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Abstract

This paper analyzes patterns in the earnings development of young labor market en-

trants over their life cycle. We identify four distinctly different types of transition patterns

between discrete earnings states in a large administrative data set. Further, we investigate

the effects of labor market conditions at the time of entry on the probability of belonging

to each transition type. To estimate our statistical model we use a model-based clustering

approach. The statistical challenge in our application comes from the difficulty in extending

distance-based clustering approaches to the problem of identify groups of similar time series

in a panel of discrete-valued time series. We use Markov chain clustering, proposed by Pam-

minger and Frühwirth-Schnatter (2010), which is an approach for clustering discrete-valued

time series obtained by observing a categorical variable with several states. This method is

based on finite mixtures of first-order time-homogeneous Markov chain models. In order to

analyze group membership we present an extension to this approach by formulating a prob-

abilistic model for the latent group indicators within the Bayesian classification rule using a

multinomial logit model.
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1 Introduction

The competitive model of the labor market predicts that the development of individual earnings

over the life cycle follows the development of individual marginal productivity. Beside produc-

tivity related factors such as on-the-job learning and improvements in worker-firm matches over

time, shocks to aggregate labor demand – for instance due to a major recession – will also have

an impact on wage rates. In a spot labor market, however, those temporary changes in labor

demand are relately short lived and should not influence wages over prolonged periods of time.

This view has been seriously challenged both by studies on cohort size effects (Welch, 1979)

and studies on the impact of early career problems on later outcomes. The general approach

taken by these studies is to assess the initial wage or employment penalties from entering the

labor market in a bad year and to test whether this initial impact persists over time. Raaum

and Røed (2006), e.g., show for Norway that school leavers facing particularly depressed labor

market conditions at the start of their career face a higher risk of unemployment both initially

and after ten years. Oreopoulos et al. (2008) study careers of Canadian college graduates and

find a high initial wage penalty of entering in a recession, but the penalty fades away during the

first decade of a worker’s career. 1

In this paper we study a different aspect of the impact labor market entry conditions can have

on career development. We depart from the traditional strategy of modeling wage or employment

outcomes at a particular point in time and focus on mobility throughout the complete career

path instead. Thereby our aim is twofold. First, we want to identify specific career patterns that

characterize the earnings development of individuals after entry in the labor market. The idea is

to extend the traditional mover-stayer classification to a wider variety of career types. Intuitively,

some individuals may be in stable employment relationships throughout their working lives, while

others are observed in more volatile jobs; still others could be considered as social climbers with a

consistent upward mobility, while others could be characterized as losers with a high tendency of

downward mobility. Our second goal is to find out whether labor market conditions at the start

of one’s career have an impact on the type of career pursued over the lifetime. While entering
1Studies for Austria (Brunner and Kuhn, 2009), the UK (Burgess et al., 2003), Japan (Kondo, 2007), Sweden

(Kwon and Meyersson-Milgrom, 2007) or the US (Oyer, 2006; Kahn, 2009; Genda et al., 2010) use essentially the
same strategy.
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the labor market in a recession might impose an immediate penalty in the form of lower starting

wages, it might also influence the life-time career path; i.e. an individual might be characterized

by a different career-type when entering the labor market in a recession as opposed to a boom

period.

The statistical problem behind our empirical analysis consists of finding groups of similar

time series in a set or panel of time series that are unlabeled a priori. In this paper we introduce

new clustering techniques which determine subsets of similar time series within the panel. Com-

pared to cross-sections, distance-based clustering methods are rather difficult to define for time

series data. Frühwirth-Schnatter and Kaufmann (2008) demonstrated recently that model-based

clustering based on finite mixture models (Banfield and Raftery, 1993; Fraley and Raftery, 2002)

extends to time series data in quite a natural way. The crucial point in model-based cluster-

ing is to select an appropriate clustering kernel in terms of a sampling density which captures

salient features of the observed time series. Various such clustering kernels were suggested for

panels with real-valued time series observations by Frühwirth-Schnatter and Kaufmann (2008)

and Juárez and Steel (2010).

For discrete-valued individual level panel data such as the panel considered in this paper,

clustering kernels are typically based on first-order time-homogeneous Markov chain models.

For discrete-valued time series it is particularly difficult to define distance measures and model-

based clustering has been shown to be a useful alternative. Fougère and Kamionka (2003), for

instance, considered a mover-stayer model in continuous time which is a constrained mixture of

two Markov chains to incorporate a simple form of heterogeneity across individual labor market

transition data. Mixtures of time-homogeneous Markov chains both in continuous and discrete

time are also considered in Frydman (2005) including an application to bond ratings migration.

Pamminger and Frühwirth-Schnatter (2010) construct more general clustering kernels based on

first-order time-homogeneous Markov chain models to capture unobserved heterogeneity in the

transition behavior within each cluster.

In this paper we extend clustering of Markov chain models based on discrete-valued panel

data further by modeling the prior probability to belong to a certain cluster to depend on a set

of covariates via a multinomial logit model. The determinants we consider in our application

are individual characteristics, such as the type of skill and occupation, and local labor market
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characteristics at the time of entry. To deal with the initial conditions problem in our first-

order transitions model with unobserved heterogeneity, we extend the approach suggested by

Wooldridge (2005) to model-based clustering. Specifically, we allow for conditional dependence

of unobserved cluster membership on the initial states.

For estimation, we pursue a Bayesian approach which offers several advantages compared

to EM estimation considered, for instance, in Frydman (2005). In particular, Bayesian infer-

ence easily copes with problems that occur with ML estimation if for any cluster no transitions

are observed in the data for any cell of the cluster-specific transition matrix. A Bayesian ap-

proach to Markov chain clustering has been used earlier by Pamminger and Frühwirth-Schnatter

(2010), and by Fougère and Kamionka (2003) for the special case of a mover-stayer model. In

the present paper we suggest a new two-block Markov chain Monte Carlo (MCMC) sampler

for the mixture-of-experts extension of Markov chain clustering. To estimate the parameters in

the multinomial regression model describing group membership we use auxiliary mixture sam-

pling in the differenced random utility model (dRUM) representation (Frühwirth-Schnatter and

Frühwirth, 2010).

The paper is organized as follows: Section 2 introduces the data used for our empirical anal-

ysis, Section 3 describes Bayesian inference using mixtures-of-experts Markov chain clustering,

Section 4 summarizes the results, and Section 5 concludes.

2 Data

Our empirical analysis is based on data from the Austrian Social Security Data Base (ASSD),

which combines detailed longitudinal information on employment and earnings of all private

sector workers in Austria since 1972 (Zweimüller et al., 2009).

The sample we consider consists of N = 49 279 male Austrian workers, who enter the labor

market for the first time in the years 1975 to 1985 and are less than 25 years old at entry. We do

not consider females in our sample, because hours of work are not observed. For non-Austrian

citizens it is not always clear, if we can measure the entry in the labor market correctly. We

extract yearly earnings observations measured by gross monthly wages in May of successive

years and observe wages for a time span between 2 to 31 years per individual. The median

4



time an individual is observed in our panel is equal to 22 years. Following Weber (2001),

the gross monthly wage is divided into six categories labeled with 0 up to 5. Category zero

corresponds to zero-income, i.e. unemployment or out of labor force. The categories one to

five correspond to the quintiles of the income distribution which are calculated for each year

from all non-zero wages observed in that year for the total population of male employees in

Austria. The use of wage categories has the advantage that no inflation adjustment has to be

made and that it circumvents the problem that in Austria recorded wages are right-censored

because wages that exceed a social security payroll tax cap are recorded with exactly that limit

only. We cut the time series of workers after observing more than five consecutive years with

zero income, because these workers have most likely transited to self-employment or moved out

of the country. For individuals first observed in the data as apprentices, we consider their first

wage after the apprenticeship as the point of job entry, because the apprenticeship allowance is

very low compared to average wages.

As we are interested in characterizing the wage path since the first job, we are including only

pre-determined variables, like age, education and type of first job; all other variables, like job

mobility or work experience or tenure are treated as endogenous in our model. As education

is not directly available in the data, we approximate it with apprenticeship education and the

age at the start of the first job: We take young men who worked for more than 2.5 years as

apprentices, as baseline category. We consider young men entering the labor market before

their 18th birthday without having finished apprenticeship as “unskilled”. Furthermore, those

starting after their 18th birthday without finishing apprenticeship are coded as “skilled”, because

they are likely to have finished some kind of higher education such as high school or university.

Finally, we corrected these dummy variables (in 392 cases) using the information in the data

about the ’academic degree’ which is unfortunately not up-to-date due to missing or late reports

of the employees to the social security agency.

The period from 1975 to 1985 for which we observe labor market entries is characterized by

a fair amount of business cycle variation, ranging from a boom period in the mid 1970’s to the

recession in the early 1980’s. The state of the labor market is captured by the unemployment

rate across 65 counties, which is measured at the date of entry into the labor market. These

unemployment rates have a mean of 5.29 and a standard deviation of 3.68, with a standard

5



deviation between districts of 3.0 and within districts over time of 2.7.

3 Method

3.1 Mixtures-of-Experts Markov Chain Models

As for many data sets available for empirical labor market research, the structure of the data

introduced in Section 2 takes the form of a discrete-valued panel data. The categorical outcome

variable yit assumes one of K states, labeled by {1, . . . ,K}, and is observed for N individuals

i = 1, . . . , N over Ti discrete time periods, i.e. for t = 0, . . . , Ti. For each individual i, we

model the state of yit in period t to depend on the state of the past value yi,t−1. Subsequently,

yi = {yi1, . . . , yi,Ti} denotes an individual time series, excluding the initial state yi0.

3.1.1 Markov Chain Clustering

Individual level transition data can be considered as a special case of a panel of discrete-valued

time series. To capture the presence of unobserved heterogeneity on the dynamics in a panel of

discrete-valued time series, Pamminger and Frühwirth-Schnatter (2010) extended model-based

clustering as introduced by Frühwirth-Schnatter and Kaufmann (2008) to this type of time series.

They assume that H hidden clusters are present in the panel and a clustering kernel p(yi|ϑh)

with cluster-specific parameter ϑh is used for describing all time series in group h, h = 1, . . . , H,

i.e. p(yi|Si, ϑ1, . . . , ϑH) = p(yi|ϑSi), where Si ∈ {1, . . . ,H} is a latent group indicator. To

capture the discrete nature of the data, Pamminger and Frühwirth-Schnatter (2010) consid-

ered various clustering kernels p(yi|ϑh) based on Markov chains like Markov chain clustering,

Dirichlet multinomial clustering and clustering based on inhomogeneous Markov chains. They

performed an illustrative comparison of Markov chain clustering and Dirichlet multinomial clus-

tering for a smaller and less well specified version of the panel data set introduced in Section 2.

Since this comparison revealed that both methods yielded comparable results, we decided to

focus subsequently on Markov chain clustering, because Bayesian inference is computationally

less demanding, see Subsection 3.3.

Markov chain clustering is based on modeling separate transition processes for each group

through a first-order time-homogeneous Markov chain model with cluster-specific transition
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matrix ξh, where ξh,jk = Pr(yit = k|yi,t−1 = j, Si = h), j, k = 1, . . . , K. Hence each row of ξh

represents a probability distribution over the discrete set {1, . . . , K}, i.e.
∑K

k=1 ξh,jk = 1. The

clustering kernel p(yi|ξh) reads, with ϑh = ξh:

p(yi|ξh) =
Ti∏

t=1

p(yit|yi,t−1, ξh) =
K∏

j=1

K∏

k=1

ξ
Ni,jk

h,jk , (1)

where Ni,jk = #{yit = k, yi,t−1 = j} is the number of transitions from state j to state k observed

in time series i. Note that we condition in (1) on the first observation yi0 and the actual number

of observations is equal to Ti for each time series.

A special version of this Markov chain clustering method has been applied to labor market

transition data in Fougère and Kamionka (2003) who considered a mover-stayer model where

H = 2 and ξ1 is equal to the identity matrix while only ξ2 is unconstrained. Frydman (2005)

considered another constrained mixture of Markov chain models where the transition matrices

ξh, h ≥ 2, are related to the transition matrix ξ1 of the first group through ξh = I−Λh(I− ξ1)

where I is the identity matrix and Λh = Diag (λh,1, . . . , λh,K) with 0 ≤ λh,j ≤ 1/(1 − ξ1,jj)

for j = 1, . . . , K. In contrast to these approaches, Pamminger and Frühwirth-Schnatter (2010)

assume that the transition matrices ξ1, . . . , ξH are entirely unconstrained which leads to more

flexibility in capturing differences in the transition behavior between the groups.

3.1.2 Modeling Prior Group Membership

Clustering as in Pamminger and Frühwirth-Schnatter (2010) is based on the standard finite mix-

ture model which assumes that the group indicators S = (S1, . . . , SN ) are a priori independent

with Pr(Si = h) = ηh such that
∑H

h=1 ηh = 1. In the present application this assumption implies

that each individual has the same prior probability to follow a particular group-specific career

dynamic, regardless of the individual’s observable characteristics or the circumstances at labor

market entry.

To obtain a more meaningful model for the data introduced in Section 2, an extension of

model-based clustering for discrete-valued panel data which allows pre-determined variables to

impact on group membership is suggested in this subsection. Specifically, we model prior group
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membership Pr(Si = h) through a multinomial logit model (MNL) for S:

Pr(Si = h|β2, . . . , βH) =
exp (xiβh)

1 +
∑H

l=2 exp (xiβl)
, (2)

where xi is a row vector of regressors, including 1 for the intercept and β2, . . . ,βH are group-

specific unknown regression coefficients. For identifiability reasons we set β1 = 0, which means

that h = 1 is the baseline group and βh is the effect on log-odds ratio relative to the baseline.

This model is known as mixture-of-experts models, see e.g. Frühwirth-Schnatter (2006, Sec-

tion 8.6.3) and has been applied in many different areas, among them speech recognition (Peng

et al., 1996), modeling portfolio defaults (Banachewicz et al., 2008) and modeling voting be-

havior (Gormley and Murphy, 2008). Mixture-of-experts models yield important insights into

the factors that determine group membership of a certain individual (Frühwirth-Schnatter and

Kaufmann, 2008). Model (2) allows us to capture the influence of individual characteristics,

cohort effects, or labor market conditions that are determined at the time of entry in the labor

market on group membership and thereby on mobility patterns. As will be demonstrated in

Subsection 3.1.3, the mixture-of-experts extension allows us in addition to deal with the ini-

tial conditions problem present in discrete-valued dynamic panels by adding the initial wage

category to the set of regressors appearing in xi.

3.1.3 A Simple Solution to the Initial Conditions Problem

Inference in Pamminger and Frühwirth-Schnatter (2010) is carried out conditional on the initial

condition yi0, by treating this variable as exogenous. In our dynamic model with unobserved

heterogeneity this assumption implies that the initial period earnings yi0 are independent of

group membership Si, which is apparently a very unsatisfactory assumption.

There is a long literature discussing the problem with initial conditions in non-linear dynamic

models with unobserved heterogeneity. The key issue is to allow for dependence between the

initial state yi0 and the latent variable Si capturing unobserved heterogeneity. See Heckman

(1981) for an early reference and Wooldridge (2005) for a recent review. These papers focus

on models where unobserved heterogeneity is captured through an individual effect Si following

a continuous distribution. However, the initial conditions problem is also relevant for the case
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where Si follows a discrete distribution as for model-based clustering in a transition model and

has to be addressed properly.

To handle the initial conditions problem for the discrete case, we formulate the joint distri-

bution of yi0, . . . , yi,Ti and Si in a way that separates the choice of the clustering kernel density

p(yi1, . . . , yi,Ti |yi0, ϑSi) which is formulated conditional on yi0 and Si from the choice of a joint

model for yi0 and Si:

p(yi0, . . . , yi,Ti , Si|θ) = p(yi1, . . . , yi,Ti |yi0, ϑSi)p(yi0, Si|θ), (3)

where θ contains all unknown model parameters. There are two ways of factorizing the joint

distribution p(yi0, Si|θ) for yi0 and Si:

p(yi0, Si|θ) = p(yi0|Si, θ)p(Si|θ), (4)

p(yi0, Si|θ) = p(Si|yi0, θ)p(yi0|θ). (5)

Factorization (4) specifies a model for yi0 conditional on Si and a marginal model for Si and

extends the specification suggested by Heckman (1981) for continuous Si to the discrete case.

For continuous Si, Heckman (1981) suggested to specify p(yi0|Si, θ) as a MNL model. To extend

this approach to discrete unobserved heterogeneity, the parameters in this MNL model have to

be group-specific that is switching with Si to achieve dependence between yi0 and Si. However,

we expect to run into problems with parameter identification following this approach, because

in certain groups we may find only very few individuals in certain initial states. An alternative

approach to choose p(yi0|Si,θ) in factorization (4) relies on the existence of a stationary dis-

tribution π∞(y; Si, θ) for a known value of Si and assumes that the initial value is drawn from

the stationary distribution, i.e. p(yi0|Si, θ) = π∞(yi0; Si,θ). In our case, π∞(y; Si,θ) is easily

derived as the stationary distribution of the group specific transition matrix ξSi
, however, it is

unattractive to assume that starting wages are drawn from a stationary wage distribution.

For this reason, we prefer the second factorization (5) which specifies a model for unobserved

heterogeneity Si conditional on a given initial condition yi0 and a marginal model for yi0 and

extends the “simple solution to the initial conditions problem” suggested by Wooldridge (2005)
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for continuous Si to the discrete case. In terms of our clustering procedure this means that the

MNL model used for modeling Si in (2) “simply”has to be extended such that it also depends

on the initial conditions yi0. This is achieved by adding indicator variables for the initial states

to the covariate matrix xi of the MNL model introduced in (2).

Our approach is directly related to Wooldridge (2005)’s treatment of the Maximum Likeli-

hood case, where he models the mean of the random intercept distribution as being dependent

on the initial state. Under the assumption that p(Si|xi, θ1) and p(yi0|θ2) have no common pa-

rameters, the marginal distribution p(yi0|θ2) need not be specified explicitly, because it cancels

from all posterior distributions.

3.2 Model Specification

We specify the model for earnings dynamics of labor market entrants as a first-order Markov

model with group-specific transition parameters, i.e. Pr(yit = k|yi,t−1 = j, Si = h) = ξh,jk. The

estimated parameters are ξh,jk with j, k ∈ {1, . . . , K} and h = 1, . . . ,H. Our model treats the

group membership indicator Si and the number of different groups H as latent parameters. See

Subsection 3.4 for the procedure used to determine H.

Group membership, or Pr(Si = h), is modeled by the multinomial logit model as in equation

(2) based on a set of regressors wi with group-specific regression coefficients αh. To address the

initial conditions problem we model Pr(Si = h|wi, yi0) as outlined in Subsection 3.1.3. We extend

the list of covariates by variables zi that capture the relationship of unobserved heterogeneity

with the initial earnings categories yi0:

Pr(Si = h|wi, zi) =
exp (wiαh + ziγh)

1 +
∑H

l=2 exp (wiαl + ziγl)
. (6)

This model has the form of a mixture-of-experts as in (2) with regressors xi = (zi,wi) and

regression coefficients βh = (αh,γh). The estimated parameters are αh and γh.

Our choice of variables w includes factors that are fixed at the time of labor market entry

and which we assume to be relevant for the determination of earnings mobility. We therefore

include individual characteristics such as education and the type of occupation as well as cohort

effects, expressed by a set of dummies for the year of labor market entry. The central variable
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measuring labor market characteristics at the time of entry is the unemployment rate in the

region and the year of labor market entry.

To allow for correlation of the unobserved group membership with initial earnings, the vari-

ables z are chosen to include a set of indicators for the initial wage category. Our model

specification implies that the only way that covariates impact on earnings trajectories is via

their effect on group membership. To allow for additional flexibility in the relationship between

covariates and initial earnings we include interaction terms between the regional unemployment

rate and earnings categories in the initial period in zi. We experimented with even more flexible

specifications, such as interactions of the initial earnings categories with education or leads and

lags or the unemployment rate. But they did not improve the fit of the model and are thus not

reported here.

3.3 Bayesian Inference for a Fixed Number of Clusters

In this paper we pursue a Bayesian approach toward estimation for fixed H. S is estimated along

with the group-specific transition matrices ξ1, . . . , ξH and regression coefficients β2, . . . ,βH from

the data.

3.3.1 Prior Distributions

We assume prior independence between ξ1, . . . , ξH and β2, . . . , βH . All regression coefficients

βhj are assumed to be independent a priori, each following a standard normal distribution. The

K rows ξh,1 ·, . . . , ξh,K · of ξh are independent a priori each following a Dirichlet distribution,

i.e. ξh,j · ∼ D (e0,j1, . . . , e0,jK) with prior parameters e0,j· = (e0,j1, . . . , e0,jK) = N0 · ξ∗j · where

N0 = 10 and

ξ∗ =




0.7 0.2 0.025 0.025 0.025 0.025

0.15 0.6 0.15 0.03̇ 0.03̇ 0.03̇

0.03̇ 0.15 0.6 0.15 0.03̇ 0.03̇

0.03̇ 0.03̇ 0.15 0.6 0.15 0.03̇

0.03̇ 0.03̇ 0.03̇ 0.15 0.6 0.15

0.025 0.025 0.025 0.025 0.2 0.7




.
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The choice of this prior takes into account that to stay in the same wage category is much more

likely than a transition to another wage category and transitions into adjacent categories are

more likely than into the other categories.

3.3.2 MCMC Estimation

For practical Bayesian estimation we apply Markov chain Monte Carlo (MCMC) methods and

extend the sampler discussed by Pamminger and Frühwirth-Schnatter (2010) to the mixtures-

of-experts formulation introduced in (2). For details on MCMC inference in general, we refer to

standard monographs like Geweke (2005) and Gamerman and Lopes (2006).

First, a step is added to sample the regression coefficients appearing in (2) conditional on

knowing S. Second, model (2) determines prior group membership in the classification step:

(a) Sample the cluster-specific transition matrices ξ1, . . . , ξH given S. The various rows ξh,j ·

of the transition matrices ξ1, . . . , ξH are conditionally independent and may be sampled

line-by-line from a total of KH Dirichlet distributions:

ξh,j ·|S,y ∼ D
(
e0,j1 + Nh

j1(S), . . . , e0,jK + Nh
jK(S)

)
j = 1, . . . , K, h = 1, . . . , H, (7)

where Nh
j1(S) =

∑
i:Si=h Ni,jk is the total number of transitions from j to k observed in

group h and is determined from the transitions Ni,jk for all individuals falling into that

particular group.

(b) Sample the regression coefficients β2, . . . ,βH conditional on S from the posterior distri-

bution p(β2, . . . ,βH |S), where the likelihood p(S|β2, . . . ,βH) is obtained from the multi-

nomial logit model (2).

(c) Bayes’ classification for each individual i: draw Si, i = 1, . . . , N from the following discrete

probability distribution which combines the likelihood p(yi|ξh) and the prior (2)

Pr(Si = h|yi,xi,β, ξ1, . . . , ξH) ∝ p(yi|ξh)
exp (xiβh)

1 +
∑H

l=2 exp (xiβl)
, h = 1, . . . , H. (8)

To sample the regression coefficients in step (b), we apply auxiliary mixture sampling in the

differenced random utility model (dRUM) representation as introduced by Frühwirth-Schnatter
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and Frühwirth (2010), see Appendix A for details. This method turned out to be superior to

other MCMC methods for MNL models such as Frühwirth-Schnatter and Frühwirth (2007),

Scott (2010) and Holmes and Held (2006) in terms of the effective sampling rate.

We start MCMC estimation by choosing initial values for the group-indicators S in one of

the following ways: non-random initial clustering such as S = (1, . . . ,H, 1, . . . ,H, . . .), random

initial clustering by sampling Si from (1, . . . , H) with replacement, or k-means clustering (as

implemented in R) of the transition frequencies observed for each individual.

3.3.3 Dealing with Label Switching

As for any finite mixture model, label switching may occur during MCMC sampling, see Jasra

et al. (2005) or Frühwirth-Schnatter (2006, Section 3.5) for a recent review. Frühwirth-Schnatter

(2006, p. 96f) and, more recently, Frühwirth-Schnatter (2011) identifies a standard finite mixture

model by applying k-means clustering to all MH posterior draws of a sub-vector θh of the group-

specific parameter ϑh. Provided that the mixture model is not overfitting the number of clusters,

the classification sequence ρm corresponding to (θ(m)
1 , . . . , θ

(m)
H ) is a permutation of {1, . . . , H}

which is used to relabel the group indicators S(m), the group-specific parameters ϑ
(m)
1 , . . . , ϑ

(m)
H ,

and the weight distribution η(m) appearing in a standard finite mixture model.

Pamminger and Frühwirth-Schnatter (2010) applied this labeling strategy based on the sub-

vector θh = (ξh,11, . . . , ξh,KK)
′
containing the group-specific persistence probabilities to Markov

chain clustering. The same subvector turns out to be sensible also for the mixture-of-experts

extension. However, some care must be exercised when relabeling the regression coefficients

in the MNL model instead of the weight distribution. For each m, we search for the draw g

which serves as baseline in the identified model, i.e. ρm(g) = 1. To ensure that the regression

coefficient of the baseline in the identified model is 0, we subtract β
(m)
ρm(g) from all coefficients

β
(m)
1 , . . . ,β

(m)
H including β

(m)
1 = 0 before relabeling the resulting coefficients according to ρm.

3.4 Selecting the Number of Clusters

Despite much research effort, it is still an open issue how to select the number H of clusters

in an optimal manner. The difficulties with identifying H are particularly well-documented for

the BIC criterion (Schwarz, 1978) defined by BIC(H) = −2 log p(y|θ̂H) + dH log n, where θ̂H

13



is the ML estimator of θH = (ξ1, . . . , ξH , β2, . . . ,βH), p(y|θH) denotes the likelihood function,

θ̂H is the ML estimator, and dH is the number of parameters in a model with H clusters. Since

the mixture-of-experts model is applied to panel data it is not obvious how to choose the sample

size n (Kass and Raftery, 1995). As each time series is modeled independently, the number N of

time series is a natural choice for the sample size, i.e. n = N . On the other hand, since multiple

observations are available for each time series, one might prefer the total number of observations

as sample size, i.e. n =
∑N

i=1 Ti.

The AIC criterion (Akaike, 1974) defined by AIC(H) = −2 log p(y|θ̂H)+2 dH is independent

of the sample size, but is well-known to be inconsistent and leads to overfitting the number of

clusters H. BIC(H) is known to be consistent for the number of components, if the component

density is correctly specified (Keribin, 2000), although in small data sets it tends to choose

models with too few components (Biernacki et al., 2000). On the other hand, simulation studies

reported in Biernacki and Govaert (1997), Biernacki et al. (2000), and McLachlan and Peel (2000,

Section 6.11) show that BIC(H) will overrate the number of clusters under misspecification of

the component density.

Since BIC(H) is an asymptotic approximation to minus twice the marginal likelihood

−2 log p(y|H), see e.g. Kass and Raftery (1995), it is not surprising that selecting H as to

maximize the marginal likelihood p(y|H) or the posterior probability distribution p(H|y) ∝
p(y|H)p(H) may not be adequate either, as demonstrated in various applications of model-

based clustering, see e.g. Frühwirth-Schnatter and Pyne (2010).

A criterion that was found to be able to identify the correct number of clusters even when

the component densities are misspecified is the approximate weight of evidence AWE(H) (Ban-

field and Raftery, 1993). Biernacki and Govaert (1997) expressed AWE(H) as a criterion

which penalizes the complete data log-likelihood function p(y,S|θH) with model complexity, i.e

AWE(H) = −2 log p(y, Ŝ|θ̂C

H) + 2 dH(3
2 + log n), where (θ̂

C

H , Ŝ) maximizes log p(y,S|θH).

Various criteria involve the entropy EN(H, θH) = −∑H
h=1

∑N
i=1 tih(θH) log tih(θH), where

tih(θH) = Pr(Si = h|yi,θH) is the posterior classification probability defined in (8). The

entropy is close to 0 if the resulting clusters are well-separated and increases with increasing

overlap of the clusters. The CLC criterion (Biernacki and Govaert, 1997), for instance, penalizes

the log likelihood function by the entropy rather than by model complexity, i.e. CLC(H) =
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−2 log p(y|θ̂H) + 2EN(H, θ̂H). However, the CLC criterion works well only for well-separated

clusters with a fixed weight distribution, hence its properties are not known for the more general

mixture-of-experts model.

The ICL-BIC criterion (McLachlan and Peel, 2000) penalizes the log likelihood function

both by model complexity and the entropy, i.e. ICL-BIC(H) = BIC(H)+2EN(H, θ̂H). Simu-

lation studies in McLachlan and Peel (2000, Section 6.11) indicate that ICL-BIC may identify

the correct number of clusters for (multivariate) continuous data even under a misspecified

multivariate normal clustering kernel. However, simulation studies in Biernacki et al. (2010)

show that this criterion tends to fail for discrete-valued data, even if the true model is used as

clustering kernel.

For discrete-valued data, Biernacki et al. (2010) recommend to use the (exact) integrated

classification likelihood (ICL) which is defined as ICL(H) =
∫

p(y, Ŝ|θH)p(θH |y)dθH , where

p(y,S|θH) is the complete-data likelihood function and Ŝ corresponds to the allocations which

are determined based on the maximum posterior classification probabilities (see last paragraph

in Subsection 4.1). This criterion showed good performance for latent class models. For Markov

chain clustering with the mixture-of-expert extension ICL(H) reads:

ICL(H) = p(Ŝ)
K∏

j=1

(
Γ(

∑K
k=1 e0,jk)∏K

k=1 Γ(e0,jk)

)H H∏

h=1

∏K
k=1 Γ(Nh

jk(Ŝ) + e0,jk)

Γ(
∑K

k=1(N
h
jk(Ŝ) + e0,jk))

, (9)

where the integral p(Ŝ) =
∫

p(Ŝ|β2, . . . ,βH)p(β2, . . . , βH)dβ2, . . . , βH is approximated by im-

portance sampling where for each h = 2, . . . , H a multivariate normal distribution is used as

a proposal density for βh where the mean and covariance matrix are set to the corresponding

MCMC sample estimates.

4 Results

To identify groups of individuals with similar wage career, we applied Markov chain clustering

for 2 up to 5 groups. For each number H of groups we simulated 10 000 MCMC draws after a

burn-in of 5 000 draws with a thinning parameter equal to 5.
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4.1 Model Selection and Clustering

The model selection criteria described in Section 3.4 are applied to select the number H of

clusters, see Figure 1.

AIC and BIC decrease with increasing H and suggests at least 5 components. However, as

outlined in Section 3.4, we cannot expect that the Markov chain model is a perfect description

of the cluster-specific distribution for time series in a real data panel. Thus it is likely that BIC

is overfitting and that two or even more components in the mixture model correspond to a single

cluster with rather similar transition behavior.

This hypothesis is supported by the other criteria; all of which suggest a smaller number of

clusters. The evaluation of these criteria is based on approximate ML estimators θ̂H and (θ̂
C

H , Ŝ)

derived from all available MCMC draws. To check the stability of model choice we repeated

several independent MCMC runs (see Figure 1). CLC and ICL-BIC indicate three clusters

for different MCMC runs. Particularly the (exact) ICL suggests two clusters. However, the

AWE refers to a four-group solution which has also more importance from an economic point

of view. We can easily interpret four different wage-mobility groups, which are characterized by

the trend over time and the variability of earnings: an “upward”, a “downward” group as well

as a “static” and a “mobile” group.

In the following, we concentrate on the four-cluster solution in more detail because this

solution led to more sensible interpretations from an economic point of view. The model is

identified as described in Subsection 3.3.3 by applying k-means clustering to the MCMC draws.

All classification sequences resulting from k-means clustering turned out to be permutations of

{1, . . . , 4} and allowed straightforward identification of the four-component model.

Individuals are assigned to the four wage mobility groups using the posterior classifica-

tion probabilities tih(θH) = Pr(Si = h|yi, θH) for H = 4. The posterior expectation t̂ih =

E(tih(θ4)|y) of these probabilities is estimated by evaluating and averaging tih(θ4) over the last

10 000 MCMC draws of θ4 with a thinning parameter equal to 5 (with effectively 2000 draws

remaining). Each employee is then allocated to that cluster which exhibits the maximum pos-

terior probability, i.e. Ŝi is defined in such a way that t̂i,Ŝi
= maxh t̂i,h. The closer t̂i,Ŝi

is to 1,

the higher is the segmentation power for individual i.
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4.2 Estimation Results

4.2.1 Analyzing Wage Mobility

To analyze wage mobility in the different clusters we investigate for each h = 1, . . . , 4 the pos-

terior expectation of the group-specific transition matrix ξh. The four group-specific transition

matrices are visualized in Figure 2 using “balloon plots” 2. The circles are proportional to the

size of the corresponding entry in the transition matrix. Based on these transition matrices, we

assign a labeling to each cluster, namely “upward”, “static”, “downward” and “mobile”.

A remarkable difference in the transition behavior of individuals belonging to different clus-

ters is evident from Figure 2. Consider, for instance, the first column of each matrix containing

the risk for an individual in income category j to drop into the no-income category in the next

year. This risk is much higher for the “downward” cluster than for the other clusters.

The probability to remain in the no-income category is located in the top left cell and is

again higher in the “downward” cluster than in the other ones. The remaining probabilities in

the first row correspond to the chance to move out of the no-income category. These chances are

smaller for the “downward” cluster than for the other clusters. In the “upward” cluster chances

are high to move into any wage category while in the “static” cluster only the chance to move

to wage category one is comparatively high.

For all matrices, the main diagonal refers to the probabilities to remain in the various wage

categories. Persistence is highest in the “static” cluster. Members of the “mobile” cluster

move quickly between the various wage categories. The upper secondary diagonal represents the

chance to move forward into the next higher wage category, which is higher in the “upward” and

“mobile” cluster than in the other clusters. On the other hand, the lower secondary diagonal –

representing the risk to move into the next lower wage category – is stronger in the “downward”

cluster.

Based on the posterior classification probabilities we can also calculate the size of the clusters:

29% of persons belong to the “static” cluster, 27 % to the “upward” group and 25% to the

“mobile” cluster; only 20 % of male workers starting a career fall in the “downward” trap.

In Figure 3 we visualize for each cluster a contingency table reporting in cell (j, k) the
2They are generated with the function balloonplot() from the R package gplots (Jain and Warnes, 2006).

Full numerical results together with standard deviations are in the Appendix.

17



probability Pr(yi,t−1 = j, yit = k|Si = h) of observing the wage categories (j, k) in consecutive

years for an individual in this cluster. The entries to this table sum to one. We find that most

individuals in the “upward” cluster lie in the bottom right corner of this table, the reverse is

true for the “downward” cluster. For the “static” group most individuals are located in the

center and the lower quintiles, whereas in the “mobile” group the pattern is more diverse, but

concentrated in the upper quintiles.

These differences in the transition matrices between the clusters have a strong impact on the

long-run wage career of the group members, as shown by Figure 4. This figure starts for each

cluster h with an initial wage distribution πh,0 at t = 0 which is estimated from the initial wage

category yi0 observed for all individuals i being classified to group h. The posterior expectations

E(πh,t|y, πh,0) of the cluster-specific wage distribution πh,t after t years (πh,t = πh,0ξ
t
h) are

shown for several periods as well as the steady state. 3

For t = 50, the wage distribution is already practically equal to the steady state πh,∞ of

the transition matrix ξh, i.e. πh,∞ = πh,∞ ξh. In the “downward” cluster the steady state is

reached after only a few years, whereas in the other three clusters it takes one to two decades.

The wage distributions shown in Figure 4 are consistent with our labeling of the clusters

introduced earlier. Young men belonging to the “downward” cluster have a much higher risk

to start in the no-income category then any other young men. Furthermore, about 40% of the

members of this group have no income in the long-run. For young men belonging either to the

“mobile” or the “upward” cluster there is little difference between the initial wage distribution

when they enter the labor market. However, in the long run the pattern diverges considerably:

while the members of the “upward” cluster gather themselves in the upmost quintiles, those

from the “mobile” cluster are to be seen in the middle of the wage distribution. Members from

the “static” cluster end up in a very balanced steady state.

4.2.2 Posterior Classification

Table 1 analyzes the segmentation power for the clustering method by reporting the quartiles

and the median of classification probabilities t̂i,Ŝi
defined in Subsection 4.1 within the various

3The posterior expectation is estimated by averaging MCMC draws of πh,t obtained by computing πh,t for
t = 1, . . . , 50 for the last 10 000 MCMC draws with a thinning parameter equal to 5 (with effectively 2000 draws
remaining) of ξh.

18



groups as well as for all individuals. We find that the overall segmentation power is rather high.

3 out of 4 individuals are assigned with at least 63.8 % to their respective groups. For 1 out

of 4 individuals assignment probability amounts to at least 97.5 %. Segmentation power varies

between the clusters and is the highest for the “upward” cluster and the lowest for the “mobile”

cluster.

4.2.3 The Impact of Observables on Group Membership

The previous clustering analysis was more descriptive, specifying common mobility patterns

of certain groups in the labor market. From an economic point of view, it is interesting to

understand what characteristics of a particular person makes him more prone to fall into one or

the other cluster. Moreover, our main question is: do random differences in the labor market

situation at the time of entry in the labor force have a long-run impact on mobility behavior of

workers? We model the prior probability of an individual to belong to a certain cluster by the

multinomial logit model specified in equation (6). The estimation results are presented using

the “upward” cluster as baseline.

As discussed above, we capture the general labor market situation at the time of entry into

the labor market by the unemployment rate in the district together with a set of yearly time

dummies to control for unspecified time trends. Further we allow for impacts of educational

categories and the type of occupation on mobility patterns. To model the correlation between

group membership and initial earnings categories in period zero, we add dummies for the wage

category at entry with non-employment or zero income serving as baseline. Correlation between

labor market entry conditions and entry wages are captured by interaction terms between these

dummies and the unemployment rate.

Bayesian inference for the regression parameters in this multinomial logit model is summa-

rized in Table 2, which reports the posterior expectations and the posterior standard deviations

of all regression parameters. The results show that, indeed, bad economic conditions at the time

of entry reduce the probability of an individual to end up in the favorable “upward” cluster.

Individuals are almost equally shifted towards one of the three other clusters. This result is re-

markable because other studies were primarily concerned with short-run impacts of a bad start,

whereas different mobility patterns are a typical long-run phenomenon.
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The other results are mostly according to expectations: individuals starting in white-collar

jobs are most likely to end up in “upward” clusters and least likely in “downward” clusters. The

picture is less clear for our skill categories: while skilled workers are most likely to be classified

in the “upward” cluster, the unskilled are most likely to be in the “static” cluster and least likely

to be in the “upward” and in particular the “mobile” cluster.

We include dummy variables to indicate in which wage quintile the worker started his first

job to control for initial conditions. The initial earnings category is an important determinant

of group membership, which implies that there is substantial correlation between unobserved

heterogeneity and initial conditions. The coefficients are fairly consistent in the sense that

starting in a high wage quintile makes it much less likely to end up in the “downward” or the

“static” cluster; there is no consistent pattern relating the starting wage with either being in the

“mobile” or the “upward” cluster, though. No clear pattern emerges from the interaction terms

between unemployment rate and initial earnings categories. Those terms are included mainly

to allow for arbitrary correlations between the initial conditions and the covariates influencing

group membership, therefore we do not give them any interpretation. We note, however, that

the inclusion of the interaction terms has a significant impact.

5 Conclusions

In this paper we have analyzed earnings trajectories of male labor market entrants in Austria

whose careers are followed up to 30 years in administrative records. Our aims were to identify

distinct career patterns in the population of entrants and to measure the effect of labor market

conditions at the time of entry on the type of career pattern an individual gets to follow.

The empirical approach is based on model-based clustering of categorical time series based

on time-homogeneous first-order Markov chains with unknown transition matrices. The Markov

chain clustering approach assumes that individual transition probabilities in the earnings distri-

bution are fixed to a group-specific transition matrix. Unobserved group membership is modeled

as a multinomial logit model which allows for dependence on individual-specific and regional

characteristics, which represent the effects of labor market conditions on career patterns. The

model is estimated in a Bayesian approach based on Markov chain Monte Carlo samplers.
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Model choice indicates in terms of posterior probability (approximated by BIC) that for the

cohorts considered in our data set the labor market should be segmented into four groups. We

investigated the segmentation power of the four-group solution and found that it is rather high.

3 out of 4 individuals are assigned with at least 63.8 % probability to their respective cluster.

The group-specific transition behavior turned out to be very different across the clusters and led

to an interesting interpretation from an economic point of view showing four types of earnings

careers, namely “upward”, “static”, “downward” and “mobile”.

Our analysis of the determinants of group membership shows that there is a strong effect

of the labor market condition at career start on mobility patterns throughout the lifetime.

Especially, high unemployment rates in early years prevent young individuals from entering

careers that would transport them to stable jobs at the upper end of the earnings distribution.

This result about the impact of labor market conditions on mobility patterns offers an interesting

explanation for the high persistence of initial earnings differences documented in the literature.

If career types are determined early in life, the unfavorable impact of adverse labor market

conditions on the choice of mobility patterns could lead to long term differences in the observed

earnings trajectories.

The econometric methods we developed in this paper are of interest in other areas of eco-

nomics, in finance, public health or marketing where it is often desirable to find groups of

similar time series in a panel of a priori unlabeled discrete-valued time series. For other panels

of discrete-valued time series, however, other clustering kernels might be sensible. More com-

plex clustering kernels could involve the use of kth order Markov chains in order to extend the

memory of the clustering kernel to the past k observations, see e.g. Saul and Jordan (1999).

Furthermore, one could allow the transition process to depend on observable and unobservable

covariates. The mixture-of-experts formulation applied in this paper could be combined with

any of these clustering kernels in an obvious way and the MCMC sampler discussed in this

paper applies immediately. Finally, our way of handling the initial condition problem is rele-

vant whenever a dynamic clustering kernels is used such as dynamic multinomial logit or probit

models.
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6 Tables

Markov chain clustering
1st Qu. Median 3rd Qu.

“upward” 0.7751 0.9552 0.9940
“static” 0.6009 0.7977 0.9558
“downward” 0.6272 0.8538 0.9727
“mobile” 0.6042 0.7851 0.9337
overall 0.6378 0.8532 0.9746

Table 1: Segmentation power of Markov chain clustering; reported are the lower quartile, the
median and the upper quartile of the individual posterior classification probabilities t̂i,Ŝi

for all
individuals within a certain cluster as well as for all individuals.
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“static” “downward” “mobile”
Intercept 1.08723 (0.11849) 0.80076 (0.11773) 1.10707 (0.13555)
Unemployment rate in district 0.14118 (0.02449) 0.13051 (0.02434) 0.12481 (0.02743)
Unskilled 0.27972 (0.07014) 0.95308 (0.06825) -0.79275 (0.09425)
Skilled -1.30045 (0.04716) -1.05160 (0.04638) -1.98995 (0.05165)
White collar -1.63902 (0.04242) -2.25963 (0.04712) -2.27425 (0.05522)
Start in wage category 1 0.79487 (0.10522) 0.24602 (0.10373) 0.74447 (0.12897)
Start in wage category 2 -0.05383 (0.12918) -0.12639 (0.12353) 0.72716 (0.14039)
Start in wage category 3 -0.85094 (0.17030) -0.80229 (0.16030) 0.46321 (0.15584)
Start in wage category 4 -0.93842 (0.33328) -0.80421 (0.21876) 0.21289 (0.19899)
Start in wage category 5 -0.80603 (0.69196) -0.72659 (0.44669) 0.65145 (0.38215)
Start in year 1976 -0.49488 (0.09674) -0.26228 (0.10153) -0.56900 (0.10585)
Start in year 1977 -0.24680 (0.09231) -0.07513 (0.09935) -0.39870 (0.09816)
Start in year 1978 -0.26623 (0.09484) -0.03402 (0.10175) -0.29910 (0.10375)
Start in year 1979 -0.19094 (0.09744) 0.02542 (0.10636) -0.34746 (0.11084)
Start in year 1980 -0.07144 (0.09559) 0.19426 (0.10330) -0.24927 (0.10355)
Start in year 1981 -0.21170 (0.10248) 0.16996 (0.10996) -0.47084 (0.11714)
Start in year 1982 -0.44602 (0.12702) -0.08256 (0.13638) -0.63841 (0.14005)
Start in year 1983 -0.62936 (0.14637) -0.18905 (0.15402) -0.69356 (0.15943)
Start in year 1984 -0.40915 (0.15154) 0.00586 (0.15988) -0.67097 (0.16587)
Start in year 1985 -0.56454 (0.15508) 0.00686 (0.16393) -0.54190 (0.16968)
Unemp rate * Wage cat 1 -0.07307 (0.01972) -0.08631 (0.01881) -0.05062 (0.02365)
Unemp rate * Wage cat 2 -0.12715 (0.02388) -0.16707 (0.02276) -0.08512 (0.02563)
Unemp rate * Wage cat 3 -0.11664 (0.03391) -0.13907 (0.03131) -0.09320 (0.03023)
Unemp rate * Wage cat 4 -0.46343 (0.12115) -0.22873 (0.04621) -0.17130 (0.04005)
Unemp rate * Wage cat 5 -1.02326 (0.44505) -0.39920 (0.11977) -0.44577 (0.10191)

Table 2: Multinomial logit model to explain group membership in a particular cluster (baseline:
“upward” cluster); the numbers are the posterior expectation and, in parenthesis, the posterior
standard deviation of the various regression coefficients.
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Figure 1: Model selection criteria for various numbers H of clusters and several independent
MCMC runs.
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Figure 2: Visualization of posterior expectation of the transition matrices ξ1, ξ2, ξ3, and ξ4

obtained by Markov chain clustering. The circular areas are proportional to the size of the
corresponding entry in the transition matrix. The corresponding group sizes are calculated
based on the posterior classification probabilities and are indicated in the parenthesis.
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Figure 3: Balloonplots of a contingency table reporting for each cluster in cell (j, k) the
probability Pr(yi,t−1 = j, yit = k|Si = h) of observing the wage categories (j, k) in consecutive
years for an individual in this cluster. The entries to this table sum to one.
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Figure 4: Posterior expectation of the wage distribution πh,t over the wage categories 0 to 5
after a period of t years in the various clusters.
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A Details on MCMC Estimation for Mixture-of-Experts Mod-

els

A well-known way to write the MNL model (2) as a random utility model (RUM) has been

introduced by McFadden (1974):

yu
hi = xiβh + δhi, (10)

Si = h ⇔ yu
hi = max

l∈1,...,H
yu

li, (11)

where δhi, i = 1, . . . , N , H = 2, . . . , H, are i.i.d. errors following a type I extreme value distribu-

tion and yu
hi are latent variables which may be interpreted as the “utility” of choosing category

h.

An alternative way to write the MNL as an augmented model involving random utilities is

as a differenced RUM (dRUM), which is obtained by choosing in (10) category one as baseline

and considering the model involving the differences of the utilities: zhi = xiβh + εhi, where

zhi = yu
hi − yu

1i. Marginally, the errors εhi = δhi − δ1i follow a logistic distribution but are

no longer independent across categories. Recently, Frühwirth-Schnatter and Frühwirth (2010)

showed that for each h = 2, . . . , H the MNL has the following representation as a binary logit

model conditional on knowing λli = exp (xiβl) for all l 6= h:

zhi = xiβh − log(
∑

l 6=h

λli) + εhi, (12)

Dh
i = I{zhi ≥ 0},

where εhi are i.i.d. errors following a logistic distribution and Dh
i = I{Si = h} is a binary

outcome variable indicating whether Si is equal to h.

Representation (12) is useful, because it allows to draw βh|β−h,S for all h = 2, . . . , H from

a binary logit model conditional on knowing the remaining regression coefficients β−h.

To sample the regression coefficient βh|β−h,S from the binary logit model (12) we ap-

ply auxiliary mixture sampling as introduced by Frühwirth-Schnatter and Frühwirth (2010)

for the dRUM representation of a logit model. Extensive comparisons in Frühwirth-Schnatter
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and Frühwirth (2010) for the case where the outcome variable is observed rather than latent

demonstrate that this method is superior to other MCMC methods for logit models such as

Frühwirth-Schnatter and Frühwirth (2007), Scott (2010) and Holmes and Held (2006) in terms

of the effective sampling rate. Investigation for the mixture-of-experts model considered in this

paper led to the same conclusion.

To apply auxiliary mixture sampling, the logistic distribution in (12) is approximated for each

εhi by a finite scale mixture of normal distributions with zero means and parameters (s2
r, wr) and

the component indicator rhi is introduced as latent variable. Conditional on the latent utilities

z = {z2i, . . . , zHi, i = 1, . . . , N} and the indicators R = {r2i, . . . , rHi, i = 1, . . . , N} the binary

logit model (12) reduces to a Gaussian regression model:

zhi = xiβh − log(
∑

l 6=h

λli) + εi, εi|rhi ∼ N (0, s2
rhi

). (13)

Based on this representation, step (b) of the MCMC scheme introduced in Subsection 3.3.2 is

implemented in the following way:

(b-1) Sample the regression coefficients β2, . . . ,βH conditional on z and R based on the normal

regression model (13). Using a normal prior (with known hyperparameters) the conditional

posterior of βh is given by a multivariate normal density.

(b-2) Sample the latent variables zhi and rhi conditional on β2, . . . ,βH and S for i = 1, . . . , N

and h = 2, . . . , H with λhi = exp (xiβh):

(b-2-1) Sample all utilities z2i, . . . , zHi simultaneously for each i from:

zhi = log(λ∗hiUhi + I{Si = h})− log(1− Uhi + λ∗hiI{Si 6= h})

where Uih ∼ U [0, 1] and λ∗hi = λhi/(
∑

l 6=h λli).

(b-2-2) Sample the component indicators rhi conditional on zhi from:

Pr(rhi = j|zhi,βh) ∝ wj

sj
exp

{
−1

2

(
zhi − xiβh + log(

∑
l 6=h λli)

sj

)2
}

To start the MCMC scheme, one has to select starting values for z and R.
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