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Abstract 

While Business Intelligence (BI) initiatives have been a top-priority of CIOs around the world 
for several years, accounting for billions of USD of IT investments per annum (IDC), academic 
research on the actual benefits derived from BI tools and the drivers of these benefits remain 
sparse. 

This paper reports the findings of an exploratory, cross-sectional field study investigating 
the factors that define and drive benefits associated with the deployment of dedicated BI tools. 

BI is broadly defined as an analytical process which transforms fragmented data of 
enterprises and markets into action-oriented information or knowledge about objectives, 
opportunities and positions of an organization; BI tools are software products primarily 
designed and deployed to support this analytical process (e.g. data warehouse software, data 
mining software, digital dashboards applications).

Building upon DeLoneand McLean’s (1992; 2002; 2003) information systems success 
model, we develop, test and refine a BI quality and performance model adapted for the specific 
purpose, application, user group and technology of BI tools. The ultimate performance 
predictors in this model are user satisfaction and the impact of BI tools on managerial decision 
quality, both of which are determined by data quality.

Partial Least Square (PLS) modeling is used to analyze data collected in a survey 
administered to IT executives of large Australian Stock Exchange (ASX) listed companies.

The results confirm some of the theoretical relationships established in – especially the 
original – DeLone-McLean model in the specific context of BI. More importantly, the results 
also confirm the important role of explicit BI management as antecedent of benefits derived from 
BI tools, and the key impact of data quality on managerial decision making and organizational 
performance.

However, the results also reveal a ‘user satisfaction paradox’: In contrast to the 
predictions derived from the DeLone-McLean model, organizational performance is negatively 
associated with user satisfaction with BI tools. Financial performance data collected for 
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ex-post verification of this unexpected result confirm this paradox. We discuss BI-specific 
interpretations of these unexpected findings and provide avenues for future research.

Keywords: Business Intelligence (BI), information systems success, data quality, user 
satisfaction, IT impact analysis

JEL Classification: M10, M15, M40

1. Introduction

`Business Intell igence (BI) has been a top priority of IT executives for several years and 
this trend is expected to continue (Gartner Research, 2011). While both the basic concept 
and also the term ‘business intelligence’ date back many decades1, the emergence of the 
data warehouse as new infrastructure for reporting and analysis combined with OLAP and 
new of fact-based support decision support systems (DSS) (Power 2003)leveraged interest 
in BI in the past decade, and what was initially considered another ‘consulting fad’, is now 
considered a potential source of competitive advantage (Wixom et al., 2008; Hocevar and 
Jaklic, 2010; Gonzales, 2011).
 The academic research community only gradually embraced the topic of BI, and 
today research on BI is still fragmented and sparse. While a research time lag on emerging 
IS concepts or innovations is a generally observable phenomenon2, which can be explained 
by e.g. academic caution, risk aversion and publication time lags, we assume that the 
absence of a generally accepted definition of the term BI contributed and still contributes 
to this time lag. And while there is some convergence in the most widely used definitions 
of BI, the rapid developments of new ‘BI tools’ and technologies increasingly blurs the 
practical understanding and meaning of the term BI. It is therefore particularly important to 
operationalize the meaning of BI (and related terms) for the purpose of our research.
 For Foley and Manon (2010), for example, ‘business intelligence (BI) is a combination 
of processes, policies, culture, and technologies for gathering, manipulating, storing, and 
analysing data collected from internal and external sources, in order to communicate 
information, create knowledge, and inform decision making’, while Watson and Wixom 
(2010) provide a narrower definition, focusing more on technology aspects of BI, which they 
define as ‘umbrella term that is commonly used to describe the technologies, applications 
and processes for gathering, storing, accessing and analyzing data to help users make better 

1 Both the academic and practitioner literatures on BI often ignore the fact that the term ‘Business 
Intelligence’ was not ‘invented’ by the Gartner Group, but rather emerged in 1958 in a visionary 
article by Luhn (1958), in which he presents a ‘Business Intelligence System’ as an ‘automatic 
system … to disseminate information to the various sections of any industrial, scientific or 
government organization’ (Luhn, 1958). His description of such a system very closely resembles 
current state-of-the-art BI systems – approximately half a decade ahead of its time.
2 In the case of enterprise resource planning (ERP) the time lag was more than 15, if not 20, years.
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decisions’. Following their definition, BI could also be described as ‘special purpose’ 
information system, the purpose being decision support3. The Data Warehouse Institute 
(TDWI) uses a similar definition, but ads that ‘BI programs usually combine an enterprise 
data warehouse and a BI platform or tool set to transform data into usable, actionable 
business information’ (TDWI, 2012).
 Merging these definitions, we understand BI as an analytical process which 
transforms fragmented data of enterprises and markets into action-oriented information 
or knowledge about objectives, opportunities and positions of an organization.BI software 
describes software products primarily designed to support this analytical process (e.g. data 
warehouse software, data mining software, digital dashboards software), BI tools are BI 
software products deployed in an organization, and a BI system is a collective of BI tools 
and related technologies, applications and processes used in support of BI.
 Early research related to BI was largely descriptive or normative and focused on 
either on the emerging data warehouse concept (Gardner, 1998; Inmon, 2000; Rekom, 
2000; Watson, 2001; Wixom and Watson, 2001; Watson et al., 2002; Sammon et al., 2003; 
Zeng et al., 2003; Hugh et al., 2004; Inmon, 2004; Shankaranarayanan and Even, 2004; 
Williams, 2004; Wixom, 2004; Sammon and Adam, 2005; Solomon, 2005; Tseng and 
Chou, 2006), or adapted the established stream of research on decision support systems 
(DSS) to the new data warehouse environment (e.g. Ellis, 2004; March and Hevner, 2007; 
Baars and Kemper, 2008)4.
 Earlier empirical research on BI or data warehousing (DW) explored user satisfaction 
with DW (Chen et al., 2000), factors affecting DW success (Wixom and Watson, 2001) 
and factors influencing the adoption of DW (Hwang et al., 2004). More recently, studies 
emerged investigating the determinants of information and systems quality in the context 
of DW (Nelson et al., 2005), the effects of DW on decision performance (Yong-Tae, 2006), 
the measurement of BI (Lönnqvist and Pirttimäki, 2006), the effects of BI on performance 
(Elbashir et al., 2008), the status of BI in certain countries, e.g. Australia (Foster et al., 
2005; Dodson et al., 2008), DW success factors (Hwang and Xu, 2008), the impact of BI 
on organizational decisions (Davenport, 2010) and costs and benefits associated with BI 
(Hocevar and Jaklic, 2010). 
 The purpose of this research is to integrate and extend the findings of previous DW/
BI research by developing, testing and refining an information systems success model for 
the specific purpose, application, target group and technology of BI.
 The remainder of this paper is organized as follows: Section 2 identifies the drivers 
of BI success and establishes predicted relationships between the constructs (path model). 
Section 3 reports on the research design and method used in our study, and reports the 

3 Definitions of ‘information system’ typically refer to interaction between people, procedures and 
technology in the process of capturing, transmitting, storing, retrieving, manipulating and displaying 
data and information for a specific purpose.
4 Watson (2010) provides an analysis of the development of DSS in the context of data warehousing 
and Clark et al. (2007) provide a comprehensive literature analysis of research on management 
support systems (MSS), including BI.
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results of our statistical analysis. The results and limitations of our study are discussed in 
section 4.

2. Theory development

 What all the above-mentioned definitions of BI have in common is that BI is a broad 
concept of managing and providing data for improved (managerial) decision making5. This 
implies that BI success or BI quality is to be measured around the quality or quality increase 
of data provided and the quality or quality increase of decisions made in an organization.

Data/Information Quality and Quality of Managerial Decision Making

 Data or information6 quality research has a long history in the IS discipline, with 
DeLone and McLean’s (1992; 2002; 2003) information systems success model receiving 
most attention and attracting many followers in the past two decades (Petter and McLean, 
2009). Data quality is undoubtedly a key aspect of every information system, but considering 
the very nature and purpose of BI systems, maintaining and providing high quality data 
appears to be a relatively more important concern in BI systems than in other business 
information systems, in particular OLTP systems (e.g. ERPS), which typically have a very 
large non-managerial user base and often provide high levels of transaction automation 
and control. The importance of data quality for BI was already confirmed in Wixom and 
Watson’s (2001) first comprehensive empirical investigation of the factors affecting data 
warehousing success.
 Partial Least Squares analysis of the data identified significant relationships between 
the system quality and data quality factors and perceived net benefits.
 Many attempts have been made to operationalize data or information quality 
substantially7. Nelson et al. (2005) provided the fi rst and so far only comprehensive analysis of 
information quality in the specifi c context of data warehousing. Following a comprehensive 
literature review, they aggregate the large number of quality attributes into the following 
four dimensions of information quality: Accuracy (intrinsic), completeness, currency and 
format (all extrinsic). Their measurement model validation using PLS modeling reveals, 
however, that currency does not load signifi cantly on information quality. They provide a 
possible explanation for the insignifi cance of currency, but our alternative interpretation 
is in increasingly real time data environments, currency has become a minor data quality 
concern. We build on their work with minor variations (see measurement model below).

5 This notion is also reflected BI software vendor promises and selling lines.
6 While we are aware of the differences between data and information, research on those constructs 
does not usually draw a clear line and research on the antecedents or determinants of data quality 
and information quality overlap substantially (see Nelson et al. 2005, in particular their analysis of 
prior literature). We therefore use the terms data and information as de facto synonyma for the 
purpose of this research.
7 See Nelson et al. (2005), in particular their systematic analysis of prior literature.
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 Data quality is not an aim in itself, but rather a means to the key aim of BI: Providing 
(better) support for decision making, resulting in faster, better informed and more accurate 
decisions. This leads to our first hypothesis:

H1:  BI data quality impacts positively on managerial decision quality.

 Good (or better) decisions are decisions which create competitive advantage, be 
it in the form of entrepreneurial rents (Schumpeter, 1950; Rumelt, 1987), or a sustained 
competitive position. The widely accepted short-term operationalization of competitive 
position is performance relative to rival firms (Arend, 2003). Accordingly, we predict as 
follows:

H2:  Managerial decision quality impacts positively on relative organisational 
performance.

User Satisfaction and BI System Use

 In all versions of DeLone and McLean’s (1992; 2002; 2003) information systems 
success model, user satisfaction and system use are key links between information quality 
and individual impacts or net benefits respectively. Considering that BI systems are 
discretionary ‘informational’ systems in a sense that they are not required for business 
process execution or other forms of transaction processing, the particular importance of 
addressing user satisfaction and (the relationship with)actual use of the system is obvious. 
Further to that, BI systems are often deployed as alternatives to ‘islands of spreadsheets’, 
with the latter often remaining in place as some form of shadow systems. We therefore 
expect a large variation in BI system use across organizations, even if they deploy similar 
BI solutions, and we concur with DeLone and McLean’s assessment of the important role 
of IS use in terms of achieving benefits associated with the system. Finally, Cox’s (2010) 
recent research confirms the positive association between frequent BI use and quality and 
speed of decisions. We therefore predict as follows:

H3:  The scope of use of a BI system impacts positively on managerial decision 
quality.

 While improving decision support is the main purpose of BI, there are also other 
benefits associated with BI, including reductions in total cost of ownership (TOC), 
efficiency and quality increases in information processing, improved customer satisfaction, 
improving internal communication and collaboration (Hocevar and Jaklic, 2010; Imhoff 
and White, 2010; Watson and Wixom, 2010). Those benefits can only be realized, if the BI 
tools implemented are actually used. Accordingly, we predict a direct impact of BI use on 
performance:

H4:  The scope of use of a BI system impacts positively on organisational 
performance.
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 In line with DeLone and McLean (1992; 2002; 2003) we argue that user satisfaction 
with a system is likely to increase usage, even more so with discretionary systems. 

H5:  User satisfaction with a BI system impacts positively on the scope of use of 
the system.

Scope of BI System

 As mentioned in the introduction, BI ‘is an umbrella term that is commonly used to 
describe the technologies, applications and processes for gathering, storing, accessing and 
analyzing data to help users make better decisions’ (Watson and Wixom, 2010). The range 
of software products offered in support of BI is broad and varies significantly in terms 
of purpose or role within a BI architecture, detailed functionality, functional scope and 
level of sophistication. Examples of BI software include data warehouse (management) 
software, extraction transformation and loading (ETL) tools, simple query tools, OLAP 
engines, data mining software and visualization tools such as digital dashboards (Turban 
and Volonino, 2011). 
 Many BI software products are either by functional design or by deployment subject 
oriented, i.e. they have a functional focus (e.g. market analysis or sales forecasting). 
Enterprise data warehouses, however, can potentially support a broad range of business 
functions in an organization. Accordingly, BI systems deployed in organizations will have 
a great level of variation in terms of functional scope, which will have a direct impact on 
the scope of use of the BI system.

H6:  The scope of a BI system impacts positively on the scope of use of the system

Quality of BI Management

 The importance of proper management was already emphasized in early studies on 
critical success factors of data warehouse projects (Wixom and Watson, 2001), and still 
remains a critical dimension of BI maturity (TDWI-Research, 2008). 
 Wixom and Watson (2001) found that management support and resources help 
to address organizational issues that arise during warehouse implementations, and that 
adequate resources, user participation and highly-skilled project team members increase 
the likelihood that warehousing projects finish on-time, on-budget and with the right 
functionality. Standard development and implementation methodologies are also commonly 
cited as critical success factors of BI projects (Hwang and Xu, 2008). Managing BI systems 
‘scalable’ has been a major quality aspect of BI management from the earlier days of data 
warehousing (Gardner, 1998) to the area of BI (Imhoff, 2005), and is still considered to be 
an ongoing and future trend in BI (Watson, 2009).
 Finally, TDWI (2008) emphasizes the importance of standards for developing, 
testing, and deploying BI/DW functionality to be defined, documented, and implemented.
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 While the early literature focused on quality as aspects of DW/BI project management, 
the more recent – especially practitioner oriented – literature increasingly deals with BI 
management (and governance) as an ongoing process (BI management as a sub-function of 
IT management).
 Following from the above, we expect that high quality BI management has a positive 
impact on various aspects of BI: Through end user involvement, timely completion of BI 
projects and provision of adequate resources and support, we expect a positive impact 
on user satisfaction and a steady increase in BI scope in an organization. Adherence to 
standards and the provision of adequate resources and scalable solutions is expected to 
result in higher levels of data quality, which is expected to indirectly contribute to user 
satisfaction.

H7:  BI management quality impacts positively on BI data quality.

H8:  BI management quality impacts positively on the scope of the BI system.

H9a:  BI management quality impacts positively on user satisfaction with a BI 
system.

H9b:  This relationship is mediated by data quality.

 Figure 1 provides a graphical summary of our hypotheses (path-model).

F igure 1: Research Model

BI 
Management

Decision 
Quality
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3. Research Design and Method

Sample Selection and Data Collection

 A cross-sectional research design was employed with a survey administered to the 
500 largest Australian Stock Exchange (ASX) listed companies in terms of capitalization. 
Target respondents were the most senior IT managers (CIO or equivalent), because they 
were considered best suited to answer questions about both their management domain and 
firm performance. Contact details of the managers including email addresses were obtained 
from a private data provider.
 In June 2009, an email invitation was sent to the target respondents inviting them to 
participate in the survey by completing a comprehensive web-based online questionnaire. 
The initial invitation was followed up by an invitation letter accompanied by a hard-copy 
of the survey. With many invitation emails not reaching their addressees (‘bounce backs’) 
and an almost equal number of invitation letters being returned to sender because of the 
addressees having left the company, a contact details review was performed in September 
2009, and email and hard-copy invitations were sent out to the corrected contacts. Despite 
this review and follow-up, 69 of the 500 firms could not be reached, reducing the effective 
sample size to 431.
 44 firms (10.21%) responded to the survey, but 11 had to be removed from the 
sample, because they failed to either complete all questions in the questionnaire or meet 
the minimum size criteria8 of $50 million AUD annual revenue and 50 full-time equivalent 
(FTE) employees. A non-response bias was inherent to the study insofar as only firms 
which deployed BI software (as defined above) were encouraged to participate. In the 
absence of publicly available data on the use of BI software in the target group, the impact 
of this exclusion cannot be determined.
 Table 1 provides a breakdown of the 33 use able responses by industry and firm size. 
The largest industry groups represented in the sample are mining and real estate with the 
rest of the respondents representing a broad cross-sectional sample of Australia’s private 
sector industry.

8 Some of the respondents of the top-500 ASX listed companies completed the survey for their 
respective business units, and not all of them met the minimum size criteria for inclusion in the 
survey.
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Tab le 1: Respondents by Industry and Firm Size

Industry N %
Materials – Mining 5 15.2%
Real Estate 4 12.1%
Capital Goods 3 9.1%
Food, Beverage & Tobacco 3 9.1%
Transportation 3 9.1%
Diversified Financials – Banks 3 9.1%
Commercial & Professional Services 3 9.1%
Consumer Services 2 6.1%
Retailing and Wholesale 2 6.1%
Media 1 3.0%
Energy 1 3.0%
Insurance 1 3.0%
Pharmaceuticals, Biotechnology & Life Sciences 1 3.0%
Software & Services 1 3.0%
Total 33 100.0%

Annual Revenue 
(in Millions) % Employees (FTE) %

< 50 0.0% < 50 0.0%
50 < 100 9.1% 50 < 100 3.0%

100 < 500 36.4% 100 < 500 21.2%
500 < 2,500 21.2% 500 < 1,000 27.3%

2,500 < 10,000 24.2% 1,000 < 3,000 9.1%
10,000 < 50,000 9.1% 3,000 < 10,000 21.2%

> 50,000 0% > 10,000 18.2%

 Table 2 depicts the positions/roles of the respondents. Two thirds of the respondents 
were heads of IT, either in an explicit ‘CIO’ role or as heads of IT at the group or business 
unit level. The other respondents were managers of IT in general or BI in particular.

Table 2: Respondents’ Positions/Roles

Position %
Head of IT – Group 33.3
Other IT Manager 24.2
CIO 21.2
Manager Business Intelligence 9.1
Head of IT Business Unit/Division 6.1
Other 6.1
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Measurement Model

BI Management Quality

 In the absence of an established measurement for BI management quality, reflective 
indicators were derived from the BI Maturity Model (BIMM), developed and used by the 
TDWI (Chamoni and Gluchowski, 2004; TDWI-Research, 2008). After the exclusion 
of some indicators used in this reference model but not loading on the construct of BI 
Management Quality in our survey, the following four indicators were used for analysis: 
(1) BI development standardization, (2) BI project management success (as evidenced by 
BI projects being delivered in time and within budget), (3) BI resources (the availability of 
resources in IT required for BI), and the scalability of BI solutions.
 Respondents were asked to rate their firm’s performance in terms of achieving the 
above-mentioned objectives on a five point Likert type scale (1 = not achieved at all; 5 = 
‘fully achieved’).

Scope of BI

 The measurement model for Scope of BI was also developed primarily based on 
technical practitioner literatures on BI or data warehousing. 
 The first dimension of Scope of BI refers to the number of BI tools available in 
an organisation. Respondents were asked to select or list commercial OLAP software, 
querying and frontend reporting software, digital dashboards anddata mining software (see 
Appendix) used in their organization. The count of software products deployed in each 
organization was used to measure ‘BI tools available’.
 The second dimension of Scope of BI was ‘BI functional scope’, which refers to 
business functions or processes typically supported by BI solutions. The questionnaire items 
were derived from practitioner literature combined with our own software functionality 
analysis (see Appendix for items).We allowed for additional functions to be added as open 
items. The count of business functions or processes supported by BI solutions in each 
organization was used to measure BI functional scope.

Data Quality

 The measurement model for data quality built on the extensive IS research on data 
or information quality, in particular the fundamental research provided by Nelson et al. 
(2005), who adapted general IS quality theory to the specific context of data warehousing. 
 We build on Nelson's et al. (2005) findings adopting elements of their broad definition 
of completeness, but refine the concept insofar as we emphasize the importance of avoiding 
information overload. The resulting dimension used in our study is adequacy of data 
volume, with data relevance – which is included in their definition of data completeness – 
measured separate in our study. We also adopt the dimension accuracy or correctness and 
format (presentation) of data, but extend the concept of format by also explicitly addressing 
transparency of data. The latter addition reflects concerns raised by traditional spreadsheet 
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users that data warehouse based BI tools are black boxes which lack transparency. Related 
to those concerns is the question of trust in data, which has been raised in data quality 
literature before and appears to be particularly relevant for BI.
 Following exploratory factor analysis and initial PLS testing, the following items 
scored significant loadings on the data quality construct used in our research: (1) Adequacy 
of data volume9, (2) data relevance, (3) data transparency, and (4) trust in data. Accuracy/
correctness and format/presentation had to be excluded from the measurement model.
 Respondents were asked to rate their firm’s performance in terms of achieving the 
above-mentioned information-related objectives on a five point Likert type scale (1 = ‘not 
achieved’ at all; 5 = ‘fully achieved’).

User Satisfaction

 Considering the research method (survey) used in our study, we were unable to 
measure user satisfaction directly at the user level, e.g. by interviewing or surveying a 
sample of users within each organisation. Instead we asked our survey respondents 
about their assessment of user satisfaction with the BI system. While this is a limitation 
of our study, we argue that (most) senior IT managers in an organisation would have a 
reasonably good understanding of how satisfied users are with the BI solutions deployed 
in an organisation, even more so as BI solutions typically have a relatively small and more 
senior user group than large scale operational systems such as ERPS.
 Exploratory factor analysis and initial PLS testing revealed that the following four 
(out of initially seven) items revealed highly significant loadings on the user satisfaction 
construct: Users’ perceptions about (1)the effectiveness and efficiency of the BI system, 
(2) the suitability/task relevance of information provided by the BI system, (3) the extent 
to which the BI system meets user requirements and (4) general user satisfaction with BI 
system.
 Respondents were asked to rate the user satisfaction with the BI system on a five 
point Likert type scale (1 = ‘very negative’; 3 = ‘neutral’; 5 = ‘very positive’).

BI System Use

 In the absence of an established measurement model for BI system use, reflective 
indicators were – once again – derived from the BI Maturity Model (BIMM), developed 
and used by the TDWI (Chamoni and Gluchowski 2004, TDWI-Research 2008). Based 
on this reference, two aspects of BI system use were captured: (a) the functional scope of 
BI, and (b) level of sophistication of BI use (see Appendix). For the measurement of the 
latter aspect, we distinguished between the following usage levels: Passive use, ad-hoc 
reporting, OLAP use and analytics expert use. While we argue there is an implicit rank 
in this measurement in terms of level of sophistication, we acknowledge that it does not 
reflect an ordinal scale for statistical purposes. We therefore generated a separate score 

9 ‘Adequacy’ captures both the notion of having enough data and not experiencing data overload.
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for each level of use across each function. Out of the resulting four diffusion scores, only 
‘passive use’ and ‘ad-hoc reporting use’ were included in our analysis, because OLAP use 
and analytic use were negligible across the sample and therefore did not load significantly 
on our construct of BI system use.

Quality of Managerial Decision Making

 Considering the research method (survey) used in our study, we were unable to 
measure user satisfaction directly at the user level, e.g. by interviewing or surveying a 
sample of users within each organisation. Instead we asked our survey respondents about 
their assessment of user satisfaction with the BI system.
 Like in the case of user satisfaction, the research method used only allowed us to 
measure the impact of the deployment of BI solutions at a very aggregate level and only 
indirectly by asking respondents about their perceptions about the said impact; another 
limitation of our study.
 The indicators used to measure this construct were derived from decision science 
(Yong-Tae, 2006) and comprised five aspects of decision making quality, four of which 
loaded significantly on our ‘impact’ construct: (1) Effectiveness of decision making, (2) 
accuracy/correctness of decision making, (3) timeliness/speed of decision making, and 
making rationale/informed decisions.
 Respondents were asked to rate the impact of the BI system on the quality of 
managerial decision making along the five aspects mentioned above on a five point Likert 
type scale (1 = ‘very negative’; 3 = ‘neutral’; 5 = ‘very positive’).

Relative Performance (Competitive Advantage)

 Respondents were asked to rate their firm’s performance relative to their main 
competitors. One of the advantages of using relative measures it that they control for 
differences in performance that are due to industry, environment, and strategy effects 
(Govindarajan and Fisher, 1990; Garg et al., 2003).

 Profitability, revenue growth and market share are well established indicators of 
financial performance (e.g. Kaplan and Norton, 1996; Slater and Olson, 2000) and were 
therefore adopted in our study. Following a balance scorecard approach (Kaplan and 
Norton, 1996), leading performance indicator closest10 to financial performance were also 
included in the form of relative customer satisfaction and customer loyalty. 
 Considering the mix of leading and lagging performance indicators used, the 
measurement model was also specified as reflective, following Tippins and Sohi (2003) 
and Johansson and Yip (1994). 

10 The other antecedents of firm performance (business process performance and learning and 
growth) were not included acknowledging the static nature of our research.
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Financial Performance (ROA)

 To overcome some of the weaknesses inherent to perception based measures of firm 
performance and to increase the reliability of our performance measures, we collected 
publicly available financial data of the firms in our sample to determine the return-on-assets 
(ROA) in the financial year prior to the completion of the survey. 
 This additional financial performance variable was not considered a main testing 
variable for two reasons: First, we could only derive the ROA at the company level (as 
listed at the ASX), but not at the business unit level (some of the respondents referred to). 
The second reason is that ROA is a directly observable and well established performance 
construct in itself, and therefore strictly speaking not a latent variable. In spite of these 
limitations, the inclusion of an ‘ROA-based firm performance indicator’ allowed us 
to establish a link between perceived performance and traditional archival financial 
performance indicators.

Partial Least Square Modeling (PLS)

 Structural equation models (SEM) are strongly suited to testing both theories and 
measurement models (Bagozzi, 1980). The partial least squares (PLS) procedure was 
used, because it is most appropriate for the non-normal datasets and small sample sizes in 
the current research (Wold, 1982; Chin, 1998). PLS uses very general soft distributional 
assumptions and non-parametric prediction-orientated model evaluation measures (Wold, 
1982; Chin, 1998). 
 The next section herein evaluates the measurement models, and then the following 
section assesses the structural model to determine the results. Chin and Dibbern’s (2010) 
guidelines for reporting on PLS analyses were followed11.

Evaluation of the Measurement Model

 The adequacy of reflective measurement models is examined via; (1) individual 
item reliability, (2) convergent validity, and (3) discriminant validity (Chin, 1998; Hulland, 
1999). First, individual item reliability is assessed by examining the item’s loading on 
its construct as opposed to the other latent variable constructs in the model. As shown in 
Table 3, all construct-specific loadings are above 0.60, with many in the 0.80 and 0.90 
‘high’ range (Chin, 1998; Hulland, 1999). Table 3 also confirms that each indicator’s load 
is highest for the relevant latent variable construct.

11 SmartPLS version 2.00 M3 was used (Ringle et al., 2005).
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Tab le 3: Measurement Model – Discriminant Validity

BI Mgt
BI 

Scope
Data 

Quality
User 

Satisf. BI Use
Decision 
Quality

Perf. 
Ind.

Perf.
ROA

BI development standardisation 0.8553 0.2358 0.7238 0.6212 0.0392 0.2558 -0.2210 0.0840
BI projects on time 0.8668 0.3796 0.6673 0.5111 0.1356 0.2717 -0.2301 -0.3579
BI resources 0.7964 0.3514 0.5586 0.5354 0.0000 0.3485 -0.1179 -0.1895
BI scalability 0.9209 0.2831 0.7115 0.6471 0.0453 0.2541 -0.2772 -0.1754
BI tools available 0.2027 0.9140 0.0616 -0.2077 0.6837 0.1184 0.3353 0.0225
BI functional scope 0.4607 0.8912 0.2999 0.2842 0.4538 0.3219 0.1809 -0.0827
Data volume adequacy 0.7124 0.2129 0.9138 0.6512 0.0418 0.3567 -0.1556 0.1333
Data relevance 0.6528 0.1499 0.8916 0.6528 0.0268 0.5137 -0.0976 0.0225
Data transparency 0.6714 0.1145 0.8875 0.5902 -0.0610 0.4626 -0.1828 -0.0392
Data trusted 0.7517 0.2134 0.9021 0.5897 0.0655 0.5047 -0.0539 -0.1337
Effectiveness & efficiency of 
BI system

0.6940 0.0442 0.6469 0.9486 -0.1788 0.3423 -0.4717 -0.2979

Suitability/task relevance of 
BI info.

0.5007 0.0113 0.6165 0.9265 -0.1327 0.3350 -0.3764 -0.2721

BI system meeting user 
requirements

0.6583 0.0481 0.6670 0.9395 -0.0878 0.3754 -0.3713 -0.1287

General end-user satisfaction 0.6674 -0.0020 0.6676 0.9512 -0.2606 0.3052 -0.4405 -0.2634
Scope of passive use 0.0356 0.4896 -0.0468 -0.3134 0.8573 -0.0204 0.2287 0.0467
Scope of ad-hoc reporting 0.0749 0.6136 0.0784 -0.0105 0.8829 0.1491 0.2589 0.0016
Decision effectiveness 0.3459 0.3532 0.4996 0.4232 0.1085 0.8432 0.0787 -0.0465
Accuracy/correctness of dec. 
making

0.2914 0.1622 0.4389 0.1768 0.0796 0.7724 0.2193 -0.0693

Timeliness/speed of decision 
making

0.2285 0.0711 0.3618 0.3221 -0.1060 0.8099 0.1364 -0.2080

Making rationale/informed 
decisions

0.1403 0.1290 0.3067 0.2249 0.1453 0.7818 0.2210 0.0212

Customer loyalty -0.1736 0.0294 -0.2169 -0.3481 0.2243 -0.0305 0.6053 0.1063
Market share -0.2129 0.1892 -0.2327 -0.4102 0.1054 -0.0199 0.6094 0.4983
Profitability -0.2822 0.1747 -0.1539 -0.4411 0.3443 0.1801 0.8278 0.3272
Quality management -0.0050 0.3503 0.1670 -0.0759 0.2999 0.3909 0.7272 0.1865
Revenue growth -0.2196 0.2206 -0.1074 -0.3308 0.0082 0.1105 0.8106 0.3793
ROA -0.1803 -0.0301 -0.0063 -0.2552 0.0265 -0.0902 0.4447 1.0000

 Table 4 reports the measurement indicators’ means and standard deviations along 
with other standard measurement model quality indicators, as well as the bootstrapped 
error terms, t-statistics and significance levels.
 All composite reliability measures (0.84 to 0.97) comfortably exceed the 
recommended threshold of 0.70 (Fornell and Larcker 1981, Chin 1998). Cronbach’s Alphas 
() are slightly lower, but still greater or very close to 0.70 (Nunnally 1978, Chin 1998), 
indicating strong reliability of the measurement model. All average variances extracted 
(AVE) are higher than 0.50 (Fornell and Larcker, 1981), ranging from 0.52 to 0.89. Hence, 
there is no concern with convergent validity either. 
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Tabl   e 4: Measurement Model – Descriptive Statistics and Quality Indicators

Constructs and Indicators: Mean Std. dev. Loadings
Composite 
reliability

rc

Cronbach's 
Alpha


AVE
Bootstrapping

SE t-statistic

A. BI Management 0.92 0.88 0.74
BI development standardization 3.03 1.287 0.86*** 0.05 15.66

BI projects on time 2.94 1.298 0.87*** 0.04 22.10

BI resources 3.00 1.000 0.80*** 0.10 8.03

BI scalability 3.36 1.168 0.92*** 0.03 27.92

B. Scope of BI 0.90 0.77 0.81
BI tools available 3.82 1.911 0.91*** 0.03 36.00

BI functional scope 4.91 2.708 0.89*** 0.09 10.18

C. Data Quality 0.94 0.92 0.81
Data volume adequacy 3.42 0.936 0.91*** 0.04 22.71

Data relevance 3.42 0.867 0.89*** 0.05 19.13

Data transparency 3.39 0.966 0.89*** 0.06 14.66

Data trusted 3.36 0.929 0.90*** 0.04 22.21

D. User Satisfaction 0.97 0.96 0.89
Effectiveness & efficiency of 
BI system

3.27 1.008 0.95*** 0.02 45.98

Suitability/task relevance of 
BI info.

3.64 0.859 0.93*** 0.03 35.92

BI system meeting user 
requirements

3.33 1.051 0.94*** 0.03 31.22

General end-user satisfaction 
with BI system

3.21 0.927 0.95*** 0.02 52.28

E. BI Use 0.86 0.68 0.76
Scope of passive use 2.88 2.147 0.86*** 0.16 5.50

Scope of ad-hoc reporting 2.36 1.765 0.88*** 0.05 18.16

F. Decision Quality 0.88 0.82 0.64
Decision effectiveness 3.70 0.684 0.84*** 0.13 6.67

Accuracy/correctness of 
decision making

3.53 0.671 0.77*** 0.14 5.67

Timeliness/speed of decision 
making

3.67 0.777 0.81*** 0.15 5.31

Making rationale/informed 
decisions

3.52 0.667 0.78*** 0.19 4.09

G1. Performance (indicators) 0.84 0.77 0.52
Customer loyalty 3.73 0.839 0.61*** 0.19 3.11

Market share 3.48 0.972 0.61** 0.24 2.52

Profitability 3.79 0.893 0.83*** 0.12 6.67

Quality management 3.76 1.062 0.73*** 0.21 3.48

Revenue growth 3.79 0.857 0.81*** 0.11 7.43

G2. Performance (ROA) 1.00 1.00 1.00
ROA 0.051 0.0458 1.00 - -

*** significant at p < 0.01; ** significant at p < 0.05 (two-tailed)
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 Table 4 also reports on the bootstrapping results (SE, t-statistic and p-values) for the 
indicator variables. With the exception of performance indicator ‘market share’, which is 
significant at p < 0.05, all other indicator loadings are highly significant at p < 0.01.
 As for the assessing of discriminant validity, Chin (1998) outlined two procedures 
for: (1) cross-loadings (see Table 3 above) and (2) the AVE-PHI matrix. The diagonal 
elements in the Table 5 show the square roots of the AVE of each construct, whereas the 
off-diagonal elements show the PHI matrix of latent variable (LV) correlations. The cross-
loading test requirements are fully met: No indicator has a higher correlation on a LV other 
than the one it is intended to measure, and each block of indicators does not load higher on 
its respective LV than indicators for other LVs (Fornell and Larcker, 1981; Chin, 1998)12.

Table 5 : Measurement Model: Discriminant Validity

A B C D E F G1 G2

A.  BI Management 0.861

B.  Scope of BI 0.359 0.903

C.  Data Quality 0.776 0.193 0.899

D.  User Satisfaction 0.675 0.027 0.691 0.941

E.  BI Use 0.065 0.637 0.022 -0.178 0.870

F.  Decision Quality 0.325 0.237 0.512 0.360 0.078 0.802

G1.Performance (indic.) -0.249 0.291 -0.135 -0.443 0.281 0.201 0.722

G2.Performance (ROA) -0.180 -0.030 -0.006 -0.255 0.027 -0.090 0.445 1.000

 An interesting detail shown in Table 5 is the negative correlations, in particular 
between the performance constructs and BI management, data quality and user satisfaction. 
This observation will be further explored below.

Evaluation of the Structural Model

 The results of the structural model are summarised in Table 6 and Figure 2.
 The model provides strong support for hypotheses 1, 6, 7 and 8, and some (week) 
support for hypotheses 4, 9a and 9b. Hypotheses 2, 3 and 5 were rejected, and most notably, 
the relationship between user satisfaction and BI use was negative and significant. Possible 
explanations and implications are discussed below.
 The amount of variance in the endogenous constructs explained by the model (R2) is 
indicative of the predictive power of the exogenous latent variables. The explained variance 
of most of the variables was substantial to moderate (Chin, 1998). As expected, BI related 
variables can only explain a small percentage of (firm) performance.

12 The reporting of the PLS modeling results follows Chin’s (2010) guidelines. 
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Table 6:  Structural Model Results

Hypothesis/Path Analysis:  Coefficient
Bootstrap 
t-statistic

H1:  Data Quality   Decision Quality   0.511*** 3.054
H2:  Decision Quality   Performance (indicators)   0.181 0.753
H3:  BI Use   Decision Quality   0.067 0.456
H4:  BI Use   Performance (indicators)   0.267* 1.433
H5:  User Satisfaction   BI Use -0.196** (!) 1.845
H6:  Scope of BI   BI Use   0.642*** 6.431
H7:  BI Management   Data Quality   0.776*** 9.961
H8:  BI Management   Scope of BI   0.359** 2.134
H9a: BI Management   User Satisfaction   0.348* 1.483
H9b: BI Management   Data Quality  User Satisf.   0.327** (Table 7)
Other paths:
 Data Quality   User Satisfaction   0.421** 1.868
 Performance ind.  Performance (ROA)   0.445*** 2.728
R-squares:  
 Scope of BI 12.9%  Decision Quality 26.7%
 Data Quality 60.2%  Performance (indicators) 11.1%
 User Satisfaction 52.5%  Performance (ROA) 19.8%
 BI Use 44.4%  

*** significant at p < 0.01; ** significant at p < 0.05; * significant at p < 0.10 (one-tailed)

Figure 2:  Structural Model Test Results
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Analysis of Mediation and Moderation

 To test for mediating effects of data quality on the relationship of BI management 
and user satisfaction, we used the Hertel et al. (2008) multivariate adaptation of the Bollen 
and Stine (1990) bootstrap percentiles approach. Shrout and Bolger (2002) demonstrate 
and prove the superiority of Bollen and Stine’s (1990) bootstrapping approach over the 
conventional mediation test statistics, and Hertel et al. (2008) adapted it innovatively to 
PLS. The essence of Bollen and Stine’s bootstrapping approach is that the distribution of 
the mediation scores (a × b) (Baron and Kenny 1986) is bootstrapped and that the resulting 
scores are examined to determine the (α/2) × 100% and (1 – α/2) × 100% percentiles of the 
distribution (α = confidence interval)13. If both percentile scores are either below or above 
zero, a significant deviation from the expected distribution within the confidence interval is 
confirmed.
 Adapted to our model, we determine the product of the bootstrapping coefficients 
of the paths BI Management  Data Quality and Data Quality  User Satisfaction and 
determine the percentiles for α = 5% and α = 10%. The results are shown in Table 7.

Table 7: Mediation of Effect of BI Management on User Satisfaction

Effect Estimate Bootstrap Percentile (one-tailed)
95% 90%

Upper Lower Upper Lower
Effect on User Satisfaction
Direct via BI Management 0.348 0.707 -0.046 0.628 0.010
  Indirect via Data Quality (a × b) 0.327 -0.014 -0.265 -0.043 -0.248

 None of the other potential mediation paths in the model showed significant 
mediation.
 We also tested for a potential moderating effect of BI use on decision quality, but 
found no such effect.

4. Discussion, Limitations and Outlook

Discussion

 The purpose of this research was to integrate and extend the findings of previous 
DW/BI research by developing, testing and refining an information systems success 
model for the specific purpose, application, target group and technology of BI. Many of 
the predicted relationships in our model were confirmed. For others we could not find 
empirical support and contrary to established theory (DeLone and McLean, 1992; 2002; 

13 For one-tailed analysis, the formula is (α) × 100% and (1 –α) × 100%.
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2003), user satisfaction with BI systems was negatively associated with the scope of use of 
BI systems. The following sections discuss both the expected and unexpected findings. 

Confirmed Predictions

 Our results confi rm the quality of managerial decision making is strongly infl uenced 
by the quality of data available in BI systems, and that the quality of managing BI within an 
organization is an important antecedent of data quality and therefore also decision making quality 
(total effect: 0.403). The fi ndings substantiate the many calls for data quality management 
initiatives expressed in the practitioner literature (e.g. Swartz, 2007; Sandler, 2008).
 We also confirmed the expected strong relationship between the scope of BI tools 
available and the actual use of BI, but most importantly, broader use of BI tools appears 
to be positively – although weekly – associated with performance. The strong total effect 
of BI scope on performance in the initial model (0.179) was confirmed in sensitivity 
analysis which revealed a significant direct relationship between BI scope and performance 
(0.272**). The strong relationship between the quality of BI management and BI scope 
reinforces the importance of properly managing BI to achieve tangible benefits.
 Better BI management also leads to higher user satisfaction, both directly and 
mediated by data quality, but considering the controversial role of user satisfaction in the 
model, there is doubt about the implications of this relationship.

Unconfirmed Predictions

 The expected positive relationship between managerial decision quality and 
performance remained unconfirmed. Possible explanations include a time lag between 
managerial decisions and performance, the dominance of other performance drivers not 
included in the model and limitations in the measurement of managerial decision quality.

Unexpected Findings

 As an exogenous variable in the model, user satisfaction – and to a lesser extend BI 
system use – not only failed to meet the expectations (‘no findings’), but had a significant 
negative association with BI system use and a negative association with decision quality 
and firm performance, and ex-post modeling also revealed a significant direct negative 
association with both decision quality and performance. 
 While we acknowledge that the object of investigation in the Delone-McLean model 
(1992) is the individual rather than the firm, the results are still surprising, even more so 
as a large range of ex-post modeling and testing confirmed the relationships revealed in 
our initial analysis. Limitations in the measurement model of user satisfaction may have 
contributed to deviations from the expected findings, but could not fully explain this ‘user 
satisfaction paradox’. 
 We are not aware of any established theory capable of explaining this paradox 
directly. In search for our own explanation of the phenomenon, we arrived at the following 
potential explanation: 
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 Frequent and advanced (business) users of IS are more likely to explore the 
‘boundaries’ of systems, ask more challenging questions, are more likely to detect errors, 
and are therefore more likely to be dissatisfied with the system and challenging for the IT 
department than ‘basic’ users. BI systems are typically configured to provide relatively 
easy to use or fully automated standard reports, but in order to explore the real potential 
of these systems, ad-hoc reporting skills, advanced analytical skills and even configuration 
skills are required. Moving beyond the pre-configured standard functionality is likely to 
be associated with frustration about lack of user friendliness of the system, capabilities of 
the system and lack of knowledge about the system logic, functionality and the underlying 
models. 
 On the other hand, users who do not go beyond the base functionality of the system 
and who do not ask critical questions are more likely to be ‘happy users’. But are ‘happy’ 
users ‘good’ users? 
 In the BI context, most likely they are not. More likely, they are evidence of lack 
of (adequate) system use or lack of BI ‘mentality’ of BI culture, and potentially a leading 
indicator of lack of performance.

Limitations and Outlook

 Some of the limitations of our research have already been addressed above: The 
small sample size, simplified measurement of user satisfaction and managerial decision 
quality and reference to theory which evolved from individual user experiences with IS 
rather than organizational experiences.
 However, many of our predictions were confirmed, and the unexpected findings 
provide a wide avenue for future research.
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Appendix: Measurement Details (Extract)

Scope of BI:

a) BI tools available:
‘What types of BI products/tools are in use in your company? (Multiple answer option)’

OLAP Tools:
 Cognos (now IBM) 
 Hyperion Solutions (now Oracle) 
 Microsoft 
 SAP Business Objects 
 Microstrategy
 SAP BI 
 Cartesis SA 
 Applix
 Oracle (other than Hyperion) 
 Infor
 Others (list here):

Querying and Frontend Reporting Tools
 List here:

Digital Dashboards
 List here:

Data Mining Tools
 SAS - Enterprise Miner 
 SPSS - Clementine, AnswerTree, Neural 

Connect.
 IBM - Intelligent Miner 
 Oracle - Darwin 
 CSI - Advisor Toolkit 
 Angoss Software - Knowledge Studio/Seeker 
 Trajecta - dbProphet
 Partek
 Megaputer Intelligence - PolyAnalyst
 Silicon Graphics - MineSet
 Clopinet
 Unica
 Eudaptics Software - Viscovery
 HYPERparallel - Discovery 
 Others (list here):

b) BI Functional Scope:
 Which basic business functions or processes are directly supported by your BI solution? (Multiple 

answer option)

 Regular financial/tax reporting (external reporting)Suppliers 
 Assurance and special compliance support (e.g. SOX)
 Group consolidation
 Cost analysis
 Operational planning and budgeting
 Other internal financial reporting
 Strategic planning
 Market/Sales planning/analysis 
 Campaign management
 Production planning and control*)
 Supply-Chain analysis
 Supplier analysis
 HR analysis
 Other (list here)

*) excluded from analysis to avoid industry bias.
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BI Use

What functional areas does the BI solution support, and how is the BI solution used in 
these areas? 

Passive users are report receivers only.
Ad-hoc 'reporters' are producers of ad-hoc reports (rather than re-usable reports).
OLAP users are authors of re-usable reports, analysts or power users in general (but not analytic 
experts).

Analytic experts use 'business analytics
methods', e.g. data mining techniques or 
artificial intelligence.

Passive 
users

Ad-hoc 
‘reporters’ OLAP users Analytics 

experts

 Executives/Directors

 Accounting/Finance

 Purchasing

 Production/SCM*)

 Marketing/Sales

 Customer Support

 Human Resource Management

 IT/ORG

 Legal Department

 R&D (incl. Product Development) *)

 Other (please specify):  

*) excluded from analysis to avoid industry bias.


