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Abstract

This paper exposes problems of the commonly used technique of splitting the available

data in neural spatial interaction modelling into training, validation, and test sets that

are held fixed and warns about drawing too strong conclusions from such static splits.

Using a bootstrapping procedure, we compare the uncertainty in the solution stemming

from the data splitting with model specific uncertainties such as parameter

initialization. Utilizing the Austrian interregional telecommunication traffic data and

the differential evolution method for solving the parameter estimation task for a fixed

topology of the network model [ i.e. J = 9] this paper illustrates that the variation due to

different resamplings is significantly larger than the variation due to different parameter

initializations. This result implies that it is important to not over-interpret a model,

estimated on one specific static split of the data.

Keywords: Neural spatial interaction modelling, model evaluation, bootstrapping,

interregional telecommunications
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1. Introduction

Spatial analysis in currently entering a period of rapid change leading to what is termed

intelligent spatial analysis, sometimes referred to as geocomputation. The driving

forces are a combination of huge amounts of digital spatial data from the GIS data

revolution, the availability of attractive softcomputing tools, the rapid growth in

computational power, and the new emphasis on exploratory data analysis and

modelling. Intelligent spatial analysis has the following properties. It exhibits

computational adaptivity, computational fault tolerance in dealing with incomplete,

inaccurate, distorted, missing, noisy and confusing data; speed approaching human-like

turnaround and error rates that approximate human performance. The use of the term

’intelligent’ is, thus, closer to that in computational intelligence than in artificial

intelligence. The distinction between artificial and computational intelligence is

important because our semantic descriptions of models and techniques, their properties,

and our expectations of their performance should be tempered by the kind of systems

we want, and the ones we can build.

Much of the recent interest in intelligent spatial analysis stems from the growing

realization of the limitations of conventional spatial analysis tools as vehicles for

exploring patterns in data-rich GI (geographic information) and RS (remote sensing)

environments and from the consequent hope that these limitations may be overcome by

judicious use of computational intelligence technologies such as evolutionary

computation and neural network modelling. Neural network models may be viewed as

non-linear extensions of conventional statistical models that are applicable to two major

domains: first, as universal approximators to areas such as spatial regression, spatial

interaction, spatial choice and space-time series analysis; and second, as pattern

recognizers and classifiers to intelligently allow the user to sift through the data, reduce

dimensionality, and find patterns of interest in data-rich environments.

Neural spatial interaction models are termed neural in the sense that they are based on

neural computational models, inspired by neuroscience. They are more closely related

to spatial interaction models of the gravity type, and under commonly met conditions

they can be understood as a special class of general feedforward neural network models

with a single hidden layer and sigmoidal transfer functions (Fischer 1998). This class of
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networks can provide approximations within an arbitrary precision (i.e. it has universal

approximation property), as proven by Hornik et al. (1989).

Learning from examples, the problem for which neural networks were designed for to

solve, is one of the most important research  topics in computational intelligence. A

possible way to formalize learning from examples is to assume the existence of a

function representing the set of examples and, thus, enabling to generalize. This can be

called a function reconstruction from sparse data (or in mathematical terms, depending

on the required precision, approximation or interpolation problem, respectively). Within

this general framework, the main issues of interest are the representational power of a

given network model and the procedures for obtaining the optimal network parameters.

It is the objective of this article to evaluate the out-of-sample or forecast performance of

neural spatial interaction approximators in a real world application environment.

Training a neural spatial interaction model is not hard, but once we have a spatial

interaction approximator, how much can we trust the forecast for truly new data? A

standard procedure for evaluating the performance is to split the data into one training

set (used for parameter estimation, e.g., through gradient descent or the differential

evolution method), one validation set (used to determine the stopping point before

overfitting occurs and/or used to set additional parameters or hyperparameters, such as

the importance given to the amplification of the differential variation in the case of the

differential evolution method), and one test set. This procedure has been used for many

years in the connectionist community [see, e.g., Weigend et. al. (1990) in general and in

neural spatial interaction modelling in particular [see Fischer and Gopal (1994)]. Recent

experience has found this approach, along with conclusions drawn from it, to be very

sensitive to the specific splitting of the data [see, Fischer and Gopal (1994)]. Thus,

usual tests of forecast reliability appear over-optimistic in general.

This paper addresses the problem of evaluating a neural spatial interaction model with a

bootstrapping procedure. The approach we present combines the purity of splitting the

data into three disjoint sets - as suggested in Fischer and Gopal (1994) - with the power

of a resampling procedure. This allows us to get a better statistical picture of forecast

variability, including the ability to estimate the effect of the randomness of the splits of

the data versus the randomness of initial conditions of the model parameters. We
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compare the uncertainties in the solution stemming from the data splitting with neural

network specific uncertainties such as parameter initializations. To demonstrate the

procedure, we use the Austrian interregional telecommunication traffic data and the

differential evolution method, a randomized parallel multipoint search procedure, for

solving the parameter estimation task as suggested in Fischer et al. (1999).

The remainder of the paper is as follows. The next section provides a summarized

description of single hidden layer neural spatial interaction models followed by a brief

characteristic of the training procedure used for determining the model parameters.

Section 4 describes the experimental design and the bootstrapping procedure while

section 5 presents the empirical results of the study. The final section draws some

conclusions.

2. Neural Spatial Interaction Predictors

Suppose we are interested in approximating an N-dimensional spatial interaction

function, where ℜ→ℜN:� , where Nℜ  as N-dimensional Euclidean real space is the

input space and ℜ  as 1-dimensional Euclidean real space is the output space. This

function should estimate spatial interaction flows from regions of origin to regions of

destination. In practice, only bounded subsets of the space are considered.

The function � is not explicitly known, but given by a finite set of samples S = {zk = (xk,

yk), k = 1,..., K} generated by a process that is governed by �, that is �(xk) = yk, k = 1,...,

K. The set S is the set of pairs of input and output vectors. The role of network

modelling is to provide a specific form of a continuous function which approximates

(or interpolates) set S. The advantages of neural network modelling have to do with the

virtues associated with such specific forms.

To approximate �, we consider the class of neural spatial interaction models Ω with one

hidden layer, N input units, J hidden units and one output unit. Ω consists of a

composition of transfer functions so that the single output y of Ω is:
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Vector x = (x1,..., xN) is the input vector augmented with a bias signal x0 which can be

thought as being generated by a ‘dummy unit’ whose output is clamped at 1. The wjn's

represent input to hidden connection weights and the wj's hidden to output weights

(including the bias). The symbol w is a convenient shorthand notation of the

d = (J (N + 1) + J + 1) - dimensional vector of all the wjn and wj network weights and

biases (i.e. model parameters). ϕj (.) and ψ (.) are differentiable transfer functions of the

hidden units j = 1,..., J and the output unit, respectively. Following Fischer and Gopal

(1994), we will consider only the case N=3, i.e. the input space will be a closed interval

of the three-dimensional Euclidean space 3ℜ . The three input units correspond to the

independent variables of the classical unconstrained spatial interaction model of the

gravity type. They represent measures of origin propulsiveness, destination

attractiveness and spatial separation. The output unit corresponds to the dependent

variable of the classical model and represents the spatial interaction flows from origin

to destination.

Without loss of generality we, moreover, assume the transfer functions ϕj (.) = ϕ (.) for

all j = 1,..., J, and equal to the logistic function and, ψ (.) to be the identity function,

and, thus consider the special class ΩL (x, w) of functions Ω (x, w) in this contribution:
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Network output can be generally be expressed in terms of an output function mapping

inputs and network weights into network output. Formally, ΩL : 3ℜ  × W→ ℜ  where W

is a weight space appropriate to the network architecture embodied in ΩL. We take W to

be a subset of dℜ  with d = 5 J + 1. Given targets y, model performance is then

),(,( wxLyE Ω ).



6

The process of determining optimal parameter values is called training or learning and

may be formulated in terms of the minimization of E given a fixed model complexity

(i.e. J). The function that is minimized in this study is squared error

2
),()),(,(min wxwx

w LL yyE ΩΩ −= (3)

For any combination of y and x, and for any choice of parameters w, we can now

measure model performance. It can happen that there is no unique solution to the

minimization problem. There are two main reasons for this possibility. The first refers

to the case of redundant inputs and the second to the case of irrelevant hidden units.

The case of redundant inputs occurs when one ore more of the model inputs is an exact

linear combination of the other inputs, including the bias input. The case of irrelevant

hidden units occurs when identical optimal model performance can be achieved with

fewer hidden units. Both redundant inputs and irrelevant hidden units generate entire

manifolds in W on which the performance statistic is flat and minimal. Because finding

and eliminating redundant inputs and irrelevant hidden units both involve some

computational efforts, network models are usually trained without regard to their

possible presence.

3. Global Optimization over the Samples and Model Performance

Gradient descent procedures in combination with the backpropagation technique

provide one approach to attempting to find a solution to the problem (3) what is

typically a highly nonlinear optimization problem. In this study a global search

approach based upon the differential evolution method (DEM) is used that appears to

provide out-of-sample performance superior to gradient descent procedures such as the

conjugate gradient procedure (see Fischer et al. 1999) and requires no computation of

the gradient of the network output function.

The differential evolution method, originally developed by Storn and Price (1996,

1997), is a global optimization algorithm that employs a structured, yet randomized

parallel multipoint search strategy which is biased towards reinforcing search points at

which the error function E(w) being minimized has relatively low values. The DEM is
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similar to the method of simulated annealing (Kirkpatrick et al. 1983) in that it employs

a random (probabilistic) strategy. But one of the apparent distinguishing features of

DEM is its effective implementation of parallel multipoint search. DEM maintains a

collection of samples from the search space rather than a single point. This collection of

samples is called population of trial solutions.

To start the stochastic multipoint search, an initial population P of, say M, d-dimen-

sional parameter vectors P(0) = {w0(0),..., wM-1(0)} is created with M = 300 and

d = 5 J + 1 in the current study. The initial population is drawn at random from a

uniform distribution between –0.3 and 0.3. From this initial population, subsequent

populations P(1), P(2), ..., P(t), ... will be computed by a scheme that generates new

parameter vectors by adding the weighted difference of two vectors to a third. If the

resulting vector yields a lower error function value than a predetermined population

member, the newly generated vector will replace the vector which it was compared to,

otherwise the old vector is retained. Similarly to evolution strategies, the greedy

criterion is used in the iteration process and the probability distribution functions

determining vector mutations are not a priori given. Different strategies arise depending

upon  whether some specific type of crossover is introduced to increase the diversity of

the new parameter vectors or not. The scheme for generating P(t+1) from P(t) with t ≥

0 as utilized in the current study may be summarized by three major stages:

Stage 1: For each population member wm(t), m = 0, 1,..., M-1, a perturbed vector

vm(t + 1) is generated according to:

vm(t + 1) = wbest(t) + κ (wr1(t) - wr2(t)) (4)

with r1, r2 integers chosen randomly from {0,..., M-1} and mutually different.

The integers are also different from the running index m. κ ∈ (0, 2] is a real

constant factor that controls the amplification of the differential variation

(wr1(t)-wr2(t)). The parameter vector wbest(t) which is perturbed to yield

vm(t+1) is the best parameter vector of population P(t).

Stage 2: The decision whether or not the v(t+1) should become a member of P(t+1), is

based on the greedy criterion. If
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E(vm(t + 1)) < E(wm(t)) (5)

then wm(t+1) is replaced by vm(t+1), otherwise the old value wm(t) is retained

as wm(t+1).

Stage 3: The iteration process continues until the error measured using an independent

validation set starts to increase.

Heuristically, one might expect an optimal wm to emerge from this process as the

number [t] of generations becomes large. But to date, there does not appear to be a

general theoretical result guaranteeing that the optimal solution is indeed produced in

the limit. Such a result would be highly desirable. Nevertheless, the differential

evolution method does seem to perform reasonably well in applications.

Model performance is measured as normalized mean squared error [i.e. mean squared

error divided by the overall variance of the target] or in other words as the average

relative variance ARV(S) of a set S of patterns given by (see Fischer and Gopal 1994):
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where y  denotes the average over the target values in S. The averaging makes ARV(S)

independent of the size of the set S. Thus, ARV(S) provides a normalized mean squared

error metric for assessing the in-sample and out-of-sample performance of trained

neural spatial interaction models. ARV(S) = 1 if the estimate is equivalent to the mean

of the data (i.e, L(xk, w) = y ).

4. Experimental Design and Bootstrapping Methodology

The standard approach for finding a good neural spatial interaction model [see Fischer

and Gopal 1994] is to split the available set of samples into three sets: training,

validation, and test sets. The training set is used for parameter estimation. In order to
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avoid overfitting, a common procedure is to use a network model with sufficiently large

J for the task, to monitor – during training – the out-of-sample performance on a

separate validation set, and finally to choose the network model that corresponds to the

minimum on the validation set, and employ it for future purposes such as the evaluation

on the test set. It has been common practice in the neural network community to fix

these sets. But recent experience has found this approach to be very sensitive to the

specific splitting of the data. Thus, usual tests of out-of-sample or generalization

reliability may appear over optimistic.

Randomness enters in two ways in neural spatial interaction modelling: in the splitting

of the data samples on the one side and in choices about the parameter initialization and

the control parameters of the estimation approach utilized [such as κ in the global

search procedure] on the other. This leaves one question widely open. What is the

variation in out-of-sample performance as one varies training, validation and test sets?

This is an important question since real world problems do not come with a tag on each

pattern telling how it should be used. Thus, we will vary both the data partitions and

parameter initializations to find out more about the distributions of out-of-sample

errors.

Monte Carlo experiments can provide certain limited information on the behaviour of

the test statistics for fixed κ. The limitation of Monte Carlo experiments is that any

results obtained pertain only to the environment in which the experiments are carried

out. In particular, the data-generating mechanism has to be specified, and it is often

difficult to know whether any given data-generating mechanism is to any degree

representative for the empirical setting under study. Motivated by the desire to obtain

distributional results for the test statistics that rely neither on large size approximations

nor on artificial data generating assumptions, statisticans have developed resampling

techniques such as bootstrapping that permit rather accurate estimation of finite sample

distributions for test statistics of interest.

Bootstrapping is a computer intensive non-parametric approach to statistical inference

that enables to estimate standard errors by re-sampling the data in a suitable way (see

Efron and Tibshirani 1993). This idea can be applied to neural spatial interaction

models in two different ways. One can consider each input-output pattern as a sampling
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unit, and sample with replacement from the input-output pairs to create a bootstrap

sample. This is sometimes called boostrapping pairs (Efron and Tibshirani 1993) since

the input-output pairs remain intact, and are resampled as full patterns. On the other

hand, one can consider the predictors as fixed, treat the model residuals

)ˆ,( wkLk xy Ω−  as the sampling units, and create a bootstrap sample by adding

residuals to the model fit )ˆ,( wkL xΩ . This is termed the bootstrap residual approach. In

this approach, the residuals obtained from one specific model are used in rebuilding

patterns to obtain error bars reflecting all sources of error, including model

misspecification. In the current contribution, we are primarily interested in variation

due to data samples rather than error bars. Thus, the bootstrapping pairs approach is

more appropriate here.

FIGURE 1 ABOUT HERE

The bootstrapping approach as utilized in this study is illustrated in Figure 1. The idea

behind this approach is to generate many pseudo-replicates of the training, validation

and test sets, then re-estimating the model parameters w on each training bootstrap

sample, and testing the out-of-sample performance on the test bootstrap samples. In this

bootstrap world, the errors of forecast, and the errors in the parameter estimates, are

directly observable. The Monte-Carlo distribution of such errors can be used to

approximate the distribution of the unobservable errors in the real parameter estimates

and the real forecasts. This approximation is the bootstrap: it gives a measure of the

statistical uncertainty in the parameter estimates and the forecasts. Focus is laid in this

study on the performance of the forecasts measured in terms of ARV.

In more detail the approach may be described by the following steps: The details may

be a bit complicated, but the main idea is straightforward:

Step 1: Conduct three totally independent resampling operations in which

(i) B independent training bootstrap samples are generated, by randomly

sampling K1 times, with replacement, from the observed input-output

pairs { }),(),...,,(),,( 2211 KK yxyxyxS = :
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for k1, k2,..., kK1 a random sample of integers 1 through K1 < K and

b = 1,..., B [in this study: K=992, K1=480, B=376],

(ii) B independent validation bootstrap samples are formed, by randomly

sampling K2 times, with replacement, from the observed input-output

pairs S:
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Valid KK

yxyxyxS = (8)

for k1, k2,..., kK2 a random sample of integers 1 through K2 < K1 < K

and b = 1,..., B [in this study: K2=256],

(iii) B independent test bootstrap samples are formed, by randomly

sampling K3 times, with replacement, from the observed input-output

pairs S:
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b
Test KK

yxyxyxS = (9)

for k1, k2,..., kK3 a random sample of integers 1 through K3 = K2 < K1 <

K and b = 1,..., B [in this study: K3=256],

Step 2: For each training bootstrap sample b
TrainS *  (b=1,..., B) minimize

21

1

** ),(∑
=

−
K

k

b
kL

b
k xy wΩ (10)

with the differential evolution procedure. During the training process the ARV

performance of the model is monitored on the bootstrap validation set. The

training process is stopped when )( ** b
ValidSARV  defined by (6) starts to

increase. This yields bootstrap parameter estimates b*ŵ .
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Step 3: Calculate the bootstrap ARV-statistic of generalization performance,

)(ˆ ** b
TestSVRA , for each test bootstrap sample. The distribution of the pseudo-

errors VRAVRA ˆˆ * −  can be computed, and used to approximate the

distribution of the real errors ARVVRA −*ˆ . This approximation is the

bootstrap.

Step 4: The variability of )(ˆ ** b
TestSVRA  for b=1,..., B gives an estimate of the expected

accuracy of the model performance. Thus, estimate the standard error of the

generalization performance statistic by the sample standard deviation of the B

bootstrap replications:

( )
2
1

1

2*** 1/(.)]ˆ)(ˆ[e ̂s






 −−= ∑

=

B

b

b
TestB BVRASVRA (11)

where

∑
=

=
B

b

b
TestSVRAVRA

1

*** )(ˆ(.)ˆ . (12)

Note that the name ’bootstrap’ refers to the use of the original sample pairs to generate

new data sets. The procedure requires to retrain the neural spatial interaction model B

times (see Step 2). Typically, the B is in the range 20020 ≤≤ B  (see Tibshirani 1996).

Increasing B further does not bring a substantial reduction in variance (Efron and

Tibshirani 1993).

5. Data and Experimental Results

To demonstrate the bootstrapping approach, we use the Austrian telecommunication

flow data (see Fischer and Gopal 1994 for details). The data set was constructed from

three data sources: a (32, 32)-interregional telecommunication flow matrix, a (32, 32)-

distance matrix, and gross regional products for the 32 telecommunication regions. We

have K = 992 input-output patterns. K1=480, K2=K3=256, and B=376. All inputs and

the target data were scaled to have zero mean and unit variance over the entire original
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data set. In contrast to Fischer et al. (1999) we did not use a log-transformation of the

input and output data.

We use that model specification with J = 8 from the class ΩL (x, w) with one hidden

layer of logistic units and a linear output unit. The initial parameters were drawn at

random from an uniform distribution between -0.3 and 0.3. The differential evolution

method with κ=0.9 was used for the task of parameter estimation. All computations

were done on a DEC Alpha Cluster 350 MHz.

FIGURE 2 ABOUT HERE

Figure 2 shows the learning curves of a typical run, for b
TrainS * , b

ValidS *  and b
TestS *  in terms

of the ( )b
TrainSARV * , ( )b

ValidSARV *  and ( )b
TestSARV *  respectively. The term learning curve

is used to characterize the performance as a function of iterations of the differential

evolution method. Figure 1(a) plots the ARV performance on the training bootstrap set,

Figure 1(b) the ARV performance on the validation bootstrap set and Figure 1(c) the

ARV performance on the test bootstrap set. Note the clear increase of validation and test

errors after passing through minima, usually called overfitting or overtraining. At some

stage - in this specific run with a very small number of iterations around 70 - the model

extracts a feature of the training set that helps the test set, but hurts the validation set.

Note also that the minima of the validation set and the test set do not occur at the same

learning time. From each of these sets of learning curves, only a single number is used

for the subsequent analysis and comparisons in this paper: the ARV performance value

on the test set at that time that has the minimum of the validation set.

Several experiments were conducted to get a better statistical picture of model

performance measured in terms of out-of-sample performance, including the ability to

estimate the effect of the randomness of the splits of the data versus the randomness of

initial conditions of the spatial interaction model. The experiments involve a nested

iteration. At the ’outer loop’ training, validation and test bootstrap data sets are built up

one after another B times. The training sets are presented to the ’inner loop’ for random

parameter initialization of the spatial interaction model. At each pass through the outer

loop training, validation and test bootstrap samples are generated as independent draws

from S, B times. On each pass through the inner loop the d=41 individual weights of the
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network model are then initialized randomly from a uniform distribution over

[-0.3, 0.3], B times, the model being re-estimated, and the ARV-statistic calculated on

the test sample.

TABLE 1 and FIGURE 3 ABOUT HERE

Table 1 along with Figure 3 summarize the results of a [degenerated bootstrap]

experiment, with B=1 and =376. The experiment serves to illustrate the impact of

parameter initialization on the out-of-sample performance of the neural spatial

interaction models. Figure 3 (a)-(e) shows the empirical density from 376 simulations

based upon B=1 and =376, while Figure 3(f) displays the empirical density from

B=376 bootstrap resamplings with =1. The fact that the width of the histograms (a)-(e)

tends to be smaller than the histogram (f) indicates that the randomness in network

model initialization generates less variability than the randomness in the splitting of the

data. Table 1 presents the out-of-sample model performance in terms of both the mean

of 376 simulations (column 1) and the standard deviation (column 2). The Mann-

Whitney U test statistic (column 3), a robust non-parametric test for the equality

between two independent distributions, provides evidence that the empirical densities

from 376 simulations based upon B=1 and �376 are significantly different from that

based upon B=376 bootstrap replicates and �1. The test statistic has a distribution that

is asymptotically normal with zero mean and unit variance under the null hypothesis

that the distributions are the same.

TABLE 2 and FIGURE 4 ABOUT HERE

Table 2 along with Figure 4 reports the results of a bootstrap experiment along with

B=376 and �1. This experiment serves to illustrate the impact of variations in training,

validation and test sets. In the simulation world of this experiment the standard

deviations of the 376 bootstrap replications are substantially less variable, but on the

whole larger than those appearing in the first experiment. This clearly indicates that the

randomness in the splitting of the data generates more variability than the randomness

in the network model initialization does. Figure 4 illustrates that the empirical densities

from the 376 bootstrap replications are relatively similar and not significantly different

in location as indicated by the Mann-Whitney U test statistic presented in Table 2.
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6. Conclusions

This paper tried to combine bootstrap based statistical tests with neural spatial

interaction modelling to get a better statistical picture of forecast variability of the

model. Forecast variability can come from many sources. We focused on the noise due

to the data set resampling which may be termed sample noise and parameter noise

stemming from the choices in parameter initialization. Other noise sources, very

different in nature, such as errors-in-variables or model misspecification had been

outside of the scope of this paper. Utilizing the Austrian interregional

telecommunication traffic data and the differential evolution method [M=300, κ=0.9]

for solving the parameter estimation task for a fixed topology of the network model

[J=9] the study gave us important insights into the variability of forecast performance

over changes in training, validation and test samples, and parameter initialization. For

our example, most of the variability in forecast performance was clearly coming from

sample variation and not from variation in parameter initializations. This implies that it

is important not to over-interpret a model, estimated on one specific static split of the

data.

The bootstrap approach proved to be extremely useful in getting a clearer picture of

what might be real and what is noise. But it is important to keep in mind that each

bootstrap iteration requires a run of the differential evolution method on the training

bootstrap set. In very large real world problem contexts this computational burden may

become prohibitively large.

Finally, it is worth mentioning that there are several other computationally intensive

methods such as the jackknife and balanced repeated replications that are similar in

spirit to the bootstrap procedure but quite different in detail (see Efron and Tibshirani

1993 for more details). Each of these procedures generates ’pseudo-data’ sets from the

original data and assesses the actual variability of a statistic from its variability over all

the sets of pseudo-data. The procedures differ from the bootstrap and from one another

essentially in the way the pseudo-data sets are constructed.
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Table 1. Variability of out-of-sample performance of the neural spatial interaction

model (2) with J=8, [M=300, κ=0.9] due to the randomness in parameter

initialization

Out-of-Sample Performance    Mann-Whitney  U
Average Std.Dev.   Test Statistic

Data Samples A [B =1, =376] 0.2819 0.0888 11.72 [0.0000]
Data Samples B [B =1, =376] 0.3016 0.1150 9.24 [0.0000]
Data Samples C [B =1, =376] 0.4149 0.1015 -2.91 [0.0036]
Data Samples D [B =1, =376] 0.4440 0.0574 -7.14 [0.0000]
Data Samples E [B =1, =376] 0.5895 0.0514 -16.90 [0.0000]
Bootstrap A  as Benchmark [B =376, =1] 0.4009 0.1541 - -

Average: Performance values [measured in terms of out-of-sample ARV] represent the mean of =376 simulations

differing in the initial parameter values randomly chosen from (-0.3, 0.3) in the case of data samples A-E.

Std.Dev.: Performance values [measured in terms of out-of-sample ARV] represent the standard deviation of =376

simulations differing in the initial parameter values randomly chosen from (-0.3, 0.3) in the case of data samples A-

E.

Mann-Whitney U Test Statistic: This statistic tests for distribution equality. The test statistic is N(0, 1) under the null

hypothesis of distribution equality with the empirical distribution from B=376 bootstrap replications. 10 and 5

percent critical values are 1.64 and 1.96 respectively for a two tailed test.
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Table 2. Variability of out-of-sample performance of the neural spatial interaction

model (2) with J=8, [M=300, κ=0.9] due to sample variation

Out-of-Sample Performance    Mann-Whitney  U
Average Std.Dev.   Test Statistic

Bootstrap A  [B =376, =1] 0.4009 0.1541 - -
Bootstrap B  [B =376, =1] 0.3974 0.1479 0.27 [0.7896]
Bootstrap C  [B =376, =1] 0.4100 0.1595 -0.93 [0.3541]
Bootstrap D  [B =376, =1] 0.3920 0.1409 0.21 [0.8359]
Bootstrap E  [B =376, =1] 0.4064 0.1419 -1.17 [0.2410]
Bootstrap F  [B =376, =1] 0.4057 0.1539 -0.76 [0.4458]

Average: Performance values [measured in terms of out-of-sample ARV] represent the mean of B=376 bootstrap

replications with identical ( =1) parameter initializations randomly chosen from (-0.3, 0.3)

Std.Dev.: Performance values [measured in terms of out-of-sample ARV] represent the standard deviation of B=376

bootstrap replications with identical ( =1) parameter initializations randomly chosen from (-0.3, 0.3)

Mann-Whitney U Test Statistic: This statistic tests for distribution equality. The test statistic is N(0, 1) under the null

hypothesis of distribution equality with the empirical distribution from bootstrap A. 10 and 5 percent critical values

are 1.64 and 1.96 respectively for a two tailed test.
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Figure 1. A diagram of the bootstrap procedure for estimating the standard error of

the generalization performance of neural spatial interaction models
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Figure 2. Learning curves of one specific neural spatial interaction model [J=8] and

parameter conditions [M=300, κ=0.9]. They show the performance versus

the learning time in terms of iterations: (a) the performance on a training

bootstrap set, (b) the performance on a validation bootstrap set, and (c) the

performance on a test bootstrap set.
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Figure 3. Histograms of out-of-sample performance [measured in terms of ARV] of

the neural spatial interaction model (2) with J=8 [M=300, κ=0.9]:

Variability due to the randomness in parameter initialization
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(c) Data Samples C [B=1, b=376]
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Figure 4. Histograms of out-of-sample performance [measured in terms of ARV] of

the neural spatial interaction model (2) with J=8 [M=300, κ=0.9]:

Variability due to the randomness in data resampling
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