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Independence and Uniqueness of the Mixed-Strategy Equilibrium 
in Social Networks

Darong Dai1

Abstract

We develop topological analysis of social-network effect on game equilibrium in the context 
of two- player asymmetric normal-form games and also in evolutionary sense. Firstly, it is 
confirmed that the game equilibrium in many social networks cannot be established through 
that in a well-mixed population. In other words, we have proved the independence of the mixed-
strategy equilibrium in social networks. Secondly, it is demonstrated that the game equilibrium 
exhibits injective property with respect to the corresponding social-network effect under 
consideration. That is, the uniqueness of the mixed-strategy game equilibrium in a given social 
network is identified. Thirdly, it is argued that uniqueness implies independence for a wide 
range of social networks and we have even derived the biggest sets of social networks in which 
independence and uniqueness hold true, respectively, in the underlying game. To sum up, we 
have provided qualitative characterizations about topological properties of the mixed-strategy 
game equilibrium in general social networks. 

Keywords: social network, asymmetric game, mixed-strategy equilibrium, independence, 
uniqueness

JEL Classification: C62, C72

1. Introduction

 Noting that social networks have been paid heavy attention to in recent studies, 
including economics (see, Bandiera and Rasul, 2006; Goyal, 2007; Acemoglu et al., 2010, 
2011, 2012; Golub and Jackson, 2010), biology (e.g., Nowak, 2006; Ohtsuki et al., 2006; 
Pacheco et al., 2008; Tarnita et al., 2009; Fu et al., 2010; Allen et al., 2012), sociology 
(Zhang, 2004; Jackson, 2008) and physics (Pacheco et al., 2006; Ohtsuki et al., 2007), and 
the theory about game equilibrium in well-mixed populations has been well-established 
(see, Weibull, 1995; Hofbauer and Sigmund, 2003), the present paper is encouraged to 
discuss the question that whether or not we can use the game equilibrium derived in well-
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mixed populations to effectively approximate the equilibrium of non-trivial social networks. 
Accordingly, the major goal of the paper is to illustrate that social-network structure does 
affect the resulting game equilibrium, which is a mixed-strategy equilibrium in general, 
and we further provide the explicit dimensional-constraint under which the conclusion 
holds with certain stability and also in generic sense (e.g., Mas-Colell and Nachbar, 1991). 
However, it is worth noting that we just consider exogenous social-network effect rather 
than the endogenous formation of social networks discussed in Skyrms and Pemantle 
(2000), Bala and Goyal (2000) and Galeotti et al. (2006). To the best of our knowledge, the 
paper, for the first time, investigates the topology of mixed-strategy game equilibrium in 
general social networks.
 Why do we focus on social-network effect? In the traditional approach of evolutionary 
game theory, individuals are usually assumed to meet at random and hence the well-known 
random-matching rule (e.g., Maynard Smith, 1982; Fudenberg and Levine, 1993; Ellison, 
1994; Okuno-Fujiwara and Postlewaite, 1995; Weibull, 1995) is widely employed. In a well-
mixed population, this methodology indeed provides us with an appropriate benchmark. 
Nonetheless, it is convincing to argue that people live in a highly structured society consists 
of groups, which implies that random matching will not always provide us with compelling 
approximation to reality when we are concerned with local interactions rather than uniform 
interactions among the players. In fact, Ellison (1993) shows that local interaction has very 
important and also different implications in equilibrium selection relative to that of uniform 
interaction or random matching. With the good purpose of correctly predicting the behavior 
of individuals, it is absolutely necessary to introduce social-network structure induced by 
non-uniform social interactions (see, Haag and Lagunoff, 2006; Horst and Scheinkman, 
2006) into our games.
 Indeed, many existing studies have been devoted to this issue. For example, noting 
that personal interactions among individuals are structured by families, neighborhoods, 
communities, and markets, as well as other formal and informal institutions, most of 
existing articles emphasize reputation effect and retaliation effect of the community (see, 
Kandori, 1992; Kahneman et al., 1986; Ghosh and Ray, 1996; Spagnolo, 1999; Anderson 
and Smith, 2010; Takahashi, 2010), while in the model of Bowles and Gintis (1998), 
the segmentation or segregation effect (e.g., Schelling, 1969, 1971) of the community is 
also explored. Undoubtedly, all of these effects can be regarded as specific examples of 
the general social-network effect discussed in the paper. Furthermore, individuals in the 
games also have preferences, motivations and emotions, that is, they have control over 
the frequency or duration of interactions. For instance, studies of dynamic social networks 
and theories on the evolution of cooperation in dynamically structured populations (e.g., 
Ohtsuki et al., 2007; Pacheco et al., 2008; Pacheco et al., 2006) usually construct models in 
which individuals differ in the rate at which they seek new interactions with others.
 For the sake of simplicity, we have interpreted social-network effect in the sense of 
Skyrms and Pemantle (2000) that the frequencies individuals meet each other are modified 
by the existing social-network structure when compared to that of well-mixed populations. 
That is, in evolutionary sense, social network affects the game equilibrium through the 
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impact forced on the frequencies individuals meet each other and hence the payoffs 
individuals finally receive. And it is easily seen that our specification is without loss of 
generality. In our model, representative players are assumed to maximize the discounted 
payoffs subject to the belief-learning dynamics, and then the solutions, if exist, form the 
game equilibrium.
 The main result reveals that, in many interesting and also important cases, one can 
hardly approximate the game equilibrium in social network via the game equilibrium of 
an ideal random-matching world. In other words, it is reasonable to argue that the game 
equilibrium in nontrivial social networks would be of independent interest. Moreover, it 
is illustrated that the game equilibrium is indeed injective map with respect to the social-
network effect under consideration. What’s the corresponding inspiration? Rather, we may 
interpret the result as that different social networks yield their independent interest if they 
produce different (in the sense of our specification in the model) social-network effects. 
In other words, the uniqueness of the mixed-strategy game equilibrium in a given social 
network is identified.
 The paper is organized as follows. Section 2 presents the basic model. In section 3, 
we mainly analyze the social-network effect imposed on the game equilibrium defined and 
derived in section 2. And our major innovations appear in section 3. Section 4 concludes 
the paper with some remarks.

2. The Model

 We study the social-network effect on game equilibrium in the context of two-player 
asymmetric normal-form games. Without great loss of generality, one may interpret our 
background in the evolutionary sense. That is, there are two heterogeneous groups of 
populations. In particular, there is a representative row-player with m  strategies for the 
first population, while there is a representative column-player with n  strategies available 
for the second group of population. Naturally, payoffs are determined by two matrices, A , 
which is m n , for the first population, and B , which is n m , for the second population.
 Furthermore, suppose in period t  there are iM  players who choose strategy i  for 

 1, , i m   , and also jN  players who choose strategy j  for  1, , j n   . Thus, we let 
/:i i kx     and /:j j ly     denote the frequencies of strategies i  and j , 

respectively, for  1, , i m    and  1, , j n   . Thus, applying the random matching rule 
in a well- mixed population, the average payoffs of strategy i  and strategy j  are given by 
 i
Ay  and   j

Bx , respectively, for  1, ,: ny y y    and  1, ,: mx x x    with “    ” denoting 
transpose. Clearly, we can put,

  1
| 1  for  0,1 ,:   1, ,mrow m

i ii
x x x i m


       

  1
üüü:   0,1 ,  1, ,ncolumn n

j jj
y y y j n


       
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  It is especially worth emphasizing that x  can be regarded as the vector of row-
strategy distribution among the first population in the evolutionary sense on the one 
hand, it, on the other hand, can also be interpreted as the frequencies of the actions of the 
representative row-player. Similarly, we can consider the vector y  in the same way. Thus, 
as in Hofbauer and Hopkins (2005), we formally give,

Defi nition 1 (Belief-learning dynamics in well-mixed populations) 

 The representative row-player’s belief about the actions of the representative column-
player is characterized by the following learning dynamics,

  y BR x y 

where  BR x  is the set of all best responses of column-player to rowx . By symmetry, 
the representative column-player’s belief about the actions of the representative row-player 
is determined by the learning dynamics as follows,

  x BR y x 

where  BR y  is the set of all best-response actions of row-player to columny .

 Remark 2.1. As is pointed out by Hofbauer and Hopkins (2005),  BR x  and  BR y  
are typically not functions but correspondences. Nevertheless, one may also consider some 
specifi c best-response functions, for example, the exponential or logit choice rule (see, 
Hofbauer and Sandholm, 2002),

 
 

 
 

1

1
1

exp
,   1, , .

exp
: j

j n

ll

Bx
BR x j n

Bx










 
   
  

And similarly,

 
 

 
 

1

1
1

exp
,  1, , .

exp
: i

i m

kk

Ay
BR y i m

Ay










    
  

where  , 0,     denote the noise levels, respectively. And when the noise level 
approaches zero, logit choice approaches unperturbed maximization; when the noise 
level approaches infi nity, it approaches uniform randomization. Therefore, in well-mixed 
populations and for the present continuous-time repeated game, one can defi ne,
 
 Problem 1. The optimization problem facing the representative row-player is given 
by,
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 

 

 0
max

row

t

x
e x Ay dt 




subject to,

   ,  .columny BR x y y  

 Problem 2. The optimization problem facing the representative column-player reads 
as follows,

 
 

 

 0
max

column

t

x
e y Bx dt 




subject to,

   , .rowx BR y x x  

 As one can see, such kind of optimization problem may be involved in optimization 
subject to non-linear constraints, which hence implies that we generally cannot adopt 
the neo-classical optimization methodology and dual approach proposed in Ivanov and 
Dobreva (2010) for the studying of labor supply issues.

Defi nition 2 (Game equilibrium in a well-mixed population) 

 If Problem 1 and Problem 2 are solvable, then we denote the corresponding solutions 
by *

yx  and *
xy , respectively. And hence,  * *,y xx y  is called the game equilibrium in a well-

mixed population.

 Remark 2.2. Generally speaking, *
yx  can be regarded as a  1rC r   map with respect 

to y  and *
xy  can be regarded as a  1rC r   map with respect to x .

 In the above constructions, we just consider the ideal case of well-mixed populations. 
However, in reality, individuals live in a structured society. That is, there must exist 
social-network effect which indeed affects the payoffs of the players. In particular, in the 
current study we incorporate social-network effect by two vectors,   1, ,

: i i m
 

 
  and 

 
1, ,

: j j n
 

 
  with,

 
  1

| 0  for :  1,1 ,  1, ,mrow m
i ii

i m  


        

 
  1

| 0  for  1,1 ,  1, ,: ncolumn n
j jj

j n  


        

denoting the corresponding domains, respectively. As you can see, we characterize the 
social-network effect from the perspective that social-network structure affects the 
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frequencies individuals meet each other in the underlying game. For example, in social 
interactions, people usually have much higher frequencies to interact with families and 
neighbors than the remaining people in a given community. What is more, individuals have 
higher frequencies to interact with people who live in the same community than the people 
live in any other remaining communities. So, any social-network structure produces the 
corresponding social-network effect either through the spatial factors such as communities 
and neighborhoods or based on social collections such as roommate relationship and 
friendship among the individuals. And these social phenomena suffi ciently capture the 
intuition and essence of our defi nition of the social-network effect in the model.
 Now, with the exogenous social-network effect defined above, the average payoffs of 
strategies i  and j  are respectively given by    i

A y   and    j
B x  , for 1, ,i m   

and 1, ,j n  . We, by modifying Definition 1, give, 

Defi nition 3 (Belief-learning dynamics in social networks) 

 The representative row-player’s belief about the actions of the representative column-
player is characterized by the following learning dynamics,

  y BR x y  

where  BR x   is the set of all best responses of column-player to rowx    with 
row  . Correspondingly, the representative column-player’s belief about the actions of 

the representative row-player is determined by the dynamics as follows,

  x BR y x  

where  BR y   denotes the set of all best-response actions of the row-player to 
columny    with column .

 Accordingly, provided the above preparations, we can give,

 Problem 3. The optimization problem, modifi ed by the social-network effect, facing 
the representative row-player is given by,

 
   

 

 0
max

row

t

x
e x A y dt  

 


     

subject to,

   
 

  ,   
,  
,  

column

column column

row row

y BR x y y
y

x


 
 

    
   
   



 Problem 4. The optimization problem facing the representative column-player in a 
social network reads as follows,
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   

 

 0
max

column

t

y
e y x dt  

 


     

subject to,

 

  , 
, 
, 

row

row row

column column

x BR y x x
x

y


 

 

    
   
   



Defi nition 4 (Game equilibrium in a social network) 

 Provided Problem 3 and Problem 4 are solvable, we denote the corresponding 
solutions by  ˆ ,yx    and  ˆ ,xy   , respectively. Thus, the pair     , , ˆ ˆ ,y xx y     is 
named as the game equilibrium in a social network.

 Remark 2.3. Without loss of generality, x̂  can be regarded as a  1rC r   map with 
respect to y  and also ŷ  can be seen as a  1rC r   map with respect to x  based upon our 
constructions. Noting that the key issue of the current study is not the existence of game 
equilibrium defi ned above but the social-network effect imposed on the game equilibrium, 
we suppose throughout that the game equilibria exist with the corresponding  1rC r   
properties fulfi lled. And we leave the investigation of the open question about the existence 
of game equilibrium to future work.
 Additionally, in order to verify that Defi nition 4 is actually well-defi ned we will 
introduce the following numerical example to reveal the corresponding desirability.

 Example 1. Suppose that the payoff matrices have the following numerical 
characteristic,

 

1 0 3 0
,   

0 2 0 1
A B   
    
   

which shows that we are considering an asymmetric coordination game, i.e., a normal-form 
game that is widely used and applied in game theory and economic theory. Thus, for the 
representative row-player in Problem 3, we have,

 

     

     

1 1
1 1 1 2

2 2

1 1 1 1 1 2 2 2

1 0
,1 

0 2

2 1

y
x A y x x

y

x y x y


   



   

  
            

      

 About the underlying belief-learning dynamics, we specifi cally choose the broadly 
employed logit choice rule that is introduced in Remark 2.1, i.e.,
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 
  
    

1
1

1 2 11
2 1 11

exp 1
1 exp 1 3 4exp

l l

B x
BR x

xB x

 


   






    
         

for  0,   . In particular, we adopt the following learning process,

   1 1 1 1 1dy BR x y dt y dW    

where W  denotes a standard Brownian motion, i.e., we consider the case of stochastic 
learning dynamics driven by stochastic replicator dynamics. Hence, the optimization 
problem facing the representative row-player can be written as follows,

 
     

1

 

1 1 1 1 1 2 1 2 00 1
max 2 1 1t

x
e x y x y dt    

 

 
         

subject to,

 
 1 1 1 11

2 1 1

1
1 exp 1 3 4

dy y dt y dW
x


  

 
   
       

 The corresponding Bellman equation can be expressed as follows,

 

   

     

 
 

1

2 2
1 1 1 1

1 1 1 1 1 2 1 20 1

1 11
2 1 1

1
2

max 2 1 1

1
1 exp 1 3 4

x

J y y J y

x y x y

J y y
x

 

   

  

 







 

           

            

with  1J y  representing the value function, which is a  1rC r   map in this formulation. 
Therefore, optimal choice of 1x  is determined by the following first-order condition,

 

     
 
  

1 1
2 1 1

1 1 1 2 1 21
2 1 1

4 exp 1 3 4
2 1 0

1 exp 1 3 4

x
y y J y

x

   
 

  

 



         
     

which is equivalent to the following equation,

 

 
  

   
 

1
2 1 1 2 2 1 1

21 12 1 1

exp 1 3 4 2
41 exp 1 3 4

x y y
J yx

     

  





           
     
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which implies that x̂  is indeed a  1rC r   map with respect to y  and it can be expressed 
as  ˆ ,yx   . Similarly, one can also demonstrate that  ˆ ,xy    is indeed a  1rC r   
map with respect to x . And we leave the details to the interested reader. To summarize, 
game equilibrium in Definition 4 is well-defined and the existence of such kind of game 
equilibrium endogenously affected by social networks is confirmed in such a numerical 
example.

3.    Social-Network Effect

 Based on Defi nition 2 and Defi nition 4, we give,

    * *ˆ, ; : ,y y y yf x x x    

which is a  1rC r   map with respect  to its arguments based upon our specifications. 

 Assumption 1.  0 dim dim dimrow column row      .
 From Assumption 1 and also the following assumptions, one can easily fi nd that the 
present model mainly focuses on mixed-strategy equilibrium emphasized by the seminal 
papers of Harsanyi (1973) and Fudenberg and Kreps (1993), and among others.
 Transversality will be suffi ciently used in the following proof. About the defi nition 
of transversality, one can refer to Marsden et al. (2001, pp. 179), and one can refer to 
Hirsch (1976, pp. 74) about the Transversality Theorem and refer to Hirsch (1976, pp. 79-
80) about the Parametric Transversality Theorem. Moreover, about Preimage Theorem, 
one can refer to Guillemin and Pollack (1974, pp. 21). And we bring the idea employed by 
Citanna and Siconolfi  (2010) to our major proof.

Proposition 1 

 Let columny  be given. Thus, there is an open and dense subset *row  of row  such 
that the system  *, ; 0y yf x    does not have a solution in the space row column   for all 

* *row
yx   when Assumption 1 holds.

Proof: 
 For * row

yx  , *,
:

y

row column row
y x

f    , where we, by Assumption 1, have 
dim dim dimrow column row     , and thus there are fewer unknowns than equations. The 
Jacobian of the map  yf   with respect to  * *

1, ,y yi i m
x x

 
  is equal to the negative identity 

matrix. Hence, rank dim row
yJf   , which implies that  yf   is a  1rC r   submersion. 

Now, applying the defi nition of Transversality produces yf S  for rowS   . Therefore, 
Parametric Transversality Theorem implies that for * *Ärow

yx  , a dense subset of row , 
*, yy x

f S  for rowS   . By Assumption 1, we get  dim dim dim 0 dimrow column row      , 
thus we get    *,

0
y

row column
y x

f     for columny   and * *row
yx   by using the 
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defi nition of Transversality again. Accordingly,    * *ˆ, ; : , 0y y y yf x x x       does not 
have a solution in the compact product-space row column   for columny  and * *row

yx  . 
Moreover, we proceed to show that *row  is also open. Notice that  0  is a closed subset 
provided the usual topology on the simplex row , and also the map  yf   is  1rC r  , an 
application of the Parametric Transversality Theorem produces the required assertion.  ■
 Similarly, given,

 Assumption 2. 0 dim dim dimrow column column      .
 We derive the following proposition,

Proposition 2 

 Let rowx  be given. Thus, there is an open and dense subset *column  of column  
such that the system    * *ˆ, ; : , 0x x x xg y y y       does not have a solution in the space 

column row   for all * *column
xy   when Assumption 2 holds.

Proof: 
 It is easily seen that the proof is quite similar to that of Proposition 1, thus we omit 
it. ♦

Defi nition 5 (Independence of game equilibrium) 

 We mean independence of game equilibrium in social networks in the following sense: 
the corresponding game equilibrium essentially changes when a non-trivial social-network 
structure is imposed on the underlying well-mixed population. That is, independence of 
game equilibrium in social networks implies that we can hardly approximate the game 
equilibrium in social networks through that relatively easily derived in well-mixed 
populations and this defi nition of independence has nothing to do with that of probabilistic 
independence.
 To summarize, we can establish,

Theorem 1 (Independence)

 Provided the above constructions, social-network effect indeed generates nontrivial 
differences among the resulting mixed-strategy game equilibria when the corresponding 
dimensional constraints in Assumption 1 and Assumption 2 are fulfi lled.

 Remark 3.1. Theorem 1 implies that, for some important and also interesting 
cases, one can hardly approximate the game equilibrium in social networks via that in 
a well-mixed population by using the random-matching rule. Although the methodology 
of random matching (e.g., Gilboa and Matsui, 1992; Aliprantis et al., 2007, and among 
others) indeed plays a crucial role in equilibrium selection of (evolutionary) game theory, 
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it would probably provide us with wrong or biased predictions about the equilibrium 
behaviors of individuals in many important and also interesting social networks discussed 
in Theorem 1. For example, we may conjecture that the equilibrium derived by random-
matching mechanism in well-mixed populations cannot approach the equilibrium in social 
networks even when the corresponding social network approaches the state of well-mixed 
population provided the social-network effect defi ned above vanishes. In other words, 
the game equilibrium in social networks should be of independent interest. Moreover, 
this result holds with certain stability and also in generic sense thanks to the well-known 
Transversality Theorem.
 Now, we are encouraged to consider the following  1rC r   map,

         1 1 2 2 1 1 1 2 2 2ˆ ˆ, , , ; : , ; , ;y x y x y         

for the game equilibria    1 2, ˆ ˆ rowx x    from Definition 4 and any action columny . And 
we introduce the following assumption,

 Assumption 3.  2 dim dim dimrow column row     .

Proposition 3 

Based upon Assumption 3 and the above specifications, there is an open and dense subset 
ˆ column  of column  such that the system     1 1 2 2, , , ; 0y       does not have a solution 

in the set,

 
         1 1 2 2 1 1 2 2Ù , , , ||| , , || 0row column row column             ∶

for ˆ columny   when the derivative of the map   with respect to y  is surjective.

Proof: 
 We fi rst put,

 
         1 1 2 2 1 1 2 2, , , ||| , , || 0row column row column              ∶

 And for any integer 0k  , let,

        1 1 2 2 1 1 2 2 1, , , ||| , , ||: row column row column
k k

                
 

 Obviously, k  , and both k  and   are sets that are (locally) independent 
of columny . Let  column k  denote the subset of column  where the system 

    1 1 2 2, , , ; 0y       does not have a solution in k . If  column k  is open and dense 
in column , then we obtain,
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 

0

ˆ :column column

k

k


  

which is the intersection of a countable family of open and dense sets; therefore, it is 
a residual and therefore dense subset of column  by applying Baire Category Theorem. 
And also, the system     1 1 2 2, , , ; 0y       does not have a solution in cl , i.e., 
the closure of the set  , for ˆ columny  . Suppose not, then there is ˆ columny  and 

    1 1 2 2, , , cl       such that     1 1 2 2, , , ; 0y      . By the definition of the 
space  , there must exist 0k   such that     1 1 2 2, , , k      . However, the latter 
implies that  columny k  , a contradiction.
 The compactness of k  implies that     1 1 2 2|| , , , ; ||y       for some 0   
and all     1 1 2 2, , , k     . However, the map     is continuous in all its arguments 
and hence     1 1 2 2|| , , , ; || 0y       for all     1 1 2 2, , , k      and y  in an open 
neighborhood of y . Therefore, it is confirmed that the set  column k  is open.
 Now, we are in the position to show that  column k  is also dense. It follows from 
Assumption 3 that dim dim row

k   , and thus there are more equations than unknowns 
in the system     1 1 2 2, , , ; 0y       for any given columny . Consequently, by 
the Preimage Theorem and Parametric Transversality Theorem, there is a dense subset 

 column k  of column  where     1 1 2 2, , , ; 0y       has no solution in k  due to the 
assumption that the derivative of the map   with respect to y  is surjective. So, the proof 
is completed.  ■

 Remark 3.2. Here, the metric or norm || ||  is the canonical metric in k .

 Assumption 4.  2 dim dim dimrow column column     .

Proposition 4 

 Based upon Assumption 4 and the above specifications, there is an open and dense subset 
ˆ row  of row such that the system         1 1 2 2 1 1 1 2 2 2ˆ ˆ, , , ; , ; , ; 0x y x y x          :  

does not have a solution in the set

 
         1 1 2 2 1 1 2 2, , , ||| , , || 0row column row column              :

for ˆ rowx   when the derivative of the map   with respect to x  is surjective.

Proof: 
 One can easily notice that the proof is quite similar to that of Proposition 3, we take 
it as omitted and leave it to the interested reader. ♦
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Defi nition 6 (Uniqueness of game equilibrium)  

 We discuss uniqueness of game equilibrium in a given social network. For a given 
social network, the corresponding game equilibrium is a map of the underlying social-
network effect (or social-network structure). If different social-network effects lead to 
different game equilibria or equivalently the same game equilibrium implies that there 
exists the same social-network effect, we get the game equilibrium as an injective map of 
the social-network effect. As a result, injection means uniqueness of the game equilibrium 
in a given social network.

Theorem 2 (Uniqueness) 

 The game equilibrium given in Defi nition 4 is injective with respect to the social-
network effect when either Proposition 3 or Proposition 4 holds. This yields that different 
social-network effects produce effective differences among the resulting game equilibria 
when the corresponding dimensional constraints are satisfi ed. Thus, naturally, there exists 
a one-to-one correspondence between the social-network structure and the mixed-strategy 
equilibrium. That is to say, the uniqueness of the mixed-strategy game equilibrium in a 
given social network is identifi ed.

 Remark 3.3. It is especially worth noting that the above result holds with certain 
stability and also in generic sense owing to the Transversality Theorem. By this theorem, 
one can conclude that different social networks would be of independent interest if they 
indeed produce different social-network effects in the sense of our specifi cation. To sum 
up, social-network mechanism provides a unique prediction of the equilibrium behaviors 
of the individuals involved in the underlying game.

Corollary 1  

 The property Uniqueness in Theorem 2 implies the property Independence established 
in Theorem 1.

Proof: 
 It is easily seen that Assumption 3 implies Assumption 1 and also Assumption 4 
implies Assumption 2, which accordingly yields the required result. ♦

 Remark 3.4. This observation also demonstrates the inherent consistency of the 
underlying model specification. Notice that the above assumptions have provided the 
minimum requirements of the corresponding dimensional constraints of properties 
Independence and Uniqueness, we have thus shown the biggest sets of social networks in 
which Independence and Uniqueness hold true, respectively.
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4. Conclusion

 In current study, topological analyses about the social-network effect on game 
equilibrium have been thoroughly provided. It would be very interesting to explore the 
game equilibrium in social networks rather than well-mixed populations (see, Weibull, 
1995; Hofbauer and Sigmund, 2003, and among others), and the paper provides a simple 
and general framework for this issue. Nevertheless, we just study exogenous social-network 
effect in the sense of Skyrms and Pemantle (2000) in the present limited model. Moreover, 
the paper mainly focuses on mixed-strategy equilibrium emphasized by the seminal papers 
of Harsanyi (1973) and Fudenberg and Kreps (1993).
 Two major conclusions are established in the model. Firstly, generally speaking, 
nontrivial social network induces game equilibrium strictly different from that in well- 
mixed populations. Secondly, it is interesting to find that the game equilibrium exhibits 
injective property with respect to the social-network effect under consideration. That is, we 
have proved the uniqueness of mixed-strategy game equilibrium in a given social network. 
Therefore, we argue that the game equilibrium in social networks would be of independent 
interest and random-matching rule (see, Ellison, 1994; Okuno-Fujiwara and Postlewaite, 
1995; Weibull, 1995; Hofbauer and Sigmund, 2003, and among others) cannot always 
provide us with a compelling approximation. Finally, it is shown that uniqueness implies 
independence for a wide range of social networks. And we have even derived the biggest 
sets of social networks in which independence and uniqueness hold true, respectively, in 
the underlying game.
 What are the economic implications of the main results established in the paper? 
On the one hand, even though the theory of game equilibrium in well-mixed populations 
has been thoroughly established in the past several decades and the importance of social-
network effect imposed on game equilibria and economic outcomes has been sufficiently 
emphasized in recent studies, there still is not a general conclusion regarding the internal 
relation between the both. The paper demonstrates an impossibility theorem by confirming 
the independence of game equilibrium in social networks. This impossibility theorem 
argues that we can hardly predict the equilibrium behaviors in social networks when we 
only have information about the original well-mixed populations. That is to say, since 
the players choose their best strategies based on the information of the game context, our 
result implies that social-network structures produce relevant information that is essential 
in determining equilibrium behaviors. Rather, one may even argue that game equilibria in 
social networks are of independent interest mainly because social networks themselves 
produce informational frictions facing the players when compared to the original well- 
mixed world. On the other hand, uniqueness of game equilibrium in a given social network 
not only leads us to the corresponding independence of game equilibrium but also makes 
things much easier when evaluating economic welfare of different social networks. Noting 
that we can comparatively easily Pareto rank different game equilibrium according to the 
corresponding payoffs, we can thus Pareto rank different social networks by applying 
the uniqueness property. As is well known, social networks are usually formed by social 
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norms, conventions and\or institutions. Consequently, one can directly Pareto rank different 
social norms or institutions based upon our general result. In particular, we have to some 
extent modeled the underlying idea of Coase (1988) that we need a baseline framework to 
comparatively and sufficiently evaluate the economic efficiency of different institutional 
arrangements in order to make a wise choice during the corresponding institutional changes 
in reality.
 As a final point, I’d like to cite some examples in existing articles to make our general 
arguments much more intuitive. First, the simple model constructed in Dai and Cheng 
(2011) can be regarded as a special application of the Independence property demonstrated 
in this paper. As is widely known, (Defect, Defect) is the unique Nash equilibrium and 
evolutionary stable equilibrium (ESE) of Prisoner’s Dilemma in a well-mixed population 
(see, Weibull, 1995; Hofbauer and Sigmund, 2003, and among others). However, Dai and 
Cheng (2011) prove that there is a non-random matching mechanism, which naturally 
corresponds to a special type of social-network structure (or effect), such that (Cooperate, 
Cooperate) is the unique induced game equilibrium. That is to say, social-network effect 
does make sense and game equilibria in some social networks are of independent interest 
relative to those in well-mixed populations. Second, as is emphasized above, Uniqueness 
not only implies Independence but also yields interesting economic-welfare implications. 
Dai (2012) indeed reveals a general existence of the Pareto-optimal social-network 
structure in any given evolutionary normal-form game. Moreover, in a much simpler 
example, Dai and Cheng (2011) prove that there exists an optimal and stable level of social 
segmentation, which also results in a special type of social network, so that the welfare of 
the community is maximized under the background of Prisoner’s Dilemma. Notice that 
Dai and Cheng (2011), and Dai (2012) only confirm the existence of Pareto-optimal social 
networks in evolutionary normal-form games, the present paper further demonstrates the 
underlying Uniqueness property, thereby making the Pareto ranking of different social 
networks much easier in large and general normal-form games. As a consequence, what 
are the corresponding lessons we have learned from this paper? On the one hand, like 
rational principle, evolutionary selection and learning mechanism, we can similarly use 
social-network effect as an effective equilibrium-selection mechanism especially when 
there are multiple equilibria in many social games or spatial games. On the other hand, 
the general result established in the paper also shows that we can design a unique social-
network structure through formal social institutions or informal social norms to induce the 
Pareto-optimal game equilibrium of structured populations in real-world economies.
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