

A Service of

ZBW

Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre for Economics

Pels, Eric; Nijkamp, Peter; Rietveld, Piet

Conference Paper Operating Characteristics Of European Airports

40th Congress of the European Regional Science Association: "European Monetary Union and Regional Policy", August 29 - September 1, 2000, Barcelona, Spain

Provided in Cooperation with:

European Regional Science Association (ERSA)

Suggested Citation: Pels, Eric; Nijkamp, Peter; Rietveld, Piet (2000) : Operating Characteristics Of European Airports, 40th Congress of the European Regional Science Association: "European Monetary Union and Regional Policy", August 29 - September 1, 2000, Barcelona, Spain, European Regional Science Association (ERSA), Louvain-la-Neuve

This Version is available at: https://hdl.handle.net/10419/114804

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

WWW.ECONSTOR.EU

Ine¢ciencies and scale economies of European airport operations

Eric Pels^{*} Peter Nijkamp Piet Rietveld Free University Amsterdam

Abstract

In this paper we argue that European airports, on average, are inecient. Airline ineciency (low load factors) appears to contribute signi...cantly to airport ineciency in terms of air passenger movements. We ...nd that the average airport in Europe operates under constant returns to scale in "producing" air transport movements and under increasing returns to scale in producing passenger movements. These operating characteristics are statistically tested in a stochastic frontier model. Using data envelopment analysis, in which the number of runways is used as a ...xed factor, technical and scale eciency coecients have been assessed. There appears to be no region-speci...c exect in that an airport in a certain country or region is on average more (in)ecient.

1 Introduction

Aviation economics has become a rapidly growing branch in economic literature (see e.g. Button, 1998, and Pels, 2000). The behavior of various stakeholders in airline and airport operations is at present the subject of much theoretical and applied investigation.

Aviation has grown rapidly in recent years, and will most likely continue to grow. Moreover, various airports or governments desire to have a hub status. Airport expansion and/or the construction of new airports are therefore important policy issues in many countries. For example, Milan Malpensa is planned to become a major hub airport in Northern Italy, while Milan Linate has been for a long time the larger airport in terms of numbers of passengers and air transport movements. Linate is closer to the city center than Malpensa and is therefore more attractive to o-d passengers¹, although it has to be admitted that in the case of Linate a larger area with a high population density is exposed to aircraft noise. Linate however, covers a much smaller surface area than Malpensa, it may therefore have less growth

^aDe Boelelaan 1105, 1081 HV Amsterdam, Netherlands. Email: apels@econ.vu.nl

¹Note that the airport Montreal Mirabel, built to serve as an international airport, was not a success because it was too far from the city center.

potential². Amsterdam Airport Schiphol faces similar problems. To accommodate the anticipated numbers of passengers (and air transport movements), Schiphol will construct a new (...fth) runway to relieve the existing runway system³. In addition, for the long term, other options are envisaged, one of which is moving part, or the entire, airport to a new island in the North Sea. Other airports considering expansion are e.g. Frankfurt, which is investigating the construction of a new runway, and London Heathrow, which is operating at full (or nearby full) capacity. Clearly, in the London case, there are multiple airports (most of them operated by the British Airport Authority), of which e.g. Stansted might be used to relieve Heathrow. For a detailed study, see Tolofari et al. (1990).

In this light, it is important to know whether (existing) airports are able to operate e¢ciently from an economic perspective using the current capacity, and whether or not scale economies are prevailing. In relation to that, we aim to examine whether smaller airports are equally eccient compared to larger airports. If not and/or if increasing economies to scale are prevailing, moving only part of the airport (e.g. intercontinental *ights*) to a new airport (or subsidiary thereof) -one of the proposed solutions for Schiphol's future- would be unwise from an economic perspective. Then one would end up with two smaller, relatively ineCcient airports. An airport can be labeled as ine¢cient for di¤erent reasons, the ...rst of which are "indivisibilities", a well-known problem in public goods provision. An expansion of the runway system will in most cases automatically create an over-capacity, since the length of a (new) runway is mainly determined by the landing (or take-o^x) weight and speed of the aircraft using that runway. It may be necessary to construct a new runway, but due to technical (and safety) requirements, it is usually not possible to ...t its capacity to the expected (additional) demand. To a lesser extent, the same holds true for airport terminals. Second are governmental regulations (e.g. limits to the hours of airport operation, noise contours) and constraints imposed by physical circumstances (e.g. fog and wind) under which airports must operate. Next to the (purely technical) ine¢ciencies described above, X-ine¢ciency also is important⁴.

In this paper we focus on economies of scale in the production of airport services. In addition to these production-oriented economies, demand-related economies are also important: a large airport has the potential to o¤er higher frequencies and better and more connections in a hub and spoke network. These demand related aspects will not be discussed in this paper, although they should be kept in mind while interpreting our results. Even if economies of scale in airport operations were to be small or absent, there may nevertheless be economies on the demand side,

²Linate, together with Barcelona, Frankfurt, London Heathrow, London Gatwick, and Madrid were identi...ed by IATA in 1990 as the airports being the most severely limited in terms of capacity by the turn of the century (if no additional investments in capacity would be made). In total, 16 airports would be severely limited (Button, 1999).

³Although the technical capacity of the existing runways may be su¢cient at present, the "environmental capacity" is certainly insu¢cient; by using the existing runway system, too-large a share of the population in the surroundings may be exposed to aircraft noise.

⁴Note that "regulators" do not necessarily have an incentive to reach a social optimum. Hence, regulations can also be a cause of X-ine¢ciency.

thus implying that customers would bene...t, so that consequently airports are in a better position to charge users for their services.

The determination of the economic e¢ciency of an airport entails the estimation of a (cost or production) frontier; an airport is (technically) e¢cient only if it operates on the frontier⁵. The elasticity of scale is evaluated at the frontier (even when the airport is not eccient, i.e. does not operate at the frontier). A frontier can be estimated by using parametric (e.g. stochastic frontier analysis) or non-parametric methods (e.g. data envelopment analysis (DEA)); see e.g. Pels et al. (1999) for both a DEA analysis and a stochastic production frontier analysis of European airports, and Gillen and Lall (1997) for a DEA analysis of North-American airports. Using the parametric method, one estimates a stochastic cost or production frontier. The estimation of a "standard" cost or production function ...ts a curve through the middle of a data cloud. Firms (airports) are on average e¢cient, but both positive and negative random *‡uctuations* (with zero expected value) around the optimal production do exist. If not all ...rms reach the theoretical e¢cient frontier in practice, calibration of the "traditional" cost function will not yield the eccient frontier. To overcome this problem, a stochastic ine¢ciency term can be added to the traditional cost function to form a stochastic frontier. If a ...rm does not reach the optimal frontier (i.e. the stochastic ine¢ciency term is statistically di¤erent from 0), it is technically ine ϕ cient, a result that may be due to misinformation, so that wrong decisions are taken, or due to circumstances or occurrences beyond the control of the management, such as regulation or weather. According to Diewert (1992), statistical estimation of the parameters that characterize technology is more accurate using cost functions (than using production functions). However, in that case input prices are required, but there are no clear market prices for inputs⁶. A production frontier may therefore still be more useful.

DEA uses a sequence of linear programming problems to create a piecewise linear frontier, and implicitly assumes that outputs can be fully explained from the inputs. Any deviation from the e \oplus cient frontier is labeled as ine \oplus cient; random (unexplained) deviations are not possible. Stochastic production frontier analysis, conversely, determines ine \oplus ciency as the distance to the stochastic frontier; stochastic deviations from the optimal frontier are allowed.

In this paper, we use both methods as "complements" rather than as "competitors", as explained below (in Section 3). The parametric method allows for statistical testing of the presence of a deviation from the eccient frontier and returns to scale. Because DEA is non-parametric, no statistical tests are available.

⁵Note that although a technically e¢cient ...rm generates the maximum output from a given input set, it is not guaranteed the ...rm uses a cost-minimizing input set or is scale e¢cient.

⁶One could obtain cost data from the airports' annual reports, but apart from the di¤erent accounting practices, one has the di¢culty of deriving comparable input prices from aggregate cost data; even if the price of a standardized unit of, for example, terminal space could be determined for every airport, these prices could vary over the di¤erent airports for a large number of reasons (e.g. ownership, pricing policies, taxes, legal constraints, environmental controls, etc.). Another possible data source is ACI (1999), but these data are not su¢cient to calibrate a meaningful cost function. See Button (1999) for a general survey of aviation data.

The outline of this paper is as follows. In Section 2 stochastic production frontier analysis and DEA is concisely discussed. In Section 3 the data and models to be estimated are presented. In Section 4 the estimation results are presented, while Section 5 concludes. This paper is based on the third chapter of the ...rst author's dissertation (Pels, 2000).

2 Frontier analysis

As discussed in the previous section we use two methods for determining a production frontier, viz. stochastic frontier analysis and DEA. Each is discussed brie‡y here. There exists a large body of literature on both topics, see e.g. Coelli (1996a,b) and the references therein. Although both methods are similar in that they determine a frontier and ine¢ciency based upon that frontier, there is a signi...cant di¤erence. The DEA approach provides a "measurement" of ine¢ciency (the "Farrell approach" (Button and Weyman-Jones, 1994)). As we will explain below, the stochastic frontier approach estimates ine¢ciency, but it can also be used as an "explanation" for ine¢ciency (the "Leibenstein approach").

2.1 The stochastic production frontier

We have noted in the introduction that a deviation from the optimal production frontier may have a variety of causes. Using a stochastic production frontier, the production process is characterized (approximated) by a \pm xible functional form, while ine¢ciency (the deviation from the frontier) is modeled explicitly.

Consider the following stochastic production frontier:

$$y_{j;t} = f^{i} x_{j;t}; \exp(R)^{c} f \exp^{i} E_{j;t}^{c}$$

$$E_{j;t} = V_{j;t} i U_{j;t}(z_{j;t})$$
(1)

where $y_{j;t}$ is the output of airport j in period t, $x_{j;t}$ is a vector of inputs of airport j in period t; and R represents the state of technology. This is discussed in greater detail in Subsection 3.2. f() is a transformation function which represents the deterministic part of the production frontier. $V_{j;t} \gg N(0; \frac{3}{4}_V^2)$ and IID is a "standard" error term. $U_{j;t}$ represents the non-negative (stochastic) deviation from the production frontier; for $U_{j;t} > 0$ airport j does not reach the (e¢cient) frontier due to technical ine¢ciency. $U_{j;t} \gg N(m_{j;t}; \frac{3}{4}_U^2)$, truncated at 0, and $m_{j;t} = z_{j;t}\pm: U_{j;t}$ and $V_{j;t}$ are independent. z_j is a vector of airport attributes that are not considered as inputs, but can explain ine¢ciency (e.g., variables representing the degree of regulation).

If equation (1) is estimated in log-log form, then the technical e¢ciency (

$$T E_{j} = \frac{E_{j;t}^{3} \overline{b}_{j;t}^{j} x_{j;t}^{j;t} z_{j;t}}{E_{j;t}^{i} y_{j;t} \overline{b}_{j;t}^{j;t} z_{j;t}} = \exp_{i}^{3} b_{j;t}^{j}$$
(2)

where $\mathbf{b}_{j,t}$ is the predicted value of $U_{j,t}$. Again, based on a log-log form, returns to scale can be determined as (see also Fuss et al., 1978):

$$RTS = \frac{\mathbf{X}}{i} \frac{@y_{j;t}}{@x_j}$$
(3)

After this brief intorcuction to stochastic frontier analysis we continue with data envelopment analysis in the next subsection. The econometric models corresponding to equation (1) are presented in Section 3.

2.2 Data envelopment analysis

In DEA one uses a series of linear programming problems to determine a (production) frontier. The e¢ciency of each airport⁷ is evaluated against this frontier. Hence the ecciency of an airport is evaluated relative to the performance of other airports. Both input and output-oriented models can be used, depending on which variable is the target variable. For example, if the objective is to produce as much output as possible using the given input, one should use an output-oriented model. If the objective is to produce a given output using a minimum of inputs, an inputoriented model is more suitable. Although airports are the decision making units in this analysis, they have little control over the outputs (apart from government imposed limitations such as a 44 million passenger limit for Amsterdam Airport Schiphol); the airlines are the agents selling aircraft seats and transporting passengers⁸. Seen from that perspective, an input-oriented program seems to be more appropriate for the problem analyzed in this paper^{9;10}. Note that both models estimate the same frontier, but the ecciency measures of the ineccient decision making units may be dimerent (since the models generate the same frontier, the e¢cient decision making units will be the same in both models).

The e \triangle ciency measure proposed by Charnes et al. (1978) maximizes weighted outputs over weighted inputs, subject to the condition that for every airport this e \triangle ciency measure is smaller than or equal to 1. Assume that we have L airports

⁷Charnes et al. (1978), and a signi...cant proportion of the literature that followed that paper, use the term "decision making unit" for the ...rm or agent analyzed to emphasize that their interest lies in the decisions made by non-pro...t organizations rather than (in theory) pro...t maximizing ...rms.

⁸See Pels et al. (2000) for a theoretical analysis of how an airport investment in‡uences airline competition, and on how airline competition in turn in‡uences airports.

⁹In the remainder of this paper, all models are input-oriented. For output-oriented speci...cations see e.g. Banker et al. (1984) and Coelli (1996b).

¹⁰One could of course also ask how much output could be generated with a given input set, including environmental capacity. This could be useful for airports like Amsterdam Airport Schiphol, where environmental restrictions are becoming increasingly important, but requires an exact definition of the input "environment", which is unavailable. Ultimately, the orientation of the model depends on the status and policy of the airport operator. These are, of course, not the same for all airports, but, in general, the input-oriented model probably suits the "average airport" best.

with m outputs and n inputs, then for an airport denoted by a subscript 0, the measure of eciency is¹¹:

$$\max_{\substack{u;v \ i=1 \\ j=1 \\ v_j x_{j;0} \\ j=1 \\ v_j x_{j;0} \\ i=1 \\ u_i y_{i;1} \\ s.t. 1 \int_{a} \frac{i=1 \\ \frac{i=1}{P} \\ v_j x_{j;1} \\ j=1 \\ v_j x_{j;1} \\ u_i; v_j \int_{a} 0$$
(4)

The maximization problem in (4) can have an in...nite number of solutions (if $(u^{*}; v^{*})$ is a solution, so is $(\mu u^{*}; \mu v^{*})$, see Coelli, 1996b). Charnes et al. (1978) show that the above fractional programming program has the following linear programming

The dual to this linear programming problem is

which has fewer constraints and is therefore usually preferred in the literature¹². Banker et al. (1984) show that the e¢ciency coe¢cient h₀ in (6) is the product of a technical and scale e¢ciency measure. Hence, if not all decision making units

¹¹This maximization problem is repeated for each of the L airports.

¹² The linear programming problem in (5) has L + 1 restrictions; the linear programming problem in (6) has m + n restrictions.

are operating at the optimal scale level, the technical e¢ciencies determined using the model in (6) are confounded by scale ine¢ciencies¹³. To overcome this problem, Banker et al. (1984) add the convexity restriction¹⁴

$$\mathbf{X}_{\mathbf{y}_{1}} = 1 \tag{7}$$

to the program in (6). Call the e C ciency coe C cient determined by this program h_0^{VRS} . The di¤erence between the two approaches is plotted in Figure 1 for the case with one input and one output.

Figure 1 about here

In this graph the e¢ciency of a decision making unit operating at D as determined by program (6) is $h_0 = \frac{AB}{AD}$: Adding the convexity constraint (7) to (6) yields an e¢ciency of $h_0^{VRS} = \frac{AC}{AD}$. Note that this e¢ciency coe¢cient is always larger than or equal to the unconstrained e¢ciency coe¢cient, as the frontier ...ts the data more tightly. The scale e¢ciency is $h_0^{scale} = \frac{h_0}{h_0^{VRS}} = \frac{AB}{AC}$; if $h_0^{scale} = 1$; the decision making unit is scale e¢cient: If $h_0^{scale} < 1$, the scale e¢ciency estimate only indicates whether or not variable returns to scale are prevailing. The direction of these returns is not determined. Whether increasing or decreasing returns to scale are prevailing can be determined by running another program, in which the constraint in (7) is changed to 1 $\int_{a_{-1}}^{b_{-1}}$ and added to (6); call the e¢ciency coe¢cient from this program h_0^c . Note that the linear program used to determine h_0^c cannot envelop the data more closely than the program used to determine h_0^{VRS} (Ferrier and Lovell, 1990), as the latter program is the most constrained $1 = \frac{\mu}{a_{-1}} = 1$ and the former program is the mathematical formula to scale prevail. If $h_0^{scale} < 1$ and $h_0^c < h_0^{VRS}$, increasing returns to scale prevail¹⁵.

¹⁵ There is another approach used to estimate returns to scale. Using the linear program in (6) to determine h_0 (i.e. without restriction 7), $\prod_{l=1}^{m} e$ estimates returns to scale, where the asterisk ^m

¹³In exect, the model in (6) assumes that all decision making units are operating at their optimal scale, even when they, in fact, may not do so.

¹⁴This restriction implies convexity of the production set and input requirement set. This in turn implies a quasi-concave production function (frontier) (see e.g. Varian (1992) for details).

means an optimal solution. If this sum is smaller than 1 (in all alternate optima), increasing returns to scale are prevailing. If this sum is larger than 1 (in all alternate optima), decreasing returns are prevailing and if it is equal to 1 (in any alternate optimum), constant returns are prevailing; see Banker et al. (1996) for details. Banker et al. (1996) show that these two alternative approaches are equivalent.

3 Speci...cation of the model

After the theoretical exposition in the nprevious section, we will now describe the parametric and DEA models to be estimated. We ...rst present a general model of airport activities, before continuing with the econometric models to be estimated in Section 4.

3.1 A general model of airport activities

"An airport's primary function is to provide an interface between aircraft and the passengers or freight, including mail, being transported by air" (Doganis, 1992). From this perspective, an analysis of airport outputs requires data on air passenger movements (APM) and air transport movements (ATM), with the corresponding necessary inputs. Note that the necessary inputs for these two outputs are quite di¤erent and that it is not uncommon to model these outputs separately, see e.g. Gillen et al. (1997) and Pels et al. (1999). The airport can also be regarded as an interface between airlines and passengers rather than aircraft and passengers, although the di¤erence is ambiguous. The airlines' primary objective is to sell aircraft seats. ATM is essential, but is not a goal in itself. Seen from that objective, ATM can also be considered as an input from the airport's perspective. Note that as APM changes, ATM does not necessarily follow; the airlines can adjust the load factors or seating arrangements of their aircraft; ATM can be, but is not necessarily endogenous.

Figure 2 about here

From this line of reasoning, ATM can be considered as an intermediate good that is "produced" and then "consumed" in the "production" of APM. The various relationships between ATM, APM, runway e¢ciency and terminal e¢ciency are depicted in Figure 2. If ATM is low, given the runway capacity or given the inputs, runway ine¢ciency will be high; this is estimated using the stochastic production frontier. ATM is considered to be an input for APM. Given the terminal capacity and given the airlines' load factors, a high value of ATM (corresponding to low runway ine¢ciency) corresponds to a high value of APM (low terminal ine¢ciency); a positive relationship between ATM and APM is expected in the stochastic production frontier. If terminal ine¢ciency however, is relatively high, this could be explained by the average load factors. If load factors are low, airports "need" a proportionally large number of ‡ights (high ATM) to move a given number of passengers. This means that, ceteris paribus, the airport is relatively ine¢cient¹⁶. This ine¢ciency is, however, beyond the control of the airport authorities.

¹⁶Assume that an increase in ATM results in an increase in APM (i.e. ATM is a signi...cant explanatory variable in the production function explaining APM). If the frequency elasticity of demand is smaller than 1, an increase in ATM will likely result in a less than proportional increase in APM, if at all. A downward adjustment of airline load factors is likely and has a positive e^{mect} on terminal ine¢ciency.

The production frontiers (and ine¢ciency model) will be estimated using pooled cross-section - time series data for 33 European airports between 1995 and 1997. Data on ATM and APM was obtained from the British Airport Authority. The primary source for the data on inputs is IATA (1998). This source was supplemented with ACI (1999) and personal communication with some airports. The list of European airports used in the analysis is given in Appendix A.

After this brief introduction, the parametric and the DEA model will be speci-...ed in the next two subsections. As explained above, the parametric model allows for statistical testing and can be used to explain ine¢ciencies. But the model used (the translog) is a second-order approximation of an unknown function (frontier). Although the approximating function may be precise at the point of approximation, the precision at more extreme data points is not clear¹⁷. The parametric approach will therefore be used to test for the presence of returns to scale and ine¢ciencies (deviations from the optimal frontier). DEA will be used for an analysis of ine¢ciencies and returns to scale of individual airports; because DEA ...ts a piecewise linear curve, it does not have the problem described above.

3.2 The parametric model

Based on the discussion in the previous section, we model the e¢ciency of an airport as follows. First, a stochastic production frontier for ATM is estimated. A stochastic production frontier for APM is then estimated, in which the predicted value of ATM is an explanatory variable. The model

where $x_{j;t}^{i;ATM}$ is the i-th input used by airport j in the "production" of ATM_{j;t}; the "x-variables" used are the airport's surface area, the number of aircraft parking positions at the terminal and the number of remote aircraft parking positions. R_j is the number of runways. Each airport uses a number of runways which is …xed, at least in the short run; for each runway there is a corresponding interval of outputs rather than a single, optimal output. Therefore, the number of runways will be used

¹⁷The translog function is a ‡exible functional form that can achieve arbitrary scale elasticities at any data point. Once the parameters of the function are estimated, the elasticities are determined for every point along the curve. It may be that the curve satis...es curvature conditions imposed by economic theory only for a speci...c range (Caves and Christensen, 1980). For example, Caves et al. (1984) ...nd that the neoclassical curvature conditions on their (estimated translog) cost function are satis...ed around the sample mean and violated at extreme sample points (as a result of "dominant" second order e¤ects). Wales (1977) has shown that such problems do not necessarily undermine the validity of the elasticities evaluated at the sample mean. Caves et al. (1984) test the robustness of the speci...cation by ...xing all the second order coe⊄cients at 0; although that speci...cation is rejected on statistical grounds, the coe⊄cients of the ...rst order e¤ects are "remarkably similar" to the unrestricted estimates.

as a ...xed factor, representing a stage of technology rather than as a "traditional" input. Amsterdam Airport Schiphol, for example, has four runways. These are closed from time to time due to environmental restrictions or weather conditions, and three of these can only be used in a single direction. The ine¢ciency model is

$$U_{j;t}^{ATM} = \sum_{j=t}^{K} \pm_{j} Z_{j}^{ATM}$$
(9)

The "z-variables" explaining ine¢ciency include a dummy variable, which has the value 1 if the airport in question is a slot coordinated airport and a dummy, which takes the value 1 if there is a time restriction.

The model explaining APM is

$$\ln^{i} APM_{j;t}^{\ c} = (10)$$

$$X^{\ c}_{0} + \int_{i}^{-} \ln x_{j;t}^{i;APM} + \frac{1}{2} X X^{\ c}_{h} X^{\ c}_{i} \ln x_{j;t}^{h;APM} \ln x_{j;t}^{i;APM}$$

and

$$U_{j;t}^{APM} = \sum_{j=t_{j}}^{K} \pm_{j} Z_{j}^{APM}$$
(11)

where $x_{j;t}^{i;APM}$ is the i-th input used by airport i in the production of APM_{j;t}; these inputs are ATM_{j;t} = E i ATM_{j;t} U_{j} ; $x_{j;t}^{ATM}$; z_{j} , the number of check-in desks and the number of baggage claim units. Other possible inputs are terminal size and number of aircraft parking positions at the terminal (as an approximation of number of gates), but speci...cations in which these variables are also used are rejected because of insigni...cance of parameters of both of these variables and the variables ...nally used (probably due to multicollinearity, these variables are highly correlated with the variables actually used) and unexpected parameter signs. Although we assume that ATM "causes" APM, it is not straightforward that ATM is fully exogenous. Moreover, the airport has no (direct) control over the number of air transport movements; it merely provides the capacity. Therefore, the predicted value of ATM (i.e. the frontier value) is used as an explanatory variable rather than as the actual value. The variables explaining ine¢ciency are a time dummy as described above and secondly, the airlines' load factor. The average load factor is calculated as the weighted average of the aggregate load factors between the city in which the airport is located and a number of important destinations (Amsterdam, London, Frankfurt, Paris, Zürich and Singapore). For certain airports (in London, Milan and Paris) no speci...c load factors could be computed; e.g. London Gatwick, Heathrow and Stansted have the same load factor because only data on routes originating in London is available.

All data (except for the dummies) are standardized around the mean. In both models a constant and two dummy variables (for 1996 and 1997) are included. The

constant estimates the di¤erence between the (unknown) output evaluated at the mean input levels and the mean output in 1995¹⁸. The di¤erence in the next two years is the constant plus the dummy variable for that year.

Data on labor, both the number of people working at the airport and working for the airport, is only available for a limited number of airports. For example, the number of people employed by the operator of FRA (Flughafen Frankfurt Main AG) in 1997 is 12,500. According to the ACI airport database, FRA is the only airport operated by Flughafen Frankfurt Main AG. The British Airport Authority (BAA) had 8,393 employees and operates, among others, Heathrow, Gatwick and Stansted (BAA, 1999). The numbers of passengers at these airports in 1997 were 58 million for Heathrow and 40 million for Frankfurt. We may assume that such numerical di¤erences re‡ect di¤erences in the way workers have been classi...ed in the various airports. Since it is not clear how many employees are actually involved in the handling of aircraft, passengers and luggage, and because data on labor is simply unavailable for a large number of airports, this variable is not used in the analysis.

3.3 The DEA model

The DEA models for estimating the frontier are described in detail in Subsection 2.2, and the data are identical to those in the previous subsection. Two remarks are in order, however. First, the number of runways is used as a ...xed factor. The DEA program then is (see e.g. Banker and Morey (1986))

where the number of runways is the nth input. This input cannot be adjusted by the management to "...t" the output, but it is used in the determination of the frontier. If the ...rst n_i 1 inputs can be reduced, by keeping the last input (number of runways) ...xed, we ...nd that the airport in question is not e¢cient. Of course

¹⁸Note that these were equal if f(::) would be homogeneous of degree 1 and linear.

a convex combination of all airports does not necessarily have a meaningful interpretation in our case (an airport cannot have 1.5 runways), but it should be noted that: i.) runways at diagerent airports may be diagerent lengths and ii.) runways are considered as categorical variables in the sense that for one (unit) input (i.e. one runway), there is a range of possible outputs (see the previous subsection). This means that a portion of the frontier will run parallel to the axis (see Subsection 2.2), and that the presence of input (runway) slacks is not necessarily an indication of an inappropriate input mix. If the slack is smaller than 1, runway capacity is not fully used, but it cannot be reduced. If it is larger than 1, there could be an inappropriate input mix in that the same output could be obtained with one less runway. Second, the DEA model does not super from multicollinearity, so that, in principle, "all" available inputs can be used. However, to maintain consistency between both models, the same input set is used in both models. The only dimerence is that in the DEA model with APM as the output, the actual -rather than the predicted-value of ATM is used. The DEA model has no endogeneity problem and measures ecciency rather than it predicts outcomes.

4 Estimation results

In this section the estimation results from both models are discussed. The estimations were executed using FRONTIER 4.1 and DEAP 2.1 (see Coelli, 1996a,b).

4.1 Estimation results from the stochastic frontier model

Estimation results for the ATM model are given in Table 1. The number of parking positions (both at the terminal and remote) and the airport area are signi...cant. The ...rst order exects (parking positions and remote parking positions) are clearly signi...cant. The parameter of the number of runways is, however, not signi...cantly dixerent from 0. The second order exect for the number of runways (i.e. the squared number of runways) is negative, indicating that a number of runways larger than the average number (2) does not lead to an increase in ATM, ceteris paribus.

From the estimates of the ine¢ciency model, it appears that the slot coordinated airports are less ine¢cient and also airports with limited hours of operation are less ine¢cient¹⁹. One possible explanation for such a result could be given, when all inputs were multiplied with the fraction of time the airports are open. For example, when an airport is open for 18 hours a day, all inputs would be multiplied by $\frac{18}{24}$. In such a situation one could expect that the time constrained airports would be more e¢cient since during night time the unconstrained airports are likely to have little tra¢c. This approach of adjusting the input levels to the hours of operation has not been applied in this analysis; instead, the (possible) in‡uence of

¹⁹Both parameters are insigni...cant, although this is probably due to multicollinearity. Estimations with either of these variables does not lead to signi...cant changes of the estimated frontier or the sign of the variable in question. The variables are then signi...cant, but the log-likelihood is lower of course.

time constraints on e¢ciency is modeled explicitly in the ine¢ciency model using a dummy variable. Another explanation could be the following. The production function and ine¢ciency model together determine the output. Airports with a relatively high output (which, given the input set, can result in a low ine¢ciency) cause higher environmental pressures compared to airports with a relatively low output. Because of the environmental pressures, a political decision to impose time constraints may result. This could explain the ...nding that airports with limited hours of operation are less ine¢cient. Two remarks are in order though. First, environmental pressures are not the only reason to impose time constraints. For example, when the output is simply too low at certain hours, the airport can be closed because of economic reasons. Second, in the line of reasoning above we have reversed causality; the value of the time restrictions dummy is dependent the output. This calls for a di¤erent (two-stage) estimation method, but ...rst, further theoretical analysis is necessary to determine the exact relations between the variables concerned.

Estimation results for the APM-model are presented in Table 2. While the (...rst order) parameters for ATM^{π} and the number of check-in desks are signi...cant, the parameter for the number of baggage claims is not signi...cant. The second order coe¢cient for the number of baggage claims is, however, signi...cant. Note that the interaction terms are not signi...cant, indicating that the inputs are not complementary. The load factors have the expected sign; as load factors increase, ine¢ciency decreases. Airline ine¢ciency (re‡ected by low load factors) is apparently carried over to airports; given ATM^{π}, a larger passenger ‡ow could have been possible. Again, time-restricted airports are less ine¢cient.

Table 1 and 2 about here

The role of the ineCciency term in the total disturbance becomes clear from the values of ° reported in Tables 1 and 2. In both models, ° is close to 1 (i.e. the variance of the ineCciency term is large compared to the variance of the disturbance term), indicating the signi...cance of the ineCciency e^xect. This also becomes clear from the likelihood ratio test of the one-sided error; the hypothesis H₀ : ° = ±₀ = ::: = ±_n = 0 is rejected in both cases. Hence, there is a distinct ineCciency e^xect. In the following subsection, through the use of DEA, these ineCciency e^xects are analyzed for individual airports.

Using the production frontier estimates and equation (3), returns to scale can be calculated. For the average airport (i.e with average inputs), the elasticities (standard errors) are 0.951 (0.065) for the ATM model and 1.209 (0.029) for the APM-model; the "average" airport is operating under constant returns to scale when generating ATM and under increasing returns to scale when moving passengers. On the basis of studies of British airports, Doganis (1992) argues that the average cost per passenger falls sharply until a passenger level of about 3 million. Based on the estimates from the APM model, there is a strong negative relation

between the airport size (measured in AP M) and the scale elasticity as predicted by the model; the correlation coe Ccient is -0.83. This indicates there is some support for the common conjecture that smaller airports operate under (strong) increasing returns to scale. The corresponding correlation coe Ccient in the ATM model is 0.11. As mentioned above, the translog production frontier is a second order approximation of an unknown frontier at a certain point (the average). The estimated elasticities may only be plausible in a certain range of data (around the average); see footnote 18. In fact, it appears that the airports MXP and OTP have negative estimated scale elasticities²⁰. Deleting these observations and calculating the correlation coe Ccient between the scale elasticity and the airport size measured in ATM for 1997, only (which is the most eCcient year) yields -0.09^{21} . If we ignore MXP and OTP, there is a very weak or insigni...cant relation between the elasticity of size and airport size.

The ...nding that airports are operating under constant returns to scale "producing" ATM and under increasing returns to scale generating APM is not uncommon; see e.g. Gillen and Lall (1997). Although, the general picture is that the scale elasticity decreases with size (expressed in APM), a detailed analysis of e¢ciency (for individual airports) is made using DEA.

4.2 Estimation results from the DEA model

The e¢ciency coe¢cients for the ATM model are reported in Table 3. To save space, only the estimates for 1997 are given. In the second column the technical e¢ciency from the variable returns to scale model (i.e. the linear program composed by equations (6) and (7)) is given. For most airports e¢ciency increases over time (as ATM increases over time). The third column gives the scale e¢ciency and the last column contains the returns to scale characterization; drs means decreasing returns to scale and irs means increasing returns to scale. If an airport operates under decreasing returns to scale, the scale e¢ciency decreases over time (as the output increases), and if an airport operates under increasing returns to scale, the scale e¢ciency is 1, there is no need for the airport to increase or decrease the scale of its operations²². Note that if the scale e¢ciency is 1, the airports in question were operating under increasing returns in the previous years (because the output and technical e¢ciency increased over time). If 1998 were to be added to the dataset, the (absolute) values of the

²⁰In the APM model all elasticity estimates are positive.

 $^{^{21}\}mbox{The}$...gure for 1997 for the APM model is -0.84.

²²Related to this, Pels et al. (1999) use DEA to determine the most productive scale size of European airports. The concept of most productive scale size is due to Banker (1984b). For a given input-output mix, the most productive scale size is the scale size at which the outputs produced "per unit" of input is maximized. The problem is that for every input-output mix, there exists a most productive scale size. This is not necessarily the optimal scale size (with a cost minimizing input mix). An airport that is operating under decreasing returns to scale can reduce its scale to increase the output per "unit of input" to reach the most productive scale size. However, it can also change its input mix. Under these circumstances the airport operates under constant or even increasing returns to scale.

eciency coeCcients would change (decrease if the output increases), and airports that were operating under constant returns to scale in 1997 will now operate under increasing returns to scale in that year, because the eCciency is evaluated relative to the most eCcient decision making units.

The average technical e¢ciency in the ATM model (0.82) appears to be quite high; almost half of the airports are technically e¢cient, and GVA, MXP and STO are (very) close to the e¢cient frontier. Yet there are a number of airports (DUB, LYS, PRG, SXF, TXL and VIE) that have a rather low e¢ciency coe¢cient. There seem to be no region-speci...c e¤ects in that airports in a one country are on average more e¢cient than airports in other countries. The correlation coe¢cient between the technical e¢ciency (Table 3) and the airport size measured in ATM is 0.19; there only seems to be a weak "size" e¤ect, if any. The same conclusions hold true for the APM model (Table 4, the correlation coe¢cient is 0.17). The average technical e¢ciency in the APM model is 0.82. Although there are fewer technically e¢cient airports, there are also less airports with relatively low technical e¢ciency coe¢cients²³.

In Tables 3 and 4 we can see that a number of airports are operating under decreasing returns to scale. FCO, FRA, MUC and ZRH operate under (slight) decreasing returns to scale in both models. AMS, BRU, ORY and STO are operating under (slight) decreasing returns to scale in the ATM model and constant or increasing returns to scale in the APM model, while the opposite holds true for MAN. The correlation coe¢cient between the scale e¢ciency (Table 4) and the airport size measured in APM is 0.53. It should be kept in mind that scale e¢ciency says nothing about the orientation of the returns to scale; both increasing and decreasing returns are reported in Table 4. From Table 4 it can be seen that a number of relatively smaller airports, BLL, GOT, MXP, NUE, OTP, PRG, STN, SXF, and TRN are operating under increasing to scale and have a relatively low scale e¢ciency. Similarly, a number of relatively large airports, AMS, CDG, FCO, FRA, LGW, LHR, LIN, MAN, MUC, ORY, and ZRH are operating under (near) constant returns to scale or decreasing returns to scale. Hence, although the correlation between the scale ecciency and airport size (measured in APM) is apparently not very high, the ...nding in the previous subsection that scale elasticity decreases with airport size also becomes apparent from Table 4.

Table 3 and 4 about here

The correlation between the scale e¢ciency in the ATM model and the airport size (measured in ATM) is 0.18; so there is no apparent relation between scale e¢ciency and airport size. Whereas some of the larger airports are operating at (near) constant returns to scale (CDG, CPH, LGW, LHR and LIN) or (slight) decreasing returns (AMS, BRU, FCO, FRA, MUC and ORY), some of the smaller airports are operating at increasing returns to scale and have a relatively low scale

²³Only GVA and LYS have a coe¢cient below 0.5.

e¢ciency (BLL, FAO, GOT, LIS, MXP, NUE, OTP, STN, SXF and TRN). There is a negative relation between the returns to scale characterization of an airport and the size of the airport (measured in ATM). In the previous section we found that this relation was negative, but very weak; judging by the correlation coe¢cient of -0.09, there is hardly any relation. The 10 smaller airports just mentioned are operating under strong increasing returns to scale, while larger airports are operating under near constant (increasing or decreasing) returns to scale.

Clearly, both (stochastic frontier and DEA) models have their own intrinsic problems. The stochastic frontier model has potential curvature problems (see footnote 19 and Section 4.1). The DEA model does not allow for statistical testing; it cannot be tested if the scale e¢ciency is statistically di¤erent from 1. The only plausible conclusion is that the average airport operates under constant returns to scale and that the smallest airports (BLL, FAO, MXP, NUE, OTP, SXF and TRN), which are responsible for 4.6% of the total tra¢c in 1997, are almost surely operating under increasing returns to scale. The conclusion of Subsection 4.1, that the "average airport" (i.e. an airport operating at mean input levels) is operating at constant returns to scale, is thus maintained here.

5 Conclusion

In this paper we have estimated production frontiers for European airports, using both stochastic frontier analysis and data envelopment analysis. From the stochastic frontier analysis, it appears that there is a signi...cant ine¢ciency e¤ect. In the ATM model, airports with a time restriction and/or slot coordination appear to be less ine¢cient. One could think that within the limited time frame inputs are used more e¢ciently, but time is not considered as an argument in the production function. With or without the limited time frame, airports need the same expected peak capacity and hence can be expected to be more ine¢cient when there is a time restriction. During that period the airports are closed and the capacity is not used. More research into this aspect is necessary. Ine¢ciency in the APM model is explained by a time restriction dummy and airline load factors; apparently, airline ine¢ciency is carried over to airports. This link between e¢ciency of airlines and airports has not yet been demonstrated in the literature as far as we know.

Based on the estimates of the stochastic frontier model, we conclude that the "average" airport is operating under constant returns to scale when handling ATM and increasing returns to scale when moving passengers; the scale elasticity is decreasing in the number of passengers (i.e. on average, smaller airports are operating under strong returns to scale and larger airports are operating under weak returns to scale). This relation is rather strong in the APM model, but is rather weak in the ATM model. Using DEA, similar conclusions are drawn, the only di¤erence being that the relation between airport size measured in ATM and returns to scale seems to be much stronger than in the case of the stochastic frontier model. The conclusion of the analysis in this paper is that the "average" airport is operating under constant returns to scale in the ATM model and increasing returns to scale

in the APM model, where the returns in the latter model are decreasing in APM. These conclusions are in line with the results found in the literature (see e.g. Gillen and Lall, 1997),

One should, however, realize that the model in this paper concerns the physical capacity of the airport. Data on the environmental capacity (determined by regulation) and schedule delays, which can or should be included in the analysis, is not available. For example, in the case of Amsterdam Airport Schiphol (and other airports), the physical capacity exceeds "environmental capacity", and a new runway is to be constructed to increase "environmental capacity", although this may not be optimal from a purely economic point of view. The physical capacity of the existing runway has not (yet) been reached. To satisfy the future needs of Amsterdam Airport Schiphol, the creation of a satellite airport in the North Sea has been suggested. Based on the ...ndings of the ATM model, we may conclude that it would be impractical to "divide" the runway system, including parking positions, over the two airports. Although constant returns are likely to prevail, to a certain extent smaller airports are also likely to be more ine¢cient. Given the ...ndings of the APM model, it would be unwise to divide the terminal over the two airports; increasing returns to scale are prevailing. Given our ...ndings in this paper, the recent decision by the authorities (December 1999) to allow further growth at Amsterdam Airport Schiphol and to postpone the construction of a new runway annex terminal in the Noth Sea seems a one.

From the analysis in this paper it appears that, although the average airport is operating under constant returns to scale in the ATM model and increasing returns to scale in the APM model, a number of airports is operating under decreasing returns to scale. From a cost perspective these airports should decrease their scale of operations. Therefore, given the present con...gurations of these airports, a hub strategy which asks for an increase in both outputs, is not necessarily optimal. If such a strategy would be followed, a recon...guration of the airport would also be necessary, and such a strategy would also entail high costs.

References

Airport Council International (ACI), 1999, Airport Database

Banker, R.D., 1984, Estimating most productive scale size using data envelopment analysis, European Journal of Operational Research, 17, 35-44

Banker, R., H. Chang and W.W. Cooper, 1996, Equivalence and implementation of alternative methods for determining returns to scale in data envelopment analysis, European Journal of Operational Research, 89, 473-481

Banker, R., A. Charnes and W.W. Cooper, 1984, Some models for estimating technical and scale ine¢ciencies in data envelopment analysis, Management Science, 30(9), 1078-1092

Banker, R. and R.C. Morey, 1986, The use of categorical variables in data envelopment analysis, Management Science, 32(12), 1613-1627

Button, K.J., 1999, The usefulness of current international air transportation statistics, Journal of Transportation and Statistics, 2(1), 71-88

Button, K.J., K. Haynes and R. Stough, Flying into the future: air transport policy

in the European Union, Edward Elgar, Cheltenham

Button, K.J. and T.G. Weyman-Jones, 1994, X-e¢ciency and technical e¢ciency, Public Choice, 80, 83-104

Caves, D.W. and L.R. Christensen, 1980, Global properties of ‡exible functional forms, American Economic Review, 70, 422-432

Caves, D.W. and L.R. Christensen and M. Tretheway, 1984, Economies of density versus economies of scale: why trunk and local service airline costs di¤er, Rand Journal of Economics, 15(4), 471-489

Charnes, A., W.W. Cooper and E. Rhodes, 1978, Measuring the e¢ciency of decision making units, European Journal of Operational Research, 2, 429-444

Coelli, T., 1996, A guide to FRONTIER version 4.1: A computer program for stochastic frontier production and cost function estimation, CEPA Working Paper 96/07, Centre for e¢ciency and productivity analysis, University of New England, Armidale

Coelli, T., 1996, A guide to DEAP version 2.1: A data envelopment analysis (computer) program, CEPA Working Paper 96/08, Centre for e¢ciency and productivity analysis, University of New England, Armidale

Diewert, W.E., 1992, The measurement of productivity, Bulletin of Economic Research, 44(3), 163-198

Doganis, R., 1992, The airport business, Routledge, London

Ferrier, G. and C.A.K. Lovell, 1990, Measuring cost e⊄ciency in banking: econometric and linear programming evidence, Journal of Econometrics, 46, 229-245

Fuss, M, D. McFadden and Y. Mundlak, 1978, A survey of functional forms in the economic analysis of production, Production Economics: a dual approach to theory and applications, eds. McFadden, M. and D. Fuss, North-Holland, 219-268

Gillen, D. and A. Lall, 1997, Developing measures of airport productivity and performance: an application of data envelopment analysis, Transportation Research, 33E(4), 261-274

IATA, 1998, Airport Capacity / Demand Pro...les

Pels, E., 2000, Airport economics and policy: e¢ciency, competition, and interaction with airlines, Ph.D thesis, Vrije Universiteit/Tinbergen Instituut, Thela Thesis, Amsterdam

Pels, E., P. Nijkamp and P. Rietveld, 2000, Airport and airline competition for passengers departing from a large metropolitan area, Journal of Urban Economics, forthcoming

Pels, E., P. Nijkamp and P. Rietveld, 1999, E¢ciency of European airports, Paper presented at the 3rd ATRG-conference, Hong Kong

Tolofari, S., N. Ashford and R.E. Caves, 1990, The cost of air service fragmentation, Loughborough University of Technology, Department of Transport Technology, TT9010

Varian, H.R., 1992, Microeconomic analysis, W.W. Norton and Company, New York Wales, T.J., 1977, On the ‡exibility of ‡exible functional forms: an empirical approach, Journal of Econometrics, 5, 183-193

airport	City	airport	City
AMS	Amsterdam	LYS	Lyon
BLL	Billund	MAN	Manchester
BRU	Brussels	MRS	Marseille
CDG	Paris - Charles de Gaulle	MUC	Münich
CPH	Copenhagen	MXP	Milan - Malpensa
DUB	Dublin	NUE	Nüremberg
FAO	Faro	OTP	Bucharest - Otopeni
FCO	Rome	ORY	Paris - Orly
FRA	Frankfurt	PRG	Prague
GOT	Göthenborg	STN	London - Stansted
GVA	Geneva	STO	Stockholm
HAJ	Hannover	STU	Stuttgart
HAM	Hamburg	SXF	Berlin - Schönefeld
LGW	London - Gatwick	TRN	Turin
LHR	London - Heathrow	TXL	Berlin -Tegel
LIN	Milan - Linate	VIE	Vienna
LIS	Lisbon	ZRH	Zürich

A Airports used in the analysis

Figure 2: Relations between dependent variables and e¢ciency

Table 1 Estimation results, ATM

Table 2 Estimation results, APM

Parameter	Estimate (s.e.)		
[®] constant	0.713	(0:083) "	
®96	0.670	(0:032) [¤]	
®97	0.154	(0:061) [¤]	
®area	0.403	(0:059) [¤]	
[®] # runways	0.002	(0:115)	
[®] positions	0.268	(0:211) [¤]	
[®] remote	0.280	(0:055) [¤]	
®2 area	-2.207	(0:458)	
®2 # runways	-0.456	(0:077) [¤]	
®2 positions	-0.606	(0:130) [¤]	
®2 remote	-0.308	(0:137) [¤]	
[®] area£# runways	0.591	(0:068) [¤]	
[®] area£positions	1.208	(0:043) [¤]	
[®] area£remote	-0.090	(0:012) [¤]	
<pre> @# runways£pos: </pre>	-0.218	(0:157)	
[®] # runways£rem:	-0.286	(0:128) [¤]	
[®] positions£remote	0.343	(0:152) [¤]	
±slot coordination	-0.278	(0:726)	
[±] time restriction	-2.363	(1:447)	
$\frac{34^2_{\text{U}}}{1} + \frac{34^2_{\text{V}}}{1}$	0:734	(0:106) [¤]	
$^{\circ} = \frac{\frac{34^{2}}{34^{2}_{U} + 34^{2}_{U}}}{\frac{34^{2}_{U} + 34^{2}_{U}}{34^{2}_{U} + 34^{2}_{U}}}$	0:999	(0.6E-05) [¤]	
Log-L Č	-10.689		
LR ^{one} i sided error	73:761		

Parmeter	Estimate (s.e.)					
constant	0.213	(0:061) *				
- 96	0.016	(0:041)				
- 97	0.050	(0:051)				
- ATM [¤]	0.848	(0:096) [¤]				
checki in desks	0.490	(0:160) [¤]				
- baggage claims	-0.129	(0:191)				
-2 35 5 ATM¤	-0.586	(0:162) [¤]				
-2 check; ins	-0.851	(0:772)				
- 2 baggage claims	-0.905	(0:268) [¤]				
_ ATM [*] £check _i ins	0.353	(0:477)				
- ATM¤£bag: claims	0.209	(0:469)				
 check; ins£bag: claims	0.436	(0:561)				
±constant	0.815	(0:562)				
[±] time restriction	-0.592	(0:222) [¤]				
±load factors	-1.454	(0:119) [¤]				
3/42	0:377	(0:064) [¤]				
0	0.999	(0.5E-07) [*]				
Log-L	-32.252	. ,				
LR ^{onei sided error}	36.81					

Table 3 DEA e⊄ciency results, ATM ¹			Table 4 DEA e⊄ciency results, APM				
airport	technical	scale	rs	airport	technical	scale	rs
AMS	0.804	0.767	drs	AMS	0.788	1	-
BLL	1	0.515	irs	BLL	0.971	0.461	irs
BRU	0.755	0.760	drs	BRU	1	1	-
CDG	1	1	-	CDG	0.695	0.991	irs
CPH	1	1	-	CPH	1	1	-
DUB	0.442	0.830	irs	DUB	0.932	0.963	irs
FAO	1	0.294	irs	FAO	1	0.996	irs
FCO	0.880	0.850	drs	FCO	1	0.995	drs
FRA	1	0.909	drs	FRA	0.809	0.998	drs
GOT	1	0.493	irs	GOT	0.972	0.593	irs
GVA	0.993	0.669	irs	GVA	0.448	0.951	irs
HAJ	0.819	0.689	irs	HAJ	0.674	0.928	irs
HAM	0.650	0.864	irs	HAM	0.643	1	-
LGW	1	1	-	LGW	0.954	1	-
LHR	1	1	-	LHR	1	1	-
LIN	1	1	-	LIN	1	1	-
LIS	0.760	0.612	irs	LIS	0.707	0.886	irs
LYS	0.368	0.768	irs	LYS	0.513	0.970	irs
MAN	0.794	0.821	irs	MAN	0.774	0.990	drs
MRS	0.699	0.702	irs	MRS	1	0.970	irs
MUC	1	0.942	drs	MUC	0.757	0.994	drs
MXP	0.955	0.316	irs	MXP	0.842	0.771	irs
NUE	1	0.506	irs	NUE	0.917	0.494	irs
OTP	0.734	0.199	irs	OTP	0.949	0.401	irs
ORY	0.601	0.921	drs	ORY	0.927	1	-
PRG	0.541	0.673	irs	PRG	0.672	0.785	irs
STN	0.614	0.595	irs	STN	0.711	0.748	irs
STO	0.999	0.821	drs	STO	0.896	0.988	irs
STU	1	1	-	STU	0.923	0.836	irs
SXF	0.504	0.275	irs	SXF	1	0.507	irs
TRN	1	0.272	irs	TRN	0.750	0.601	irs
TXL	0.516	0.883	irs	TXL	0.687	1	-
VIE	0.518	0.998	irs	VIE	0.798	0.911	irs
ZRH	1	0.983	drs	ZRH	0.986	0.988	drs

1 rs = returns to scale, irs = increasing returns to scale, drs = decreasing returns to scale