and sectors of interest as well as for the

contemporaneous and lagged influence of exogenous driving forces, such as fluctuations in world

demand or oil prices. Given the size and complexity of the system, we face two main issues.

On the one hand, estimating separate sector-specific models would be relatively parsimonious

in terms of the number of coefficients, while it ignores any interdependencies between sectors.

On the other hand, a large-scale VAR model of the entire economy would quickly run into the

curse of dimensionality. With N = 4 sectors, K = 4 variables, p = 2 lags, and an intercept,

we would have to estimate N ·K · p+ 1 = 33 parameters per equation, even when ignoring the

possible influence of exogenous variables. Since our sector-level data is available from 1995Q1

only, there is little hope of obtaining precise coefficient estimates based on 70 observations per

variable; in particular, if the model is supposed to serve in constructing forecasts.

As a consequence, a suitable shrinkage method is required in order to reduce the parameter

1Similar “bottom-up” approaches from the supply side in a data-rich environment have been used for forecast-
ing real GDP growth by Drechsel and Scheufele (2012) for Germany, Barhoumi et al. (2012) for France and Hahn
and Skudelny (2008) for the euro area. Beck et al. (2011) also study euro area inflation from both a sectoral
and a country perspective and find that the sectoral as well as the country-specific component of inflation help
explain euro area inflation dynamics.

2Maurin et al. (2011) model profit dynamics in the four largest euro area countries (Germany, France, Italy and
Spain) and the euro area as a whole, considering three main sectors (manufacturing, construction and services)
in each economy, based on a vector autoregression (VAR) approach.
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Figure 1: GDP deflators, unit labour costs and profit margins (left column) and sectoral value added
deflators (right column)

space of the model, while preserving the possibility of static and dynamic interdependencies

between different sectors. Due to the fact that the number of observation units (N = 4 sectors)

is small relative to the number of observation periods, a panel vector autoregression (PVAR)
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Figure 1 continued: GDP deflators, unit labour costs and profit margins (left column) and sectoral
value added deflators (right column)

approach seems well suited for the task at hand. Given the limited data availability, we abstain

from estimating a time-varying parameter model, as proposed in Canova and Ciccarelli (2009),

although we might thus miss some of the variation in the interdependencies between variables,

sectors and countries, e.g. due to structural changes.3

Forecasting economy-wide variables based on the PVAR approach requires contemporaneous

aggregation of the respective sector-level forecasts. Tiao and Guttman (1980), Kohn (1982),

Luetkepohl (1984a), and others show that aggregating forecasts is generally preferable to fore-

casting the aggregates directly, if the data-generating process (DGP) is known in terms of its

3See, e.g., Canova et al. (2012) for recent evidence of variations in European and national real business cycles
over time, based on aggregate macroeconomic time series.
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order and coefficients.4 In practice, however, the DGP is rarely known and a trade-off arises with

respect to forecast accuracy. Luetkepohl (1984b) shows that, even if the order and coefficients

are consistently estimated, the information gain from using the disaggregated time series might

be more than offset by the higher specification and estimation errors of a less parsimoniously

parameterized process, especially at long forecast horizons. As the sample size increases, the

MSPE component due to specification and estimation uncertainty becomes sufficiently small,

and the forecast based on the disaggregated multivariate process is again more accurate than

directly forecasting the aggregate. However, these conclusions are based on asymptotic theory.

Given that both asymptotic and small-sample simulation results depend on the DGP of the

multiple time series,5 relative forecast accuracy ultimately remains an empirical question.

Forecasting euro area-wide time series entails at least two dimensions of contemporaneous

aggregation. Forecasts of macroeconomic variables can be aggregated across countries (see, e.g.,

Marcellino et al., 2003) and across subcomponents (see, e.g., Hubrich, 2005). Using monthly

data from 1992.1 to 2001.12, Hubrich (2005) finds that direct forecasts of euro area HICP are

often more accurate than aggregating component forecasts, indicating higher estimation and

specification error at horizons above 6 months. In particular, contemporaneous aggregation

seems to increase rather than reduce bias, if unexpected events, such as the surge in unprocessed

food and energy prices in 2000, affect components in the same direction. Benalal et al. (2004)

explore both dimensions simultaneously, selecting the best model in terms of OOS MSPE from a

wide class of uni- and multivariate alternatives for five components and overall HICP for the euro

area and its four largest member countries. Regarding the aggregation of HICP components,

indirect forecasts perform better for the euro area at short horizons, while direct forecasts are

favourable at longer horizons and at the country level. Both Hubrich (2005) and Benalal et

al. (2004) find that, for euro area “core inflation”, i.e. HICP excluding non-processed food

and energy prices, empirical evidence is more favourable for aggregating component forecasts.

Aggregating country-specific forecasts, in turn, is generally less accurate than forecasting euro

area inflation, although the differences are small in magnitude and based on a “synthetic” euro

area consisting of only its four largest members.

4If the disaggregated time series are approximately uncorrelated and have similar stochastic structures, there is
no information gain from using a multivariate model of the disaggregated variables (see, e.g., Luetkepohl, 1984b,
2006), and the mean squared prediction errors (MSPEs) will be identical. Luetkepohl (2006) also considers
aggregating univariate forecasts of the individual components, which is, however, weakly inferior to aggregating
forecasts based on a multivariate model, if the process is known, while it may be more or less accurate than
forecasting the aggregate time series directly.

5See Luetkepohl (1984b; 1987) and Hendry and Hubrich (2011).
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The rest of the paper is structured as follows. Section 2 contains a general introduction to

PVAR models, based on Canova and Ciccarelli (2013). Section 3 discusses model specification

and estimation for the euro area and its four largest member countries. Section 4 presents the

forecasting performance of the PVAR models. Section 5 illustrates how the model facilitates the

analysis of cross-sector linkages within an economy by studying the effects of shocks originating

from the Spanish construction sector. A model extension to account for spillovers between euro

area countries is also proposed. Section 6 concludes.

2 The PVAR Model

Suppose there is a cross-section of N macroeconomic observation units (e.g. countries, regions,

sectors,...), which are inherently linked to each other, and that for each unit i, a set of K

macroeconomic variables of interest is observed over time.

One possibility to simultaneously account for the interdependencies between the variables

within one unit as well as between units is by estimating the following large-scale VAR(p) model:

Yt = ν +A1Yt−1 + . . .+ApYt−p + et, (1)

where Yt is an (N ·K×1) vector of endogenous variables, ν is an (N ·K×1) vector of intercepts,

Aj , j = 1, . . . , p are (N · K × N · K) matrices of slope coefficients, and et ∼ iid(0,Σe) is an

(N ·K × 1) vector of possibly contemporaneously correlated reduced-form disturbances.6 Note

that the VAR representation in (1) does not exploit the panel structure of the data, i.e. the fact

that the N ·K variables under consideration correspond to only K distinct variables observed

for each of the N units.

A panel VAR has the same structure as a standard VAR model, i.e. each endogenous variable

is assumed to depend on lagged values of itself and of all other endogenous variables. However,

the representation also accounts for the cross-sectional dimension in the data. Let yi,t denote

the (K × 1) vector of endogenous variables for unit i and Yt = (y′1,t, y
′
2,t, . . . , y

′
N,t)

′ denote the

(N ·K × 1) vector of stacked yi,t, i = 1, . . . , N . We can then write the PVAR model equation

by equation as

yi,t = νi +A1,iYt−1 + . . .+Ap,iYt−p + ei,t, i = 1, . . . , N (2)

6Note that the coefficient matrices Aj must be absolutely summable for a moving average representation of
(1) to exist. This can be ensured, e.g., by taking first differences of the endogenous variables.
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where νi is a (K × 1) vector of intercepts, Aj,i, j = 1, . . . , p, i = 1, . . . , N , are (K × N · K)

matrices of slope coefficients, and ei,t is a (K×1) vector of possibly contemporaneously correlated

reduced-form disturbances.

Suppose the variables in Yt might also depend on an (M × 1) vector of weakly exogenous

variables, such as world demand and oil prices, which are assumed to be independent of con-

temporaneous or lagged fluctuations in Yt. If we assume that these variables follow a VAR(px),

the panel VAR with exogenous driving forces (PVARX) can be written as

yi,t = ν1i +

p∑
l=1

Al,iYt−l +

q∑
l′=0

Bl′,iXt−l′ + e1i,t (3)

Xt = ν2 +

px∑
l=1

ClXt−l + e2,t, (4)

where Bl′,i, l
′ = 0, . . . , q are (N ·K×M) matrices of exogenous coefficients and e1i,t and e2,t are

assumed to be uncorrelated. Note that the vector of weakly exogenous variables is the same for

all units i and that the latter might depend on the former contemporaneously, i.e. with lag 0.

Following the terminology in Canova and Ciccarelli (2013), the PVARX representation in

(3) and (4) can account for (i) “dynamic interdependencies”, since p lags of all endogenous

variables of all units enter the model for unit i; (ii) “static interdependencies”, since the e1i,t

are generally correlated across units i; (iii) “cross-sectional heterogeneity”, since the intercept,

the slope coefficients, and the variance of e1i,t are generally unit-specific.

In this regard, the PVARX is very similar to the large-scale VAR model in (1), augmented

by a set of exogenous variables. As a consequence, unrestricted estimation of the model in (3)

and (4) faces exactly the same curse of dimensionality. Including an intercept, each equation

contains G = N ·K ·p+M · (q+1)+1 unknown coefficients, while the total number of unknown

coefficients amounts to N ·K ·G.7

This problem could be solved by selectively modelling the dynamic interdependencies between

some units, while imposing zero restrictions on others, or by grouping units and assuming that

the interdependencies only exist within but not across groups (compare Canova and Ciccarelli,

2012). Instead, we proceed by exploiting the panel structure of the data. Canova and Ciccarelli

(2004, 2009) propose the use of cross-sectional shrinkage methods in order to deal with the

curse of dimensionality.

7For N = 4 units, K = 4 endogenous variables, M = 4 exogenous variables, and lag order p = q = 2, e.g., this
corresponds to G = 45 coefficients per equation and a total of N ·K ·G = 720 coefficients.
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In the following, we neglect the law of motion of the exogenous variables in (4), effectively

assuming that they are strictly exogenous. This is possible even in forecasting exercises, where

we can condition on available projections of world demand, oil prices, and others.

Following Canova and Ciccarelli (2013), we start by writing (3) in simultaneous equations

format:

Yt = Zt · δ + et, (5)

where Yt and et have been defined before, Zt = IN ·K ⊗ (I, Y ′t−1, ...Y
′
t−p, X

′
t, ..., X

′
t−q), δ =

(δ′1, . . . , δ
′
N )′, and δ′i are (K · G × 1) vectors containing stacked the rows of the coefficient

matrices

[ν1,i, A1,i, . . . , Ap,i, B0,i, . . . , Bq,i].

Allowing all coefficients to vary between cross-sectional units prevents a meaningful unrestricted

estimation of the (N ·K ·G× 1) coefficient vector δ.

Suppose that we are not interested in modelling all the details of δ but rather in robust

parameter estimates for impulse response analysis and forecasting. Assume further that δ can

be factorized as a linear combination of a lower-dimensional vector θ, e.g.

δ = Ξ1θ1 + Ξ2θ2 + Ξ3θ3 + Ξ4θ4 + . . .+ ut, (6)

where the Ξi, i = 1, 2, . . ., are matrices of dimension (N · K · G × di), respectively, and θi

are the corresponding mutually orthogonal factors, which determine the entries in δ. Here, θ1

might capture unit-specific components (d1 = N), θ2 endogenous variable-specific components

(d2 = K), θ3 endogenous lag-specific components (d3 = p), and θ4 exogenous variable-specific

components (d4 = M), while ut absorbs any remaining idiosyncratic noise in the unrestricted

coefficient vector.

The obvious advantage of factoring δ as in (6) is a substantial reduction in the dimensionality

of the parameter space. In the above example, we must now estimate N +K+p+M instead of

N ·K ·G unrestricted coefficients. In other words (compare Canova and Ciccarelli, 2012), the

factorization transforms a large-scale PVARX model into a parsimonious seemingly unrelated

regressions (SUR) model, such that we can rewrite (5) with the help of (6) as

Yt =
r∑

i=1

Zi,tθi + vt, (7)
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where Zi,t = ZtΞi, i = 1, 2, . . ., captures, e.g., unit-specific, endogenous variable-specific, endo-

genous lag-specific, and exogenous variable-specific information in the data, and vt = et +Ztut.

By construction, Zi,t has a slow moving average structure that captures low frequency move-

ments in the data, which is a convenient feature in OOS forecasting.

Economically, equation (7) decomposes the fluctuations in the endogenous variables in Yt

into mutually orthogonal components. In the above example, one can think of Z1,tθ1, Z2,tθ2,

Z3,tθ3, and Z4,tθ4, as unit-specific, endogenous variable-specific, endogenous lag-specific, and

exogenous variable-specific indicators, respectively (compare Canova and Ciccarelli, 2012).

3 Modelling the Largest Euro Area Countries and Sectors

3.1 Data

The PVAR model is composed of a set of VARX models for the main economic sectors of the

euro area and the four largest euro area countries, i.e. the industrial, construction, services and

agricultural sectors. Each of the sectoral models includes four endogenous variables: the basic

price GDP deflator (or value added deflator), real value added, compensation and employment

(measured by the number of employees) for the respective sector. Implicit in this set of variables

are unit labour costs and profit margins as the two cost components of the GDP deflator. The

sectoral data in quarterly frequency are available from Eurostat from the year 2000 onwards

based on the Nace 2 classification for economic sectors and are backdated for the purpose of

this analysis to the year 1995 on the basis of the previously available Nace 1 classification.

The economy-wide data and forecasts are derived from the sectoral models by aggregating

the data and forecasts of the sectoral variables. This amounts to a simple sum for employment,

whereas, due to chain linking, the total real value added data are no longer perfectly additive.

In the latter case, the aggregates are obtained by weighting the growth rates of the chain-linked

series with the shares obtained from the series on value added “at basic prices in previous year

prices”, which is available from 2001Q1 onwards. For aggregating prior observations as well as

the forecasts, weights based on the chain-linked series are applied, which, in any case, proved to

provide similar results to those based on the data in previous year prices for the period starting

in 2001Q1.
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3.2 Model Specification

We are interested in the analysis of four sectors with four variables per sector, implying N = 4

and K = 4. Moreover, the model includes M = 4 exogenous variables: world demand, oil

prices, short-term interest rates, and the effective exchange rate. All corresponding time series

are taken from the Eurosystem macroeconomic projections.8

Estimation of the PVARX model requires choosing several parameter values such as the lag

order of endogenous and exogenous variables. Although standard lag order-selection criteria

can be applied, we set p = q = 2 rather arbitrarily in the following illustration. Note that q = 2

implies that the model accounts for the influence of the exogenous variables contemporaneously

as well as at lags of one and two quarters.

The model’s specification crucially depends on how the unrestricted coefficient vector δ is

factorized.9 In line with Canova and Ciccarelli (2009), we assume that the factorization in (6) is

exact, i.e. ut = 0, and hence vt = et in (7). A convenient implication of this assumption is that

we can estimate θ and thus δ consistently by multivariate least squares (MLS). In contrast to

Canova and Ciccarelli (2013), we abstract from the possibility of time-varying coefficients, due

to the relatively short sample period and because we are primarily interested in the forecasting

properties of the tool.

Throughout Section 4, we use four factors and an equation-specific intercept in order to

shrink the parameter space of δ:10

1. The (N × 1) vector θ1 captures sector-specific components in the endogenous variables.

2. The (K × 1) vector θ2 captures variable-specific components in the endogenous variables.

3. The (M × 1) vector θ3 captures variable-specific components in the exogenous variables.

4. The (q × 1) vector θ4 captures lag-specific components in the exogenous variables.11

The PVAR procedure also permits combining the information in endogenous and exogenous

variables, e.g. in a (1 × 1) vector/scalar of common components. However, the corresponding

(N ·K ·G×1) dimensional regressor Ξcommon will often be a linear combination of Ξi, i = 1, . . . , 4,

8For more details on the Eurosystem staff macroeconomic projection exercises, the interested reader is referred
to http://www.ecb.europa.eu/pub/pdf/other/staffprojectionsguideen.pdf

9A large variety of factors can be chosen, each capturing the information in a certain subset of endogenous
and exogenous variables, respectively. See, e.g., Canova and Ciccarelli (2012, p. 20) for an example of how the
Ξi and Zi,t are constructed.

10The intercept is not factorized for obvious reasons. Alternatively, we could demean all time series.
11We drop the contemporaneous lag category of exogenous variables to avoid collinearity between θ3 and θ4.
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inducing collinearity between the factors. As a consequence, there might be no unique solution

to the least squares minimization problem.

Stacking the T observation of Yt, Zt, and et in the (T · N · K × 1) vectors Y , Z, and e,

respectively, we can rewrite equation (7) as

Y = Zθ + e. (8)

It is now straightforward to obtain the MLS estimate θ̂ = (Z ′Z)−1(Z ′Y ) and to transform it

into δ̂ = Ξ · θ̂, which in turn allows us to compute êt = Yt − Ztδ̂, t = 1, . . . , T , and Σ̂e =

êtê′t
T−(N+K+M+q+N ·K) .

To facilitate the analysis of impulse response functions, forecasting, and inference, we convert

δ̂ back to [ν̂, Â1, . . . , Âp, B̂0, . . . , B̂q] and construct the associated companion matrix

Â =



Â1 Â2 . . . Âp−1 Âp

IN ·K 0 . . . 0 0

0 IN ·K . . . 0 0

...
...

. . . 0
...

0 0 . . . IN ·K 0


. (9)

3.3 Model Selection and Estimation

Given the different possible ways to shrink the parameter space of δ, the benchmark model above

could be challenged by many alternative specifications of the PVARX model. Obvious degrees

of freedom are the lag order p and q of endogenous and exogenous variables, respectively, which

are of secondary interest here. Instead, we focus on the implications of alternative factorizations

of the unrestricted coefficient vector δ for the model’s in-sample fit.

More precisely, we compare the in-sample fit of our benchmark specification of θ with several

alternative specifications. For this purpose, we use the maximum log likelihood (MLL), the

Akaike information criterion (AIC), and the Schwarz information criterion (SIC).12 Note that

the optimal model must maximise the MLL and minimise the information criteria.

12Assuming normality of the error terms, the conditional ML estimator for VAR models coincides with the
multivariate LS estimator (see, e.g., L pp. 87), while

Σ̃e =
T − (#parameters)

T
· Σ̂e. (10)

In the benchmark PVARX model, e.g., #parameters = N︸︷︷︸
θ1

+ K︸︷︷︸
θ2

+ M︸︷︷︸
θ3

+ q︸︷︷︸
θ4

.
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Table 1: Model selection criteria for alternative factorizations of the parameter vector δ

Benchmark Model A Model B Model C Model D Model E

Euro Area MLL -477.323 -474.572 -558.08 -492.61 -493.55 -469.531

AIC -8.863 -8.912 -7.01 -8.53 -8.51 -8.911

SIC -7.892 -7.911 -6.56 -7.70 -7.67 -7.753

Germany MLL -532.722 -533.143 -582.92 -538.45 -547.97 -523.661

AIC -6.802 -6.763 -5.80 -6.75 -6.47 -6.891

SIC -5.821 -5.742 -5.34 -5.90 -5.62 -5.723

France MLL -369.212 -355.561 -448.68 -391.46 -387.52 -371.113

AIC -11.612 -11.981 -9.74 -11.07 -11.19 -11.383

SIC -10.632 -10.971 -9.29 -10.22 -10.34 -10.203

Italy MLL -421.812 -421.943 -456.03 -429.00 -431.72 -412.271

AIC -10.062 -10.033 -9.53 -9.97 -9.89 -10.171

SIC -9.081 -9.022 -9.07 -9.12 -9.04 -8.993

Spain MLL -466.782 -468.443 -509.31 -488.15 -480.43 -456.691

AIC -8.742 -8.663 -7.96 -8.23 -8.46 -8.861

SIC -7.761 -7.653 -7.50 -7.38 -7.61 -7.692

# parameters θ 30 31 14 26 26 36

# parameters δ 720 720 720 720 720 720

Notes: Each entry reports the value of the in-sample selection criterion in row, based on the

respective model in column. Superscript indices rank models according to their in-sample fit.
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Table 1 reports the MLL, AIC, and SIC for our benchmark model and five alternative fac-

torizations of δ. Model A adds a common component of endogenous variables to the benchmark

specification. Model B is identical to the benchmark specification without an intercept. Model C

is identical to the benchmark specification without the sector-specific endogenous components.

Model D is identical to the benchmark specification without the variable-specific endogenous

components. Model E is identical to the benchmark specification with variable- & lag-specific

exogenous components, i.e. θ3 and θ4 are replaced by a single (M · q × 1) vector.

The results in Table 1 suggest that it is difficult to beat the benchmark factorization in

terms of its in-sample fit. Only Model E, which replaces the separate variable-specific and lag-

specific exogenous factors by a common variable- and lag-specific exogenous factor outperforms

the benchmark model according to two of the three criteria for all countries except France. The

corresponding values of the MLL and AIC indicate that modelling joint variable- and lag-specific

components reduces the unexplained variance in the sample, while the SIC penalizes for the fact

that the specification thus becomes less parsimonious.13 Model A, which includes a common

endogenous factor, is in the ballpark, whereas Models B, C, and D perform significantly worse

than our benchmark model according to all three criteria.

3.4 Component Indicators

As mentioned in Section 2, we can interpret the Zi,tθi, i = 1, 2, . . ., as indicators for the relative

importance of the corresponding components for fluctuations in the endogenous variables, since

the time series have been standardised prior to the estimation.

Figures 2 to 4 plot the N = 4 unit-specific indicators of the endogenous variables, Z1,tθ1,

the K = 4 variable-specific indicators of the endogenous variables, Z2,tθ2, and the M = 4

variable-specific indicators of the exogenous variables Z3,tθ3, respectively, for the euro area as

a whole.14 Note that the q = 2 lag-specific indicators of the exogenous variables are not shown,

because they have little economic interpretation.

In Figure 2, all sector-specific indicators, except the one for agriculture, display a pronounced

drop in late 2008. The drop in the construction-related indicator is more gradual and persist-

ent, reflecting substantial cross-country heterogeneity in this sector within the euro area. The

variable-specific indicators in Figure 3 illustrate important labour market adjustments during

13Recall that the net change in the number of parameters is M · (q + 1)−M − q > 0 ∀M, q.
14Similar indicators are available for each of the four euro area countries upon request.
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Figure 2: Time series of euro area sector-specific component indicators of endogenous variables
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Figure 3: Time series of endogenous variable-specific component indicators for the euro area

the crisis as well as the unprecedented drop in real VA in 2009 and the renewed downturn in

2012. Note that the pronounced drop in real activity was not reflected in a similar reduction in

price and wage levels, as measured by the indicators of VAD and compensation per employee,

pointing to the presence of downward rigidities in price and wage setting.

Finally, world demand was the dominant exogenous driver of fluctuations in Yt both before

and during the crisis. Figure 4 also suggests the role of the crisis-related drop in oil prices
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Figure 4: Time series of exogenous variable-specific component indicators for the euro area

together with the changes in interest rates as important factors in driving the fluctuations in

the endogenous variables.

4 Out-Of-Sample Forecast Performance

The in-sample fit of a particular specification of the PVAR model is not necessarily indicative of

its out-of-sample forecast performance. It is well-known that model selection based on in-sample

criteria might be subject to “over-fitting”, i.e., a less parsimonious specification is preferred,

although this might worsen the model’s out-of-sample forecast accuracy. For this reason, we

continue by conducting a recursive pseudo out-of-sample (POOS) forecast exercise.15

First, the model is estimated on the initial estimation period, i.e. the first R quarters of the

sample. Then, the h-quarter-ahead forecast of the endogenous variables is constructed based

on the estimated PVAR coefficients, the lagged observations of the endogenous and the realized

contemporaneous observations – hence the term “pseudo” – of the exogenous variables. As in

Benalal et al. (2004), the conditional forecast for period t + h is formed recursively based on

an expanding estimation window [1, . . . , t] until the end of the sample in 2012Q3. Assuming

an independent multivariate white noise process for the error term νt in equation (7), the

15A genuine out-of-sample exercise based on real-time data would have been more satisfactory. While including
some of the series of interest for the euro area as a whole, however, the ECB Real Time Database does not satisfy
our data requirements to a sufficient extent.
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conditional expectation given past observations is an optimal h-quarter-ahead forecast of Yt.
16

For stationary processes, the forecast will be unbiased, and forecast intervals of bounded length

can be constructed using asymptotic or bootstrap methods.

Subtracting the point forecast for period t + h from the realized data for the same period,

we can compute the mean squared prediction error (MSPE) for each sector-specific variable.

By aggregating the sector-specific POOS forecasts for period t + h and subtracting the result

from the realized aggregate data, we obtain the corresponding economy-wide MSPE of the four

endogenous variables.

Table 2 reports the corresponding MSPE for aggregate total real VA and the VAD for a

forecast horizon of h = 1 and an initial estimation period of R = 30 quarters.17 As we are

interested in the cost components of the price dynamics, we also compute the implied forecasts

for unit labour costs (ULC) and profit margins (PMA) based on the forecasts for the total

number of employees, compensation per employee and real value added.18

The ranking of models according to their MSPE implies some striking differences relative

to the ranking according to the in-sample criteria. In particular, Model B, which is identical

to the benchmark model without the equation-specific intercepts, performs best in terms of the

VA and VAD MSPE, although it was outperformed by most alternative models in terms of its

in-sample fit. Accordingly, including an equation-specific intercept, which equals the average

growth rate of the corresponding variable, deteriorates the POOS forecast performance of the

PVAR model in the very short run.

While the results in Table 2 reveal that the PVAR model under consideration is prone to

over-fitting, this should be taken with a grain of salt. On the one hand, due to the short sample

period 1995Q2–2012Q3, the Great Recession accounts for a significant part of the evaluation

period and dominates thus the reported MSPEs, while it is not clear whether putting too much

weight on an exceptional event of this kind is desirable. On the other hand, the alternatives

with an equation-specific intercept generally outperform Model B at longer forecast horizons,

i.e. for h > 1, as the economy returns to its long-run equilibrium growth path.

In line with evidence in Benalal et al. (2004), OOS forecasts for Italy are less accurate than

for the three other countries and the euro area as a whole, regardless of the forecast horizon.

16If the shocks are not independent but uncorrelated, the conditional expectation remains the best linear
forecast, but may not be the best in a larger class containing nonlinear functions (compare Luetkepohl, 2006).

17For the sake of brevity, the results for alternative forecast horizons and the sector-specific MSPEs are only
available upon request.

18ULC = Number of Employees·Compensation per employee
Real Value Added

and PMA = V AD − ULC.
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Table 2: Mean squared prediction errors of economy-wide aggregate variables for alternative
factorizations of the parameter vector δ

Benchmark Model A Model B Model C Model D Model E

Euro Area real VA 0.43273 0.4396 0.38641 0.41822 0.4468 0.4371

VAD 0.03782 0.04003 0.0420 0.03661 0.0464 0.0401

ULC 0.2771 0.27232 0.25121 0.27573 0.2891 0.2794

PMA 0.2487 0.2498 0.21541 0.23952 0.24113 0.2472

Germany real VA 1.08382 1.1187 1.1018 1.08423 1.05671 1.0931

VAD 0.1540 0.1586 0.15003 0.13521 0.1751 0.13762

ULC 0.84263 0.8697 0.75461 0.83292 0.8865 0.8490

PMA 1.0153 1.0526 1.0337 0.97892 1.01423 0.96451

France real VA 0.25433 0.25372 0.2716 0.2595 0.2756 0.24611

VAD 0.05423 0.04941 0.0546 0.05022 0.0690 0.0571

ULC 0.1441 0.14502 0.14311 0.14103 0.1594 0.1456

PMA 0.11403 0.1230 0.10992 0.1193 0.10731 0.1107

Italy real VA 0.69533 0.7014 0.58731 0.7044 0.63732 0.7813

VAD 0.58153 0.5900 0.6170 0.57832 0.6356 0.51041

ULC 2.18323 2.1931 2.3036 2.18312 2.15811 2.3694

PMA 1.2447 1.2471 1.18862 1.23263 1.11301 1.3142

Spain real VA 0.19473 0.19442 0.1826 0.2101 0.2580 0.19171

VAD 0.3998 0.4155 0.36711 0.4810 0.36792 0.37623

ULC 0.7402 0.7458 0.65422 0.8607 0.70313 0.63161

PMA 1.1816 1.2082 1.10432 1.2370 0.95481 1.15563

# parameters θ 30 31 14 26 26 36

# parameters δ 720 720 720 720 720 720

Notes: Each entry reports the MSPE from a recursive pseudo OOS forecast exercise with

initial estimation period 1995Q1-2002Q3, based on the respective PVAR specification.

Superscript indices rank forecasts according to their MSPE.

17



We also conducted another POOS forecast exercise, in which we compare the benchmark

PVAR model with three popular alternatives, including a random walk with drift (RW), a uni-

variate autoregressive (AR) and a multivariate autoregressive (VAR) process.19 Like the PVAR

model, the AR model forecasts the four endogenous variables at the sector level before aggreg-

ating the univariate forecasts, whereas the VAR model forecasts the economy-wide aggregates

directly, using a single multivariate process.

Similarly to Table 2, Table 3 reports the corresponding MSPE for aggregate total real VA,

the VAD, ULC, and profit margins, respectively, for a forecast horizon of h = 1, for the euro

area and the four countries. In this horse-race, the PVAR model ranks first in 9 and second

in 8 out of 20 cases, while it never ranks last. When considering all the different horizons up

to 12 quarters ahead, the PVAR model ranks first in 35% of the cases and second in 31% of

the cases. Among the variables, it is interesting to mention that the PVAR model ranks first

in 65% of the cases for the VAD. Contrary to the results of Atkeson and Ohanian (2001), the

random walk does not outperform the PVAR model, except for Germany.

While the performance of the PVAR model in this POOS forecast exercise is satisfactory, it

is important to emphasize that the presence of the financial crisis and the Great Recession in

the evaluation period may distort the results. To take into account the role of this exceptional

event, Table 4 reports the MSPEs for the crisis relative to those for the benchmark evaluation

period for all countries and the euro area as a whole. Each number corresponds to the ratio

between the MSPE for variable k and horizon h based on the benchmark model evaluated over

2008Q2-2012Q3 and the corresponding MSPE evaluated over 2002Q4-2012Q3. Accordingly, a

ratio larger than one indicates a deterioration in forecast accuracy during the Great Recession

relative to the benchmark evaluation period.

The results show that the PVAR model generally performs worse during the crisis, especially

at shorter forecast horizons. At horizons of 6 and 12 quarters however, the MSPE ratios for the

euro area, Germany, France, and Italy decrease below one, indicating more precise forecasts,

on average. In contrast, those for Spain remain above unity, with only a single exception, and

tend to increase rather than decrease.

A possible shortcoming of our model is that it assumes constant parameters throughout the

estimation and forecast periods. Although the PVAR coefficients are re-estimated in each round

19See, e.g., Gardner (1985) and Marcellino et al. (2003) for the satisfactory performance of univariate models
in OOS forecasts.
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Table 3: Mean squared prediction errors of economy-wide aggregate variables for alternative
forecasting models

Benchmark PVAR Random Walk AR Aggr. VAR

Euro Area real VA 0.43273 0.5692 0.42272 0.29591

VAD 0.03781 0.04463 0.04312 0.0764

ULC 0.27711 0.28712 0.3968 0.29313

PMA 0.24872 0.23071 0.3325 0.30633

Germany real VA 1.08382 1.03931 1.09863 1.1752

VAD 0.15403 0.08471 0.10242 0.3209

ULC 0.84262 0.86701 1.1070 0.84231

PMA 1.01532 0.87041 1.1815 1.10983

France real VA 0.25432 0.3722 0.28183 0.14291

VAD 0.05421 0.06903 0.06222 0.1623

ULC 0.14411 0.15102 0.1971 0.16563

PMA 0.11401 0.12832 0.1695 0.13753

Italy real VA 0.69543 0.7606 0.65592 0.36031

VAD 0.58151 0.65862 0.75953 0.9790

ULC 2.18322 2.03961 2.23113 4.1452

PMA 1.24472 1.12011 1.25133 2.5487

Spain real VA 0.19471 0.6128 0.33792 0.34943

VAD 0.39981 0.56823 0.42792 0.6236

ULC 0.74021 1.1250 0.89982 0.95183

PMA 1.18162 0.97551 1.4856 1.44643

Notes: Each entry reports the MSPE from a recursive pseudo OOS forecast exercise with

initial estimation period 1995Q1-2002Q3, based on the respective model. Superscript indices

rank forecasts according to their MSPE.
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Table 4: Mean squared prediction errors of economy-wide aggregate variables for the crisis
relative to those for the benchmark evaluation period

Horizon 1 3 6 12

Euro Area real VA 1.87 1.81 0.25 0.32

VAD 1.09 1.04 1.12 1.09

ULC 1.67 1.58 0.58 0.24

PMA 1.77 1.63 0.46 0.31

Germany real VA 1.82 1.96 0.48 0.14

VAD 1.01 1.68 1.75 0.62

ULC 1.91 1.84 0.31 0.46

PMA 1.75 1.77 0.44 0.40

France real VA 1.74 1.69 0.74 1.66

VAD 0.91 0.90 0.85 3.01

ULC 1.06 1.03 0.67 2.11

PMA 1.07 0.84 0.50 0.48

Italy real VA 1.88 1.82 0.31 0.27

VAD 0.77 0.61 0.50 0.29

ULC 0.72 0.68 0.73 0.41

PMA 0.94 0.84 0.88 0.45

Spain real VA 1.68 1.70 1.25 2.05

VAD 1.85 1.95 2.27 1.68

ULC 1.24 1.41 1.46 1.89

PMA 1.50 1.49 1.59 0.93

Notes: Each entry reports the MSPE from a recursive pseudo OOS forecast exercise with

initial estimation period 1995Q1-2008Q1 relative to the MSPE from a recursive pseudo OOS

forecast exercise with initial estimation period 1995Q1-2002Q3. Both exercises are based on

the benchmark specification of the PVAR model.

20



of the recursive forecast, changes over time are generally small. Alternatively, the estimation

period can be designed as a rolling window, i.e., in each round, the first quarter of the previous

estimation period is dropped, while a new last quarter is added, thus rolling the estimation

window forward. On the one hand, this allows for more variation in the coefficient estimates

used for OOS forecasts over time. On the other hand, it foregoes the efficiency gains from

expanding the estimation period. The trade-off between a lower bias in coefficient estimates

accommodating variations over time and higher estimation uncertainty relative to the recursive

OOS exercise will be reflected in the relative MSPE of both methods. Tables A.1 and A.2 in

Appendix A show that the MSPEs are generally larger than those in Table 2 and 3, respectively,

indicating a non-trivial role for efficiency gains in reducing the OOS forecast errors.20

Both Table 4 and Table A.3 in the appendix reveal that short-horizon forecast errors tend to

be larger during the recent crisis period, in particular for Spain. Following the global financial

crisis, the fourth largest euro area economy confronted a severe economic recession and dramatic

sectoral adjustments at the same time, affecting especially the Spanish construction sector. The

disaggregated approach in this paper could therefore add to our understanding of the role played

by cross-sector linkages in the recent economic developments in Spain.

5 Cross-Sector Linkages and the Spanish Construction Sector

This section uses the PVARX model to quantify the role of the Spanish construction sector in

generating forecast errors during the crisis. Moreover, we employ impulse response functions to

investigate how reduced-form shocks originating from the construction sector affect the other

sectors and the economy as a whole. We finally provide an extension of the PVARX model in

the country dimension in order to assess whether a shock in the Spanish construction sector is

transmitted to the other euro area economies.

Economic developments in Spain have been largely affected by the housing boom-bust cycle,

which was long and severe. This may explain why external, common factors are not sufficient

to account for the larger forecast errors observed in the previous section in the case of Spain.

House prices almost tripled between 1997 and early 2008, while the construction of housing

more than doubled from its 1995 level. The share of investment in construction increased from

15% of GDP in 1995 to 22% of GDP in 2006-2007, which represented a significant diversion of

20Note that the efficiency-gains interpretation is also consistent with a relatively lower MSPEs of the random
walk forecast, as the latter is parsimoniously parameterised, i.e. only the drift must be estimated.
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Figure 5: Time series of Spanish sector-specific component indicators of endogenous variables

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Spain

 

 

real VA VAD Employees Compensation

Figure 6: Time series of endogenous variable-specific component indicators for Spain

productive resources from the tradable sector to the non-tradable construction sector (European

Commission, 2013).

While a timid adjustment had already started in early 2007, the financial crisis triggered a

stronger correction in the Spanish housing market. The fall in house prices and the contraction

in residential investment led to severe declines in construction value added and employment.

The weight of construction in employment had increased from 9% to almost 14% from 1995 to
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2007, before declining sharply to less than 6% in 2013. Between 2008 and 2012, employment in

the Spanish construction sector dropped by 1.5 million, which represents almost half of the fall

in the total number of employed persons. The developments in the housing market and in the

construction sector might therefore have played an important role in the Spanish recession and

the sharp increase in unemployment.

Figure 5 plots the sector-specific indicators of the PVARX model for Spain, which reflect the

housing boom before the financial crisis and the subsequent triple-dip recession in construction.

The latter might have rescinded the gentle signs of recovery in industry and services in 2010 and

2011. The variable-specific indicators in Figure 6 illustrate the turmoil in the Spanish labour

market and the unprecedented drop in value added in 2009. Following a short-lived recovery in

2010, the variable indicators of value added and the number of employees have been pointing

downwards again. Surprisingly, the pronounced drop in real economic activity did not lead to

a similar reduction in Spanish price and wage levels, as measured by the indicators of VAD and

compensation per employee, respectively, which remained relatively flat throughout the crisis.

5.1 The Role of the Construction Sector in Forecast Errors during the Crisis

First, we investigate the ability of the PVAR model to forecast the Great Recession in Spain

conditional on contemporaneous and lagged observations of the exogenous variables, taking the

position of a forecaster at the start of the crisis and recursively predicting the path of the

endogenous variables. Due to the fact that we condition our forecast on realized data for world

demand, oil prices, etc., this represents a pseudo out-of-sample (POOS) forecast exercise.

Figure 7 plots the POOS forecasts of the sector-specific endogenous variables against the

realized data for 2008Q3–2012Q3, i.e., the estimation period ends in 2008Q2 and recursive

one-quarter-ahead conditional forecasts are made until the end of the full sample. A common

weakness and critique of multivariate econometric models is that they fail to forecast the Great

Recession OOS, even when conditioning on contemporaneous and past observations of the exo-

genous variables. The reason is that the strong comovement between the endogenous variables

and exogenous driving forces, such as world demand and oil prices, e.g., only emerged at the start

of the crisis. It is therefore not surprising that models estimated on the relatively calm sample

period 1995Q2–2008Q2 fail to forecast the unprecedented downturn in industrial VA after the

bankruptcy of Lehman Brothers. This is also reflected by a substantial change in parameter

values, when estimating the PVAR model with and without the crisis period included.
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Figure 7: Unconditional and conditional POOS forecasts of economy-wide Spanish variables for
2008Q3–2012Q3 (Point forecasts)

Given the developments in the Spanish construction sector during the crisis, we perform an-

other forecast exercise, in which we condition the forecasts on realized data of the endogenous

variables in the construction sector. Although this does not exactly quantify the contribution of

construction-related shocks to economy-wide forecast errors, it gives an idea about the import-

ance of forecast errors in the construction sector. Figure 7 illustrates that, once we condition

on the realized values of the latter variables, the ability of the PVARX model to track real

activity and employment dynamics in Spain during the crisis improves substantially. In the

case of employment, in particular, the forecast errors decrease by almost one half. Given that

the construction sector accounted for no more than 15% of total employment during this period,

our results indicate strong spillover effects from the former to the rest of the economy.

5.2 Impulse Response Functions

The previous analysis shows that conditioning the forecast on realised data for the construction

sector allows to reduce the forecast errors at the aggregate level. We now turn to an impulse

response analysis based on the benchmark PVAR model for the Spanish economy, in order to

quantify the spillover effects from a particular sector to the whole economy.
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Figure 8 plots the impulse response functions to a negative reduced-form innovation in real

value added in the construction sector. The dashed and dotted lines indicate approximate 68 and

95% confidence intervals based on 1,000 replications of a recursive-design wild bootstrap that

accounts for potential heteroscedasticity of unknown form in the error terms (see Gonçalves and

Kilian, 2004). Note that all impulse responses are in terms of the variables’ standard deviations.

A direct consequence of the structure imposed by factorising δ are the broadly similar impulse

response functions of variables belonging neither to the same sector nor to the same category

as the disturbed variable.

Due to the fact that we consider a reduced-form innovation, only value added in construction

responds on impact. Other variables in the same sector and the same variable in other sectors

respond with a lag of one period, while the remaining variables respond with a lag of two periods.

Note also that the point estimates of the impulse response functions are generally negative and

almost always statistically significant in the medium run. Real value added decreases also in

the other sectors. The maximum impact is reached after 3 quarters and has a magnitude of

around one tenth of the initial decline in the construction sector.

As a consequence, the other variables also adjust downwards. In particular, in all sectors but

agriculture, prices (i.e. VAD) remain significantly below baseline over the horizon considered.

To get a better understanding of how cost pressures affect price responses, Figure 8 also shows

the impacts of the decrease in construction VA on the cost components, i.e. unit labour costs

and profit margins.21 Due to the decline in real activity, unit labour costs in the construction

sector jump on impact. This is fully compensated by a fall in profit margins, as prices remain

unchanged at the time of the shock.

The same patterns are also reflected in the other sectors, with some delay. To avoid strong

price adjustments, firms tend to absorb higher labour cost, arising from the immediate fall

in productivity with relatively sticky wages, by cutting their profit margins. It is interesting

to note that, because downward wage adjustments are stronger in the services sector than in

industry, unit labour costs fall short of the baseline after one year in the former, whereas they

remain elevated throughout the simulation horizon in the latter. As a result, profit margins

slightly increase above baseline after a few quarters in the services sector, whereas they remain

below baseline in industry.

21Similarly to the forecast evaluation, we compute and plot impulse response functions for unit labour costs
(ULC = Number of Employees·Compensation per Employee

Real Value Added
) and profit margins (PMA = V AD − ULC).
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Figure 8: Impulse response functions of Spanish variables to a one-standard-deviation shock to total
real VA in Spanish construction (Point estimates with one- and two-standard error confidence intervals)

As a caveat, it must be pointed out that there is very little economic interpretation to the

reduced-form innovations in Figures 8. Instead, the purpose of this exercise is to show that the

PVARX model allows for a transmission of shocks between sectors. In order to account for static

interdependencies, we would have to identify structural innovations by imposing identifying

restrictions on the contemporaneous covariance matrix Σ̂e of the reduced-form innovations ei,t,

as in Canova et al. (2012). Maurin et al. (2011) identify structural shocks in a VAR including

the same variables based on a recursive decomposition with employment ordered first, reacting

instantaneously only to idiosyncratic shocks and with lag to all other shocks, followed by wages,

prices and output. We abstain from this approach here, because (i) any ordering is questionable

and (ii) finding a plausible extension to a multi-sector VAR model, where there is no theoretical

motivation for ordering either the variables or the sectors, is even more difficult.

5.3 Assessing Spillovers Between Countries: A Multi-Country Extension

The PVAR model presented above captures a cross-section ofN = 4 sectors andK = 4 variables.

Our applications to Spanish sector-level data can be enriched by adding a country dimension to

the model in order to allow for dynamic dependencies between the different euro area countries.
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5.3.1 A Multi-Country PVAR Model

In equation (1), Yt now corresponds to a (C · N ·K × 1) vector of endogenous variables, ν to

a (C ·N ·K × 1) vector of intercepts, Aj , j = 1, . . . , p are (C ·N ·K × C ·N ·K) matrices of

slope coefficients, and et ∼ iid(0,Σe) is a (C ·N ·K × 1) vector of possibly contemporaneously

correlated reduced-form disturbances.

Letting yc,i,t denote the (K × 1) vector of endogenous variables for country c and sector i in

period t and Yt = (y′1,1,t, y
′
1,2,t, . . . , y

′
2,1,t, y

′
2,2,t, . . . , y

′
C,N,t)

′ denote the (C · N ·K × 1) vector of

stacked yc,i,t, c = 1, . . . , C, i = 1, . . . , N , we can write the PVARX model in (3) and (4) for C

countries as

yc,i,t = ν1ci +

p∑
l=1

Al,c,iYt−l +

q∑
l′=0

Bl′,c,iXt−l′ + e1ci,t (11)

Xt = ν2 +

px∑
l=1

ClXt−l + e2,t, (12)

where Bl′,c,i, l
′ = 0, . . . , q are (K ×M) matrices of exogenous coefficients, and e1ci,t and e2,t are

assumed to be uncorrelated.

The specification of the multi-country PVAR model is identical to the one for Spain, except

that we include a (C × 1) vector θ5 of country-specific components in the endogenous variables

in addition to θ1, . . . , θ4 from Section 3.

Before considering the impulse responses to an innovation in the Spanish construction sector,

we want to investigate how this multi-country version of the PVARX model performs relative

to the country-specific models in terms of its out-of-sample forecast accuracy. For this purpose,

Table 5 reports the MSPEs of the multi-country PVARX relative to those of the individual

country models. In general, the relative MSPEs are larger than unity, indicating larger forecast

errors of the multi-country PVARX model, on average over the evaluation period. Accordingly,

the country-specific approach seems to be superior from the point of view of forecast accuracy.

Nevertheless, the multi-country PVARX model enables us to quantify the spillover effects of

country- and sector-specific disturbances to the other sectors within the same country as well as

to sectors in the country’s euro area neighbours. Moreover, the extension allows us to illustrate

the informational content in the country-specific endogenous variables.
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Table 5: Mean squared prediction errors of economy-wide aggregate variables for the multi-
country PVAR model relative to those for the country-specific models

Horizon 1 3 6 12

Germany real VA 0.82 1.32 1.72 4.82

VAD 1.04 1.79 2.93 6.47

ULC 0.95 1.17 1.16 1.52

PMA 0.93 1.26 1.33 3.08

France real VA 1.20 1.30 1.47 2.76

VAD 0.88 0.94 1.56 2.01

ULC 1.07 0.96 1.02 0.48

PMA 1.09 1.36 2.04 4.18

Italy real VA 0.81 1.42 1.82 4.15

VAD 1.21 1.64 2.40 11.41

ULC 1.10 1.18 1.24 4.02

PMA 0.98 1.03 1.11 1.27

Spain real VA 1.31 1.02 0.92 1.70

VAD 1.09 0.97 1.09 2.01

ULC 0.88 0.91 0.81 0.78

PMA 0.84 0.85 0.87 1.14

Notes: Each entry reports the MSPE from a recursive pseudo OOS forecast exercise for the

multi-country PVAR model relative to results for the benchmark specification of the

country-specific models, all with initial estimation period 1995Q1-2008Q2.
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5.3.2 Illustrative Results

Figure 9 plots the country-specific component indicators for France, Germany, Italy, and Spain,

based on the benchmark specification of the multi-country PVAR model. The graph illustrates

several interesting developments before and during the Great recession. First, it reflects Ger-

many’s relatively low and Spain’s comparatively high economic growth rates before the crisis as

well as the German catch-up after 2005. Second, we can clearly see the increased comovement

of country-specific indicators starting during 2008-2009 as well as the diverse paths of recovery

in these four countries. Third, we detect the renewed sharp decline in the Spanish and, to a

lesser extent, in the Italian economy in 2012, which largely undid the previous mild recoveries.

Thus, the figure is again highly informative about the evolution of economic activity in the

largest euro area countries during the sample period.

Figure 10 plots the impulse response functions of all C · N ·K = 64 endogenous variables

for horizons 1,...,15 to a reduced-form innovation in VA in the Spanish construction sector. The

purpose of this exercise is to illustrate that shocks are transmitted between the different sectors

within a country as well as between sectors in different countries, at least within the euro area.

Hence, the multi-country PVARX model captures the dynamic interdependencies in both the

sector and the country dimension. Note that, although the spillover effects are quantitatively

small, they are almost always statistically significant (at an approximate 68 and 95% confidence

level) for an extended period. By construction, there are parallels between the impulse response
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Figure 9: Time series of country-specific component indicators of endogenous variables
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Figure 10: Impulse response functions of selected variables to a one-standard-deviation shock to total
real VA in Spanish construction based on the multi-country PVAR model (Point estimates with one-
and two-standard error confidence intervals)

functions of the same variables or variables in the same sector across countries. In comparison

with the country-specific model, the multi-country PVARX model leads to more persistent

responses. In particular, the impact on prices seems to be permanent in most cases.
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Figure 11: Impulse response functions of selected variables to a one-standard-deviation shock to total
real VA in Spanish construction based on the multi-country PVAR model (Point estimates with one-
and two-standard error confidence intervals)

At the aggregate level (see Figure 11), a negative one-standard-deviation innovation in total

real VA in the Spanish construction sector, i.e. a decline by around 2%, leads to an immediate

decrease in economy-wide total real VA of around 0.1%. The VAD is affected permanently,

with a maximum impact after 2 quarters. As for the country-specific model, the price response

induces a decline of profit margins in the short term, which more than offsets the increase

in ULC coming from the reduction in value added. In the medium term, profit margins are

gradually restored, as real activity returns to the baseline. In contrast, the shock affects ULC

permanently, as employment remains below the baseline. The response of ULC also explains

the persistent effect on VAD.

The impulse responses of Spanish variables are transmitted to the other euro area countries

through cross-country linkages, which in turn amplify the direct effects on the Spanish economy.

Indeed, when comparing the results from the country-specific model in Figure 8 with those in

Figure 11, the responses of total real VA and VAD are larger and more persistent for the

multi-country PVARX model.

As mentioned before, our model cannot account for possible changes in the transmission of

shocks between variables, sectors and countries over time. Using a time-varying PVAR model of
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six macroeconomic time series for ten European countries, however, Canova et al. (2012) show

that the transmission of German and U.S. real GDP shocks to the growth rates of the other

countries is largely constant in terms of its sign and shape between 1998Q3 and 2002Q1, and

thus over a crucial part of our sample period, while there is some variation in the magnitude

of the responses. Unfortunately, a robustness check similar to the rolling-window OOS forecast

exercise is not available here.

6 Concluding Remarks

In this paper we propose the use of a PVAR approach to analysing and forecasting price dynam-

ics from a sectoral perspective. Focusing on sector-level data enables us to take into account

cost-push factors from the supply side. The PVAR models are estimated for four economic

sectors – industry, services, construction and agriculture – in the euro area and its four largest

member countries. By modelling prices together with real activity, employment and wages, we

are able to decompose price dynamics into unit labour costs and profit margins.

Our modelling strategy proves to be more accurate than simple time-series approaches in out-

of-sample forecasting. The disaggregated approach also performs well relative to direct forecasts

of the aggregate variables. While the forecast accuracy of the PVAR model is satisfactory

overall, forecast errors tend to be larger during the financial crisis period. Among the euro area

countries considered, the mean squared prediction errors are particularly large for Spain. Given

that the Spanish economy was confronted with severe structural changes due to the burst of

the housing bubble, we further employ the PVAR model to illustrate the transmission of shocks

originating from the construction sector to the rest of the economy and, in a multi-country

extension, to the other euro area economies.

We find the PVAR approach to be useful both for forecasting purposes and as an analytical

tool. An important advantage is that it can easily be extended to include additional sectors

or countries as well as more disaggregated data. Given a longer sample period, a time-varying

parameter version, as proposed in Canova and Ciccarelli (2009), could account for structural

changes in the interdependencies within and between sectors. It is furthermore important to

note that the OOS forecast exercise in this paper is not equivalent to a real-time forecasting

experiment. Besides the fact that the OOS forecasts are conditional on realized rather than

predicted observations of the exogenous variables, the PVARX and all other candidate models
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are estimated using ex-post revised rather than real-time data vintages. Given that the GDP

and VA deflator are subject to more important revisions than HICP, the results presented here

might be less general than those in Hubrich (2005) and Benalal et al. (2004). A real-time PVAR

analysis is complicated by the fact that the data for the euro area are in changing composition

and that base years change across data vintages, to name just two. As a consequence, we leave

these extensions for future research.
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Appendix A. Rolling-Window OOS Forecast Performance

Table A.1: Relative MSPEs of economy-wide aggregate variables for alternative factorizations
of the parameter vector δ

Benchmark Model A Model B Model C Model D Model E

Euro Area real VA 0.9741 0.9465 0.9482 0.9751 0.8683 0.8224

VAD 1.1560 1.1329 1.1357 1.1071 1.1079 1.3541

ULC 1.0347 1.0478 1.0079 1.0305 1.0041 1.0190

PMA 0.9455 0.9294 0.9444 0.9621 0.9805 0.8526

Germany real VA 1.0686 1.0660 0.9257 1.3084 1.0283 0.8818

VAD 1.0072 0.9524 1.0516 3.5716 0.9687 1.1372

ULC 1.0314 1.0500 0.9711 1.5473 0.9950 1.0190

PMA 1.1045 1.1091 0.8943 1.9537 1.0374 0.9683

France real VA 1.0666 0.9822 1.0428 1.0077 0.9804 1.1829

VAD 1.0663 1.3626 1.1614 1.1570 0.9857 0.9982

ULC 0.9420 0.9828 0.9391 1.0283 0.9550 0.9297

PMA 1.1343 1.0605 1.2045 1.1100 1.0044 1.1501

Italy real VA 1.0095 0.9839 1.0046 0.8848 0.9911 0.9307

VAD 1.1012 1.1234 1.1188 1.0968 1.0698 1.0972

ULC 1.0952 1.1151 1.0684 1.1299 1.0105 1.0946

PMA 1.0679 1.0631 1.0017 1.0830 0.9732 1.0651

Spain real VA 1.1103 1.1490 1.1118 0.9882 091040 1.0538

VAD 1.1318 1.3240 1.0034 1.1312 1.1409 1.1814

ULC 1.1685 1.2533 0.9995 1.2273 1.1333 1.2189

PMA 1.0812 1.0638 0.9592 1.1270 1.0210 1.0756

# parameters θ 30 31 14 26 26 36

# parameters δ 720 720 720 720 720 720

Notes: Each entry reports the MSPE from a pseudo OOS forecast exercise with a rolling

estimation window of 30 quarters relative to the recursive equivalent with initial estimation

period 1995Q1-2002Q3.
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Table A.2: Relative MSPEs of economy-wide aggregate variables for alternative forecasting
models

Benchmark PVAR Random Walk AR Aggr. VAR

Euro Area real VA 0.9742 0.8940 1.0921 1.3404

VAD 1.1560 0.9751 1.0910 4.5111

ULC 1.0347 0.9847 1.1851 2.9342

PMA 0.9455 1.0046 1.1147 1.1646

Germany real VA 1.0686 0.9845 1.2194 1.2071

VAD 1.0072 0.8653 0.8582 1.5045

ULC 1.0314 0.9994 1.2938 1.5301

PMA 1.1045 1.0532 1.3895 1.7234

France real VA 1.0666 0.8946 1.0377 2.3005

VAD 1.0663 0.9952 1.0483 1.2454

ULC 0.9420 0.9612 0.9532 1.1408

PMA 1.1344 1.0016 0.9273 3.0104

Italy real VA 1.0095 0.9139 1.0047 1.9569

VAD 1.1012 0.7469 0.6176 1.8584

ULC 1.0953 0.9769 0.9191 2.9524

PMA 1.0679 0.9678 1.1144 2.8134

Spain real VA 1.1103 0.7861 0.9171 2.6526

VAD 1.1318 0.9715 1.1140 2.6470

ULC 1.1685 0.9123 1.1848 3.9147

PMA 1.0812 1.0164 1.1439 3.2988

Notes: Each entry reports the MSPE from a pseudo OOS forecast exercise with a rolling

estimation window of 30 quarters relative to the recursive equivalent with initial estimation

period 1995Q1-2002Q3.
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Table A.3: Relative MSPEs of economy-wide aggregate variables for the crisis relative to those
for the benchmark evaluation period

Horizon 1 3 6 12

Euro Area real VA 1.87 1.63 0.24 0.37

VAD 0.96 0.75 0.81 0.84

ULC 1.57 1.34 0.51 0.23

PMA 1.84 1.51 0.39 0.31

Germany real VA 1.73 1.39 0.39 0.11

VAD 0.77 1.75 2.18 0.46

ULC 1.84 1.66 0.23 0.43

PMA 1.62 1.53 0.40 0.38

France real VA 1.74 1.69 0.74 1.66

VAD 0.91 0.90 0.85 3.01

ULC 1.06 1.03 0.67 2.11

PMA 1.07 0.84 0.50 0.48

Italy real VA 1.77 1.69 0.34 0.27

VAD 0.74 0.56 0.48 0.32

ULC 0.71 0.61 0.58 0.35

PMA 0.90 0.66 0.72 0.34

Spain real VA 1.53 1.77 1.89 3.80

VAD 1.71 1.67 1.40 1.40

ULC 1.24 1.65 1.91 6.62

PMA 1.47 1.71 1.94 5.48

Notes: Each entry reports the MSPE from a rolling-window pseudo OOS forecast exercise with

evaluation period starting in 2008Q3 relative to the MSPE for an evaluation period starting in

2002Q4. Both exercises are based on the benchmark specification of the PVAR model.
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