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1 Introduction

Human capital is an important component of wealth both at the individual and aggregate level,

and its role has been investigated in various fields in economics. In public finance, Jones, Manuelli

and Rossi (1997) show that the zero-capital-tax result of Chamley (1986) and Judd (1985)1 can

be strengthened if human capital accumulation is explicitly taken into account. Specifically, they

demonstrate that, in a deterministic economy with human capital accumulation, in the long run

not only capital but also labor income taxes should be zero, hence the government must accumulate

wealth to finance its expenditure.

In this paper we show that the introduction of uninsurable idiosyncratic shocks to the accu-

mulation of human capital drastically changes the result of Jones, Manuelli and Rossi (1997), as

it becomes optimal for the government to tax both labor and capital income even in the long run.

Thus, our analysis shows how the interaction between market incompleteness and human capital

accumulation provides a novel justification for a positive tax rate on capital. The desirability of

taxing both capital and labor income implies then a beneficial role of government debt, and so our

theory provides also a rationale for the presence of a positive level of government debt, in line with

observed evidence.

Our model builds on that of Krebs (2003), who augmented the endogenous growth model of

Jones and Manuelli (1990) with uninsurable idiosyncratic risks to human capital accumulation. We

assume that there is a unit measure of infinitely-lived individuals, who can invest in three types of

assets: government bonds, physical capital, and human capital. The first two assets are risk-free

while human capital is risky and there are no insurance markets where this risk can be hedged. As

a result, individuals face uninsurable fluctuations in their labor income.

In this environment we study a Ramsey taxation problem, where linear taxes on labor and

capital income are chosen so as to maximize a weighted average of individuals’ lifetime utility.

The model considered turns out to be quite tractable and allows us to derive both analytic and

quantitative properties of the solution of the Ramsey problem. It also allows us to maximize the

average lifetime utility of individuals, rather than the average of their utility at the steady state (as

common in the earlier literature), and thus to take into account also the transition to the steady

state. A common assumption in the previous literature is that the social planner only maximizes

1Judd and Chamley find that the optimal tax rate on capital is zero in the long run in a deterministic economy

with infinitely lived households. This result has been extended by Zhu (1992) to a representative-agent economy with

aggregate shocks, and by Karantounias (2013) to economies with more general, recursive preferences. The result by

Atkinson and Stiglitz (1976) on uniform commodity taxation theorem provides then a condition under which the

optimal tax rate on capital is always zero (not just in the steady state).
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the average utility at the steady state, thus the transition is ignored.

Our theoretical findings are summarized as follows. First, taxing labor income is beneficial

because it reduces the risk associated with labor income. Indeed, if the government is required to

have a balanced budget in every period, the optimal tax rate on labor income is positive and the

optimal tax rate on capital income is negative, as long as government purchases are small enough. It

is worth noting that at a competitive equilibrium of our model without taxes the ratio of physical-

to-human capital is higher than at the first-best allocation (where idiosyncratic shocks are fully

hedged), thus there is “over-accumulation” of physical capital.2 Still, our result shows this does

not mean that capital income should be taxed, on the contrary it should be subsidized under the

balanced budget requirement.

Our second result shows the benefits of capital income taxation and government debt. To better

understand it, it is useful to relate it to the finding of Chamley and Judd. These authors showed,

in the deterministic environment they considered, that at an optimal steady state the rate of return

earned by the private sector on its savings, given by the after-tax return on (physical) capital,

should equal the cost of funds for the government, given by the before-tax return. Hence the zero

capital tax rate. In our model we prove that a similar condition should hold.3 However, with

risky capital the expected rate of return for the private sector is a weighted average between the

after-tax returns on human and physical capital. Since the first one is risky and the second safe,

this average is higher than the after-tax return on physical capital, while the return relevant for

the government is still the before-tax rate on physical capital. Thus, in order for the private sector

and the government to earn the same rate of return, the after-tax rate on physical capital must be

smaller than its before-tax rate, and hence the capital tax rate must be strictly positive in the long

run. Since it is beneficial to tax both labor and capital income in the long run, the optimal amount

of government debt is positive, as long as public expenditure is small enough.

To evaluate the quantitative importance of our findings, we calibrate our model to the U.S.

economy. In particular, we set the variance of the shock to human capital so as to match Meghir

and Pistaferri’s (2004) estimate of the variance of the permanent shock to labor income and consider

values of the agents’ coefficient of relative risk aversion between one and nine. We then numerically

investigate the properties of the Ramsey equilibrium, finding that the capital tax rate at the Ramsey

steady state is sizable: it is about 10 percent when risk aversion is low (CRRA is one) and exceeds

2See Gottardi, Kajii and Nakajima (2011) for a proof. The same property holds in the standard incomplete-market

macroeconomic model (see Aiyagari (1994)).

3Strictly speaking, when the elasticity of intertemporal substitution is different from one a correction term is also

present, capturing the effect of public debt on the saving rate.

3



30 percent when it is relatively high (CRRA is nine). The government debt to output ratio at the

Ramsey steady state is -100 percent with low risk aversion, and close to +200 percent with high

risk aversion. These findings show that the optimal policy is not very far from our estimate of the

current U.S. fiscal policy, so that the welfare gain of adopting the optimal policy appears to be

relatively modest, and much smaller, for instance, from the one obtained in the deterministic model

by Jones, Manuelli, and Rossi (1993).

The idea that uninsurable labor income risks may justify taxing capital income is not new. In the

framework of a standard incomplete markets macroeconomic model, where the labor productivity

of each individual follows an exogenously specified stochastic process, Aiyagari (1995) also finds

that the tax on capital must be positive at the steady state solution of the Ramsey problem.

However, in the environment considered by Aiyagari (1995), with no human capital accumulation

and endogenous government expenditure, the tax rate on capital must be positive for a steady state

to exist. One may then question to what extent the standard incomplete markets model provides a

clear support to the view that uninsurable labor income shocks justify capital income taxation.4 In

our model in contrast, with human capital accumulation together with uninsurable income shocks,

the existence of a steady state imposes no real restriction on the value of the tax rate on capital

and the optimality of a positive tax rate is primarily determined by the comparison of costs and

benefits of the tax and debt. A partially different line of argument is pursued by Conesa, Kitao

and Krueger (2009) who consider a quantitative overlapping-generations model with uninsurable

labor income shocks, allowing also for nonlinear labor income taxes. They find that the optimal

capital income tax rate is positive and significant, but the desirability of capital income taxation in

their model is primarily due to the effects of the life cycle on agents’ behavior and the absence of

age-dependent labor income taxes, more than to market incompleteness.

Finally, regarding the desirability of government debt, we should mention a related result ob-

tained by Aiyagari and McGrattan (1998) in a model with uninsurable labor income shocks. How-

ever, differently from us they consider an environment where borrowing constraints are binding,

they derive the optimal policy as solution of the problem of maximizing the agents’ steady-state

average utility and restrict the labor and capital tax rates to be identical. Because in particular of

the latter restriction, the benefits of higher taxes (on labor as well as capital) cannot be separated

from those of higher debt.

The rest of the paper is organized as follows. In Section 2, the economy is described, and the

benchmark equilibrium without taxes is characterized. Section 3 considers the dynamic Ramsey

problem and derives the main theoretical results on the properties of the optimal levels of taxes and

4See also İmrohoroğlu (1998), Domeij and Heathcote (2004) and Açikgöz (2013) for other work along these lines.
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government debt. Section 4 describes then the numerical results and Section 5 concludes. Most of

the proofs are collected in the Appendix5.

2 The Economy

We consider a competitive economy subject to idiosyncratic shocks. Time is discrete and indexed

by t = 0, 1, 2, . . . The economy consists of consumers, firms producing a homogeneous consumption

good using physical capital and human capital as inputs, and the government collecting taxes and

issuing debt.

2.1 Consumers

There is a continuum of infinitely lived consumers. In every period each individual is endowed

with one unit of raw labor, which he supplies inelastically, and can use his revenue to consume the

consumption good and invest in three kinds of assets: a risk-free bond, physical capital and human

capital. His level of human capital determines the “efficiency units” of his labor.

Each individual i ∈ [0, 1] has Epstein-Zin-Weil preferences over random sequences of consump-

tion, which are defined recursively by

ui,t =

{
(1− β)(ci,t)

1− 1
ψ + β

[
Et(ui,t+1)1−γ] 1− 1

ψ
1−γ

} ψ
ψ−1

, t = 0, 1, ... (1)

where ui,t is the intertemporal utility of individual i evaluated at date t, Et is the conditional

expectation operator at time t, ci,t is his/her consumption in period t, β ∈ (0, 1) is the discount

factor, ψ is the elasticity of intertemporal substitution, and γ is the coefficient of relative risk

aversion.

Let bi,t−1, ki,t−1 and hi,t−1 denote, respectively, the quantities of risk-free bond, physical capital,

and human capital that individual i holds at the end of period t−1. To capture the idea that labor

income is subject to uninsurable idiosyncratic shocks, we assume that, for each i, t, the human

capital of individual i is affected by a random shock, θi,t at the beginning of period t. Hence the

actual amount of human capital available to individual i is θi,thi,t−1.

Each consumer i is initially endowed with a non negative amount bi,−1, ki,−1 and hi,−1 of riskless

bond, physical and human capital. Let then ιk,i,t and ιh,i,t denote the units of the consumption

good invested in, respectively, physical and human capital by individual i in period t. The amount

of the two types of capital held at the end of period t, for t = 0, 1, ..., is then equal to the amount

5Available online at http://apps.eui.eu/Personal/Gottardi/.
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held at the beginning of the period, less the depreciation, plus the investment:

ki,t = ιk,i,t + (1− δk)ki,t−1 (2)

hi,t = ιh,i,t + (1− δh)θi,thi,t−1 (3)

where δk and δh are the depreciation rates of physical and human capital, respectively.

We assume that the variables θi,t, i ∈ [0, 1], t = 0, ..., are identically and independently dis-

tributed across individuals and across periods, with unit mean. We further assume that the law of

large number applies, so that the aggregate stock of human capital at the beginning of each period

t is not random, that is, the following relation holds with probability one:∫ 1

0
θi,thi,t−1 di =

∫ 1

0
hi,t−1 di = Ht−1. (4)

The idiosyncratic shocks θi,t are the only sources of uncertainty. Hence there is no aggregate

uncertainty in the economy and the rental rates of the two production factors are deterministic.

Let rt denote the rental rate of physical capital and wt the wage rate. Both labor and capital

income are subject to linear taxes at the rates τh,t and τk,t at each date t. In what follows it is

convenient to use the notation r̃t and w̃t for the after tax prices, rt(1− τk,t) and wt(1− τh,t).

The flow budget constraint of individual i is given by, for each t = 0, 1, ...,,

ci,t + ki,t + bi,t + hi,t = Rk,tki,t−1 +Rk,tbi,t−1 +Rh,tθi,thi,t−1 (5)

where Rk,t = 1 − δk + r̃t, and Rh,t = 1 − δh + w̃t. Since the (after tax) rate of return on physical

capital Rk,t is non random, in equilibrium the rate of return on risk-free bonds must be the same.

It is convenient to use xi,t to denote the term on the right hand side of (5), indicating the total

wealth of individual i at the beginning of period t after the time t shock θi,t has been realized.

Individuals may borrow, that is, bi,t can be negative, while the holdings of capital are required to

be non-negative: ki,t ≥ 0 and hi,t ≥ 0 for all i, t. The amount of borrowing is restricted by the

natural debt limit, that prevents consumers from engaging in Ponzi schemes and in this environment

(where the only source of future income is the revenue from the consumers’ accumulated human

and physical capital) takes the following form:

xi,t ≥ 0, (6)

for all periods t = 1, .. and all contingencies.

To sum up, given the initial wealth xi,0 > 0 and a sequence of after tax prices {r̃t, w̃t}∞t=1, each

individual i maximizes his lifetime utility ui,0, defined by (1) subject to the flow budget constraints

(5) and the debt limit (6).
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The individual’s decision depends on the history of idiosyncratic shocks affecting him. Thanks

to the specification of the utility function (1) and the assumption that shocks are i.i.d., a tractable

characterization of the utility maximizing choices is however possible.

First, it is convenient to rewrite equation (5) as follows:

xi,t+1 = (1− ηc,i,t) {Rk,t+1(1− ηh,i,t) +Rh,t+1θi,t+1ηh,i,t}xi,t (7)

where

ηc,i,t ≡
ci,t
xi,t

, ηh,i,t ≡
hi,t

bi,t + ki,t + hi,t

with initial condition xi,0 > 0. The individual optimization problem can then be equivalently

written as a problem of choosing a sequence of the rate of consumption out of his wealth, ηc,i,t,

and of the portfolio composition between human capital and riskless assets (physical capital and

risk-free bond), (ηh,i,t, 1− ηh,i,t) for every t = 0, 1, ..., given xi,0.

Define the certainty-equivalent rate of return ρ associated with the after-tax rental rate r̃ and

after-tax wage rate w̃ as follows:

ρ(r̃, w̃, ηh) ≡
{
E ((1− δk + r̃)(1− ηh) + θ(1− δh + w̃)ηh)1−γ

} 1
1−γ

. (8)

Given the specification of the agents’ utility and income, it can be shown that the optimal portfolio at

any date, given the prevailing after-tax rates r̃ and w̃, is obtained as a solution to the static problem

of maximizing ρ(r̃, w̃, ηh) with respect to ηh, independently of all the other choice variables. Given

this, it is straightforward to verify that the following simple characterization of the solutions of the

individual choice problem obtains:

Lemma 1. Given {r̃t, w̃t}∞t=1 and xi,0, for any individual i a utility maximizing sequence of portfolio

compositions and rates of consumption is characterized by the following rule: for each t = 0, 1, ...,

ρt+1 = max
η′h≥0

ρ(r̃t+1, w̃t+1, η
′
h), (9)

ηh,t = arg max
η′h≥0

ρ(r̃t+1, w̃t+1, η
′
h), (10)

ηc,t =

1 +
∞∑
s=0

s∏
j=0

(
βψρψ−1

t+1+j

)
−1

. (11)

Moreover, the time t intertemporal utility level is given by

ui,t = vtxi,t,

where xi,t satisfies (7) and vt satisfies the recursive expression:

vψ−1
t = (1− β)ψ + βψρψ−1

t+1 v
ψ−1
t+1 , (12)
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whose solution is

vt = (1− β)
ψ
ψ−1

1 +
∞∑
s=0

s∏
j=0

(
βψρψ−1

t+1+j

)
1

ψ−1

. (13)

Since the expressions in (10) and (11) are independent of i, the result implies that all the

individuals in the economy choose the same rate of consumption, ηc,t, and the same portfolio, ηh,t,

in each period t. The heterogeneity among individuals appears in their level of wealth and hence

in their utility level, given by wealth times a common constant vt.

Comparing (11) and (13) we see that the utility level per unit of wealth vt and the consumption

share ηc,t at any date t are related as follows:

ηc,t = (1− β)ψv1−ψ
t . (14)

Since ρ (·) is a concave function of ηh, an interior solution of (9) is characterized by the first

order conditions:

Φ(r̃, w̃, ηh) ≡ E
[{

(1− δk + r̃)(1− ηh) + θ(1− δh + w̃)ηh
}−γ

(15)

×
{
θ(1− δh + w̃)− (1− δk + r̃)

}]
= 0.

We shall assume throughout the analysis that the derivatives of the function Φ : R3
+ → R, defined

in equation (15), exhibit the following properties:

Assumption 1. The derivatives of Φ(.), evaluated at Φ = 0, satisfy:

∂Φ

∂r̃
< 0, and

∂Φ

∂w̃
> 0.

It can be verified that these properties are satisfied when γ ≤ 1. When γ > 1, they hold

under appropriate restrictions on the distribution of θi. The concavity of ρ (·) then implies that

∂Φ
∂ηh

< 0. These properties ensure that the consumers’ optimal portfolio choice displays the ‘normal’

comparative statics properties: ∂ηh/∂r̃ < 0 and ∂ηh/∂w̃ > 0.

2.2 Firms

All firms have identical production technology, described by a Cobb-Douglas production function, so

we can proceed as if there is a single representative firm. Letting Kt−1 and Ht−1 denote, respectively,

the aggregate stock of physical and human capital used by firms at the beginning of period t, the

aggregate amount of output produced in period t is:

Yt = F (Kt−1, Ht−1) = AKα
t−1H

1−α
t−1 ., (16)

8



where Yt is the aggregate level of output and A is a constant. The profit maximization condition

requires that the marginal productivity of the two factors equal their before-tax rental rates

rt =
∂F (Kt−1, Ht−1)

∂Kt−1
≡ Fk,t, wt =

∂F (Kt−1, Ht−1)

∂Ht−1
≡ Fh,t. (17)

2.3 Government

The government purchases an amount of output, Gt, in each period t, financed by collecting taxes

and issuing debt. Let Bt−1 be the government debt outstanding at the beginning of period t. The

flow budget constraint of the government at any date t is

Bt + F (Kt−1, Ht−1)− r̃tKt−1 − w̃tHt−1 = Gt + (1− δk + r̃t)Bt−1, (18)

where we used r̃t, w̃t and the linear homogeneity of the production function F (K,H) to rewrite the

tax revenue τk,trtKt−1 + τh,twtHt−1 and the initial stock of debt B−1 is given: B−1 =
∫ 1

0 bi,−1 di.

For a given sequence of the aggregate stocks of physical and human capital and prices {Kt, Ht,

rt, wt}∞t=0, a fiscal policy {r̃t, w̃t, Bt}∞t=0 is said to be feasible if the flow budget constraint (18) is

satisfied for every t = 0, 1, ..., and

lim
t→∞

 t∏
j=1

(1− δk + r̃j)
−1

Bt = 0. (19)

2.4 Competitive equilibrium

Given a sequence of government purchases, {Gt}∞t=0 and a fiscal policy {r̃t, w̃t, Bt}∞t=0, a competitive

equilibrium is defined by a price system {rt, wt}∞t=0 and a collection of stochastic processes {ci,t, xi,t,

bi,t, ki,t, hi,t}∞t=0, i ∈ [0, 1], adapted to the filtration generated by the process of idiosyncratic shocks

{θi,t}∞t=0, such that: (a) for each i, {ci,t, xi,t,bi,t, ki,t, hi,t}∞t=0 solves the utility maximization problem

of agent i, subject to (5) and (6), given prices, the fiscal policy and the initial endowment bi,−1,

ki,−1, hi,−1; (b) firms maximize profits, that is, (17) holds for all t ≥ 0, with Kt−1 =
∫ 1

0 ki,t−1 di and

Ht−1 satisfying (4); (c) all markets clear:

Ct +Gt +Kt +Ht = (1− δk)Kt−1 + (1− δh)Ht−1 + F (Kt−1, Ht−1),

Bt =
∫ 1

0 bi,t di
(20)

where Ct =
∫ 1

0 ci,t di; (d) the government policy is feasible, that is (18) and (19) hold.

Let Xt denote the average amount of wealth at the beginning of period t: Xt ≡
∫ 1

0 xi,t di.

Recalling that, as shown in Lemma 1, the consumers’ optimum is characterized by the sequence

{ηc,t, ηht}
∞
t=0 , independent of i, Xt evolves as

Xt+1 = Rx,t+1(1− ηc,t)Xt, t = 0, 1, 2, ... (21)

9



where Rx,t+1 is the equilibrium average rate of return of individual portfolios: for t = 0, 1, 2, ...

Rx,t+1 ≡ (1− δk + r̃t)(1− ηh,t) + (1− δh + w̃t)ηh,t. (22)

Given Xt, aggregate consumption, physical and human capital are given by

Ct = ηc,tXt, (23)

Kt = (1− ηc,t)(1− ηh,t)Xt −Bt, (24)

Ht = (1− ηc,t)ηh,tXt. (25)

Hence the aggregate dynamics of a competitive equilibrium is simply determined by the sequence

{ηc,t, ηht}
∞
t=0 and the path of average wealth Xt.

2.5 Benchmark equilibrium with no taxes

As a benchmark, let us consider the situation where the government does not purchase goods, and

does not issue debt nor impose any taxes:

Gt = Bt = 0, rt − r̃t = 0, wt − w̃t = 0 for all t ≥ 0, bi,−1 = 0, for all i ∈ [0, 1]. (26)

In this case, the competitive equilibrium has a very simple structure. The aggregate economy is

always on a balanced growth path, although each individual’s consumption fluctuates stochastically

over time.

To see this, notice that, using (26), (17) and the market clearing conditions for physical and

human capital, the first order conditions for the consumers’ optimal portfolio choice (15) reduce to

Φ [Fk(1− ηh,t, ηh,t), Fh(1− ηh,t, ηh,t), ηh,t] = 0, (27)

for every t = 0, 1, 2, .... It is then immediate to verify6 that there exists a unique η̂h ∈ (0, 1)

satisfiying (27), which implies that ηh,t = η̂h must hold for every t.

Set F̂k = Fk(1− η̂h, η̂h), F̂h = Fh(1− η̂h, η̂h), and

ρ̂ = ρ
(
F̂k, F̂h, η̂h

)
. (28)

The argument above together with Lemma 1 yield the following characterization of the equilibria

in this benchmark case:7

6From (15) we have Fk(1, 0) = Fh(0, 1) = 0, Fk(0, 1) = Fh(1, 0) = +∞, and limηh→0 Fh(1 − ηh, ηh)h =

limηh→1 Fk(1 − ηh, ηh)(1 − ηh) = 0. Furthermore, under Assumption 1, ∂
∂ηh

Φ [Fk(1− ηh, ηh), Fh(1− ηh, ηh), ηh] < 0

whenever Φ = 0. The claim then follows.

7Krebs (2003) derived analogous properties in a similar environment.
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Proposition 2. Suppose that Assumption 1 holds. If

βψρ̂ψ−1 < 1,

with no government intervention - i.e., under (26) - a unique competitive equilibrium exists, char-

acterized by η̂h and η̂c ≡ 1− βψρ̂ψ−1. Thus the aggregate variables Ct, Kt, Ht, and Xt all grow at

the same rate

ĝx = (1− η̂c)R̂x

where

R̂x = (1− δk + F̂k)(1− η̂h) + (1− δh + F̂h)η̂h,

and

v̂ ≡
[

(1− β)ψ

1− βψρ̂ψ−1

] 1
ψ−1

.

In what follows we refer to this equilibrium without government purchases or taxes as the

benchmark equilibrium, and use a hat (ˆ) to denote the value of a variable at this equilibrium.

3 Optimal taxation and debt

In this section we study the dynamic Ramsey problem where the optimal tax and debt policy in

our environment are determined. As is well known from the work of Chamley (1986) and Judd

(1985), when markets are complete the optimal tax rate on capital income is zero in the steady

state. Furthermore, when there is also human capital accumulation, Jones, Manuelli, and Rossi

(1997) have shown that both labor and capital income tax should be zero in the long run and

hence, with positive government purchases, public debt should be negative. Here we demonstrate

that uninsurable risks in human capital accumulation significantly change the nature of optimal

taxes. The presence of such risks makes both labor and capital income taxation beneficial, which,

in turn, implies that the the optimal amount of government debt is positive as long as government

purchases are sufficiently small.

More precisely, the Ramsey problem consists in finding the fiscal policy {r̃t, w̃t, Bt}∞t=0, satisfying

(18) and (19), that maximizes consumers’ welfare at the associated competitive equilibrium, as

defined in Section 2.4, for a given policy determining the level of government purchases {Gt}∞t=0.

The resulting equilibrium is then denoted the Ramsey equilibrium. As is standard in the literature,

we assume that the tax rates, or equivalently the after tax prices, in the initial period are exogenously

fixed:

r̃0 = r̃0, and w̃0 = w̃0. (29)
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We take as social welfare function a weighted average of the lifetime utility of individuals:∫ 1
0 λiui,0 di, with λi ∈ (0, 1) for each individual i ∈ [0, 1]. By Lemma 1, we have ui,0 = v0xi,0, and

therefore∫ 1

0
λiui,0 di = v0

∫ 1

0
λixi,0 di = v0

{
(1−δk+r̃0)

∫ 1

0
λi(ki,−1+bi,−1) di+(1−δh+w̃0)

∫ 1

0
λiθi,0hi,−1 di

}
.

Given the initial tax rates (29), the terms in the curly braces are determined independently of the

fiscal policy chosen by the government. Thus the government’s objective reduces to maximizing the

utility coefficient:

v0 = (1− β)
ψ
ψ−1

1 +

∞∑
t=0

t∏
j=0

(
βψρψ−1

1+j

)
1

ψ−1

(30)

Note that (30) implies that v0 is strictly increasing in ρt for all t, regardless of the value of ψ > 0.

We should stress that in the Ramsey problem as specified above we are looking for a sequence of

tax rates and debt levels which may vary over time and are such to maximize the lifetime utility of

agents, not just their steady state utility.

Since the economy considered features accumulation of (physical and human) capital and growth,

it is convenient to normalize aggregate variables in terms of the total wealth Xt, for each t

kt ≡
Kt

Xt
, ht ≡

Ht

Xt
, bt ≡

Bt
Xt
, gt ≡

Gt
Xt−1

.

With regard to the public expenditure policy, in what follows we shall assume that it is specified in

terms of an exogenous sequence of expenditure levels per unit of total wealth {gt}∞t=0. Given our

interest in the optimal taxes and debt in the long run, this specification ensures that the ratio of

public expenditure Gt to output Yt remains the same over time. Since the growth rate of output

is endogenously determined, such a property would not be ensured if we adopted a more standard

specification where instead {Gt}∞t=0 is exogenously given. But we want to emphasize that our main

finding on the long run tax rate on capital income does not depend on our assumption that gt

instead of Gt is exogenous. First, it holds without government purchases. Second, as shown in the

Appendix, we do obtain a similar result for the case where {Gt}∞t=0 is exogenously given.

Once restated in terms of the normalized variables {kt, ht, bt, r̃t+1, w̃t+1, ρt+1, ηh,t, ηc,t,

Rx,t+1}∞t=0, the Ramsey problem can then be formulated as a two-step maximization problem.

In the first step, we take as arbitrarily given a sequence {ηc,t, bt}∞t=0, and consider the optimal

choice of the remaining variables {r̃t+1, w̃t+1, ρt+1, ηh,t, Rx,t+1, kt, ht}∞t=0. Substituting (24) and
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(25) into (18), and dividing both sides by Xt, the government budget constraint becomes

gt+1 + (1− δk + r̃t+1)bt (31)

= (1− ηc,t)Rx,t+1bt+1 + F [(1− ηc,t)(1− ηh,t)− bt, (1− ηc,t)ηh,t]

− r̃t+1 [(1− ηc,t)(1− ηh,t)− bt]− w̃t+1(1− ηc,t)ηh,t

Conditions (9), (10), (22), and (31) imply that, for each t, the choice of (r̃t+1, w̃t+1, ηh,t, Rx,t+1)

only affects ρt+1, and not ρs for any s 6= t + 1. Therefore, in the first-step problem, v0 can be

maximized by maximizing ρt+1 separately for each t. Note also that among the given sequence

{ηc,t, bt}∞t=0, ρt+1 is only affected by bt, bt+1, and ηc,t. Hence the first-step problem reduces to the

following static maximization problem:

ρR(bt, bt+1, ηc,t; gt+1) ≡ max
{r̃t+1,w̃t+1,ηh,t,Rx,t+1}

ρ(r̃t+1, w̃t+1, ηh,t) (32)

subject to (22) and (31).

The second-step problem consists then in the choice of the sequence {ηc,t, bt}∞t=0 which maximizes

v0. This problem can be written recursively as:

max
{vt+1,bt+1,ηc,t+1}∞t=0

v0, (33)

subject to (12), (14), and ρt+1 = ρR(bt, bt+1, ηc,t; gt+1).

To derive some insights on the properties of the solution of the dynamic Ramsey problem and

hence of the optimal taxes and debt, it is useful to consider first the case where only a subset of

policy instruments at a time is available.

3.1 The case of balanced budget: tax labor and subsidize capital

We study first the welfare effects of taxing capital or labor, by examining the case where there are

no government purchases nor public debt, thus the budget is balanced at all times:

gt = bt = 0, for all t, (34)

with bi,−1 = 0 for all i. Under (34), the Ramsey problem reduces to:

max
{r̃,w̃,ηh}

ρ(r̃, w̃, ηh) s.t. F (1− ηh, ηh)− r̃(1− ηh)− w̃ηh = 0. (35)

The solution is time invariant and the economy is always on a balanced growth path, as in the

benchmark equilibrium of subsection 2.5. Let us denote the variables at the solution with the

superscript o, i.e., vo, ρo, Rox, ηoc , etc.
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The balanced budget requirement implies that the tax revenue on one factor equals the subsidy

on the other factor. We show next that taxing labor and subsidizing (physical) capital is welfare

improving.

Proposition 3. Under Assumption 1, at the benchmark equilibrium, social welfare increases if a

marginal subsidy on capital (and a corresponding tax on labor) is introduced for all t.

More specifically, we show in the proof of the proposition that(
∂ρ

∂r̃
+
∂ρ

∂w̃

dw̃

dr̃

) ∣∣∣∣
r̃=F̂k,w̃=F̂h,ηh=η̂h

> 0

and, furthermore, that an increase in r̃ is equivalent to a decrease in τk. As shown in (30), social

welfare increases when ρ rises.

Hence, even though taxes are distortionary and there is no need for the government to raise tax

revenue, in the incomplete markets environment considered, it is beneficial, for agents’ welfare, to

tax labor and subsidize physical capital. The intuition for this result is simple. In the benchmark

equilibrium (with no taxes) individuals are exposed to the risk in their labor income which they are

unable to insure. By taxing risky labor income and using the total revenue of this tax to subsidize

the riskless return on capital, that is by setting r̃ > F̂k and w̃ < F̂h, the government can reduce the

individual exposure to idiosyncratic risk. Thus, a welfare improvement can be attained by reducing

the return of the risky factor and increasing that of the riskless one.8

Note that Proposition 3 only characterizes the properties of optimal taxes in a neighborhood

of zero, and does not guarantee that the globally optimal tax rate on physical capital is indeed

negative in the environment considered, when government consumption and debt are zero. A

sufficient condition for this to hold is that:9

Assumption 2. The function ρ(r̃, w̃, ηh) is such that problem (35) has a unique local maximum.

The above result tells us that market incompleteness alone does not justify taxing capital income.

However, in what follows we show that, once the government is allowed to issue debt, it becomes

beneficial to tax capital income (in the long run).

8A related result has been obtained by Eaton and Rosen (1980) and Barsky, Mankiw and Zeldes (1986). Using a

two-period model where the second period labor income is subject to idiosyncratic risk, they consider the effect of a

combination of a proportional labor income tax and lump-sum transfers. Such a policy has an insurance effect similar

to the one discussed here.

9This property is satisfied in all the numerical examples considered in the rest of the paper.
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3.2 Desirability of government debt

Next, we turn our attention to the welfare effects of issuing government debt, when markets are

incomplete. We show that, starting from a zero level of government debt, increasing the amount of

government debt is welfare improving as long as government purchases are small enough.

Consider the allocation obtained as the solution to the Ramsey problem under (34), that is,

with no government debt nor expenditure, studied in the previous subsection. We will investigate

whether allowing for an arbitrarily small (positive or negative) level of debt at only one date yields

a welfare improvement. This amounts to studying the solutions of the Ramsey problem under the

following alternative restriction to (34):

bT+1 = bT+1, bt = 0, for all t 6= T + 1, gt = 0, for all t,

for some given bT+1, with bi,−1 = 0 for all i. The next proposition establishes that having a positive

amount of debt, bT+1 > 0, is welfare improving.

Proposition 4. Suppose that Assumptions 1 and 2 hold and consider the Ramsey equilibrium with

no public debt nor expenditure, that is, under (34). Then increasing bT+1 above zero for a given

period T + 1 improves the lifetime utility of all individuals.

To gain some intuition for the result note that, in the light of (30), whether or not increasing

bT+1 above zero is welfare improving depends on how this change affects the equilibrium values of

{ρt+1}∞t=0. We show in the proof that only ρT+1 and ρT+2 are affected by the change in bT+1. First

note that increasing bT+1 above zero reduces taxes in period T + 1 and this increases ρT+1. The

benefit is proportional to the after-tax average rate of return of individual portfolios, Rox, at the

Ramsey equilibrium with bt = gt = 0 for all t. This is natural because Rox is the average rate that

individuals earn using the proceeds from the tax cut in T + 1. In contrast, the increase in bT+1 has

to be offset by a tax increase in period T + 2 to redeem the debt. As a result, ρT+2 decreases. The

cost is proportional to the (before-tax) rate of return on government debt, 1− δk +F ok . Whether or

not increasing bT+1 is beneficial depends on the comparison between these two terms and we show

in the proof that the benefit of increasing bT+1 dominates its cost if and only if

Rox > 1− δk + F ok . (36)

As shown in subsection 3.1, under Assumptions 1 and 2 the optimal tax rates when bt = gt = 0

for all t are negative on capital and positive on labor, and this, together with the risky nature of

labor income imply that (36) holds, and so that increasing the amount of government debt in one

period is welfare improving. The argument can then be extended by continuity to the case where

government purchases, gt, are sufficiently small.
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3.3 Ramsey steady state

Finally, we consider the case where the government can freely choose a fiscal policy {r̃t+1, w̃t+1,

Bt}∞t=0 satisfying (18) and (19). We focus in particular on the properties of the Ramsey equilibrium

at a steady state (balanced growth path),10 and assume so that gt = g ≥ 0 for all t.

Proposition 5. In the steady state of the Ramsey equilibrium the following condition holds:

Rx = (1− δk + Fk)
[
1− (1− ψ)βψρψ−2ρηcηc

]−1
(37)

with ρηc ≡
∂ρR

∂ηc
.

In the proof, we show, by an analogous argument to the one in the previous subsection, that

the beneficial effect on ρt and hence also on vt of an increase in bt is proportional to Rx, while

its cost, due to a reduction of ρt+1, is proportional to (1 − δk + Fk). There is now an extra term,

(1 − βψρ̃ψ−2 (1− ψ) ρηcηc)
−1, multiplying the latter, which captures the effect on ρ of the change

in the saving rate, 1− ηc. This term arises when b takes a nonzero value.

Condition (37) says that, at a steady state, the (before tax) return on government debt and

physical capital, 1− δk +Fk, must equal the average rate of return of private consumers’ portfolios,

Rx, after adjusting for the effect of public debt on the consumers’ saving rate. It implies that the

steady state tax rate on capital income is strictly positive as long as the effect on the saving rate is

not too large.11

To see this, consider the case where the elasticity of intertemporal substitution ψ = 1, in which

case ηc,t is a constant, equal to 1 − β, so that the effect on the saving rate is zero. Therefore (37)

reduces to Rx = 1 − δk + Fk. Since human capital is risky but physical capital is not, by the risk

aversion of consumers we have Rx > 1 − δk + r̃ and so r̃ < Fk, that is τk > 0. By continuity, the

same property holds for ψ sufficiently close to unity. These findings are summarized in the following

result.

Corollary 6. When ψ = 1, in the steady state of the Ramsey equilibrium we have:

Rx = 1− δk + Fk (38)

and the optimal tax rate on physical capital is positive:

r̃ < Fk

10Along a balanced growth path, prices and normalized variables {r̃t, w̃t, bt, ρt+1, ηh,t, ηc,t, Rx,t+1, kt, ht} are all

constant. Note also that we use the terms “steady state” and “balanced growth path” interchangeably given the fact

that a steady state for the normalized variables corresponds to a balanced growth path of the economy. In all the

numerical results reported later the solution to the Ramsey problem converges to a steady state.

11The steady-state optimal capital tax rate is indeed strictly positive in all the numerical examples considered here.
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3.4 Discussion

The analysis in this section has identified two roles that taxes and government debt can serve in an

economy with incomplete markets. The first one is provision of insurance, that is, it is beneficial

to tax a factor that is subject to uninsurable idiosyncratic risks. In our model, labor income is

exposed to such risks, which justifies labor income taxes as is demonstrated in Proposition 3. This

type of benefits exists regardless of whether individual labor productivity is given exogenously or

determined endogenously through human capital accumulation.12

The second role is the intertemporal allocation of taxes. This corresponds to the benefits of gov-

ernment debt and capital income taxes described in Propositions 4-6. In the presence of uninsurable

risks to human capital accumulation, human capital must yield a higher expected rate of return

than physical capital. Hence without taxes on capital income the rate of return faced by the private

sector (Rx) is necessarily greater than the rate of return faced by the government (1 − δk + Fk).

As long as this is the case, it is cheaper to borrow for the government than for consumers and

increasing government debt is beneficial. Our findings show that when public debt is at the optimal

level the tax rate on capital should be increased until the after tax return on consumers’ savings

equal the before tax return on public debt (possibly with a correction to take into account the effect

of debt on the saving rate). This condition can be interpreted as a kind of “no arbitrage condition”

between the government and the private sector.

How robustly do this type of benefits exist? Since the benefits of government debt and capital

income taxes we have found arise from the rate of return differential between human and physical

capital, they would survive in more general models as long as human capital accumulation is riskier

than physical capital. And empirical evidence suggests that human capital does have a higher

average rate of return than physical capital (e.g., Card (2001), and Palacios-Huerta, (2003)).

The presence of uninsurable risk clearly plays a key role for these results. If agents were able

to trade in complete markets so as to fully hedge all risk, so that human capital would also be,

effectively, a safe asset we would have Rk = Rh = Rx, in which case the condition Rx = 1− δk +Fk

implies that τk = 0.13 We should point out however that in our environment market incompleteness

alone does not justify capital income taxation, this only happens when the government is allowed

to issue debt. As we said in the Introduction, the reasons for this result are quite different from

those of the finding of Aiyagari (1995) on the optimality of capital taxation.

12See Gottardi, Kajii, and Nakajima (2013) for the case where individual labor productivity is given exogenously.

13This is indeed the case considered by Judd (1985), Chamley (1986), Jones, Manuelli and Rossi (1997).
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4 Quantitative analysis

In this section we calibrate our model based on some empirical evidence on the U.S. economy, and

examine how market incompleteness affects the structure of optimal taxes and debt.

4.1 Baseline calibration

Suppose that θi,t ∈ {1+θ, 1−θ}, each occurring with equal probability. The values for the parameters

of our model economy, {β, ψ, γ, A, α, δk, δh, g, τk, τh, θ}, are set as follows. First, the intertemporal

elasticity of substitution ψ is set equal to one and the coefficient of relative risk aversion γ equal

to three. Second, the capital share of income α is set to 0.36, and both the depreciation rates of

physical and human capital are δk = δh = 0.06. Third, the tax rates on capital and labor income

are identical, τk = τh = τ . Then the benchmark value of the remaining parameters, {β, A, g, τ , θ},

are determined so that the following features of the U.S. economy are replicated: (i) government

purchases are 18 percent of GDP; (ii) government debt is 51 percent of GDP; (iii) the capital-output

ratio is 2.7; (iv) the growth rate of GDP is 1.6 percent; (v) the variance of the permanent shock to

individual labor earnings is 0.0313. The first four facts are based on Chari, Christiano and Kehoe

(1994), and the last one on Meghir and Pistaferri (2004).14 The baseline parameter values are

summarized in Table 1.

Column (1) of Table 2 presents the tax rates, the ratio of government debt to GDP, the growth

rate, and the (before-tax) premium of the return on human capital that prevail in the balanced-

growth path associated with the benchmark parameter values in Table 1. The capital and labor tax

rates are identical by construction and equal to 19.95 percent.15 The debt-GDP ratio, the share

of government purchases and the growth rate of the economy are pinned down by our calibration

assumptions. The rate of return differential between human and physical capital plays an important

role in our set-up to assess the benefits of government debt and capital income taxes and is then an

important variable to evaluate the empirical relevance of our model. As reported in the table, the

human capital premium in the baseline calibration is 5.28 percent. This is indeed consistent with

the evidence given, for instance, by Card (2001) and Palacios-Huerta (2003).

14It is also consistent with the evidence reported by Storesletten, Telmer and Yaron (2004).

15Our baseline tax rates (19.95 percent) may be smaller than the values typically used in the literature. For instance,

Trostel (1993) uses 40 percent as the benchmark tax rate. The reason for this difference lies in the fact that our model

abstracts from transfer payments of the government. As far as the nature of the Ramsey steady state is concerned, this

difference is not important, because the Ramsey steady state would not be affected by changing the baseline tax rates,

and also because, as discussed in Section 4.4.1, this steady remains unchanged if lump sum transfers independent of

the idiosyncratic risks are introduced.
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4.2 Results

For the economy described in Table 1 we derive the optimal tax and debt policy, obtained as the

solution of the Ramsey problem of maximizing consumers’ intertemporal welfare, not just their

stady state welfare. The tractable nature of the model considered allows us in fact to study also the

transitional dynamics of the Ramsey equilibrium, with tax rates which may vary over time. The

levels of the tax rates, government debt and the growth rate of income at the Ramsey steady state

of the economy are reported in the second column of Table 2. In addition, the third and fourth

columns report the corresponding values at the Ramsey steady state without government purchases,

respectively, when the level of public debt is optimally chosen and when it is constrained to be zero.

Comparing columns (1) and (2), we see that when taxes and debt are optimally set to maximize

consumers’ welfare, both the tax rate on labor income and the level of debt-to-GDP are lower than

in the case of the baseline policy calibrated on the U.S. economy, while the tax rate on capital

income is essentially the same. The last two columns allow then to gain some understanding on the

properties of optimal taxes and debt, in light of the results of the previous section.

The case where there are no government purchases (g = 0) is in fact a useful benchmark because,

if asset markets were complete, in such case the optimal tax rates (and public debt) would all be

zero. Therefore, if we find that non-zero tax rates are desirable when g = 0, this is entirely due to

the distortions caused by market incompleteness. In Proposition 3 we have seen that taxing labor

income and subsidizing capital income is beneficial because it reduces the risk faced by individuals.

Column (4) in Table 2 illustrates the quantitative significance of this finding: when the government

is not allowed to borrow or lend (b = 0), the optimal tax rate on labor income is 0.19 percent,

and the one on capital income is -0.34 percent. The signs are consistent with the proposition

recalled above, but the levels are negligible. In contrast, these levels are significantly larger if the

government can issue debt, as column (3) shows. In this case, the steady-state debt-to-GDP ratio

is positive, in accord with Proposition 4, and quite large (202.6 percent), while the optimal tax

rates on labor income and capital income at the steady state are 4.99 percent and 11.56 percent,

respectively. Comparing columns (3) and (4), we see that the ability of the government to borrow

and lend significantly affects the structure of optimal taxes. Hence assuming an exogenous amount of

government debt, which is often done in the existing literature on optimal taxation with incomplete

markets, may provide misleading results.

Finally, comparing columns (2) and (3) in Table 2 we see that the introduction of government

purchases increases the optimal level of both tax rates, to τk = 19.64 percent and τh = 14.88

percent, and reduces the debt-to-GDP ratio to 0.19 percent. Note that, when the level of public

debt is optimally chosen, both in columns (2) and (3) the tax rate on capital is positive, as predicted
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by Corollary 6.

How sizeable are the benefits associated with the move from the baseline fiscal policy to the

Ramsey policy? This benefits can be measured by the rate of permanent increase in consumption

of each individual that makes him/her indifferent between the two policies. As can be seen from

Lemma 1, this rate is the same for all consumers and is given by the ratio of the values of v0 under

the two policies in comparison. Table 3 shows the result. When we only compare the steady states

associated with the baseline policy and the Ramsey policy, the welfare gain of adopting the Ramsey

policy amounts to an increase of about 8.7 percent in each individual’s consumption (in accord with

the increase in the growth rate of income reported in Table 2). But this number ignores the cost

of transition, where a significant increase in taxes takes place to reduce the debt level. When the

transition is taken into account, the gain becomes substantially smaller, 0.85 percent, nevertheless

a significant amount.

4.3 Sensitivity analysis

In this subsection we examine how the debt-to-output ratio and the tax rates at the Ramsey

steady state vary for different values of the risk aversion coefficient γ, the intertemporal elasticity

of substitution ψ, and the magnitude of the idiosyncratic risk θ. For the purpose of normalization,

when the values of these parameters are changed we adjust the value of the discount factor β so

that the steady-state growth rate under the baseline policy remains equal to 1.6 percent.

Figure 1 plots the results for the changes in risk aversion. We see that the optimal debt-to-output

ratio is very sensitive to the choice of the degree of risk aversion. It is about −100 percent when

γ = 1, and about 200 percent when γ = 9. Regarding the tax rates, the risk aversion coefficient

affects the capital tax rate τk much more than the labor tax rate τh.

Figure 2 then shows that the debt-to-output ratio varies significantly also with the magnitude

of the idiosyncratic risk. It is negative and large (−200 percent) when there is no idiosyncratic

risk (std(θ) = 0), in accord with the findings mentioned above of the complete market literature.

The debt ratio gets larger when risk increases, reaching a zero level when std(θ) is near its baseline

level, 0.1585, and a positive level of about 60 percent when std(θ) = 0.2. The two tax rates are

very close to each other when the amount of idiosyncratic risk is moderate (std(θ) < 0.1), but when

std(θ) > 0.1 the labor tax rate τh is much less sensitive to changes in the amount of idiosyncratic

risk. Most of the increase in the steady state level of debt is then financed with an increase in τk.

In contrast, we see in Figure 3 that the value of the intertemporal elasticity of substitution does

not affect much the optimal debt-ratio and tax levels. This suggests that the saving effect appearing

in (37) is quantitatively small.
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4.4 Non Linear tax policies

So far we have restricted our attention to tax policies consisting in proportional taxes on labor and

capital income. In this subsection we extend the analysis to allow for other forms of taxation.

4.4.1 Lump sum taxes

We examine first the case where the government can also impose lump sum taxes {Ti,t : i ∈ [0, 1]}∞t=0,

which may depend on the time period t and the identity i of an individual, but not on the realization

of idiosyncratic shocks {θi,s}ts=0. A fiscal policy is then given now by {r̃t, w̃t, {Ti,t : i ∈ [0, 1]}, Bt}∞t=0.

Let TPi,t denote the present-discounted value of the lump sum taxes that individual i has to

pay after period t:

TPi,t ≡
∞∑
j=0

j∏
s=0

(1− δk + r̃t+1+s)
−1Ti,t+1+j ,

Notice that for this policy to be feasible, it must be

Rk,0(ki,−1 + bi,−1 − TPi,−1) +Rh,0θi,0hi,−1 > 0, for all i ∈ [0, 1], (39)

to ensure the non negativity of the value of the initial endowment (and hence that the natural debt

limit is satisfied).

It is immediate to verify that a competitive equilibrium associated with such policy is also an

equilibrium without lump sum taxes where (i) the fiscal policy is given by {r̃t,w̃t, B̂t}∞t=0, with

B̂t = Bt −
∫ 1

0 TPi,t di; and (ii) the consumers’ initial endowment of bonds is:

b̂i,−1 = bi,−1 − TPi,−1.

Thus the only effect of lump sum taxes is to change the initial distribution of income among con-

sumers. Since the Ramsey steady state does not depend on the initial distribution of income among

consumers, the long-run equilibrium is identical with and without lump sum taxes. Therefore, our

previous results on the Ramsey steady state remain valid.

4.4.2 Nonlinear taxes

Next we investigate the effects of allowing for nonlinear taxes on labor income so that, for instance,

we may have progressive income taxation. Although a complete analysis of the optimal fiscal policy

in this case is beyond the scope of this paper, we can learn something about these effects by

considering the simpler case where nonlinear taxes are only allowed in a single period, say t = 1.

For all the other periods, taxes are restricted to be linear and described as before by (r̃t, w̃t), t 6= 1.
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Regarding the possible forms of these taxes, we follow Conesa, Kitao and Krueger (2009) in

assuming that labor income is taxed according to the following formula:

T (ωi,1) = τha
[
ωi,1 − (ω−τhbi,1 + τhc)

− 1
τhb

]
, (40)

where ωi,1 = w1θi,1hi,0 is the before-tax labor income of individual i in period 1, T (ωi,1) is the labor

income tax that he/she must pay, and (τha, τhb, τhc) are the parameters describing the tax schedule.

Thus a fiscal policy is now described by
{

(τha, τhb, τhc), r̃1, B1, {r̃t, w̃t, Bt}∞t=2

}
.

Suppose the economy is at the Ramsey steady state with linear taxes at the beginning of period 0.

The optimal16 policy for period 1, {τha, τhb, τhc, r̃1, B1}, is computed using a grid search algorithm,

while the optimal tax rates after period 2, {r̃t, w̃t, Bt}∞t=2, are derived just as before. Let a bar (̄ )

over a variable indicate then the value in the Ramsey steady state with linear taxes, and a variable

with an asterisk (∗) denote its value in the equilibrium where optimal nonlinear labor income taxes

are introduced in period t = 1.

Consider the case where g = 0, the initial wealth x0,i is 1.5 for i > 0.5 and 0.5 for i ≤ 0.5,

and the rest of the parameter values are as in Table 1. As shown in column (3) in Table 2, the

Ramsey steady state with linear taxes has τk = 0.1156, τh = 0.0499, and b = 0.2364.17 With

nonlinear taxes in period 1, the optimal tax policy at t = 1 is instead given by (τ∗k,1, τ∗ha, τ
∗
hb,

τ∗hc) = (0.1256, 0.0599, 0.15, 0.7659), and b∗1 = 0.2355. With the nonlinear function T (ω), both the

marginal and the average labor income tax rates can vary across individuals, which may enhance

risk sharing among them. It turns out, however, that the optimal variation of the marginal and

average tax rates across individuals is very small. The lowest and highest values of the marginal

tax rate on labor income in period 1, T ′(w1θi,1hi,0), are 5.65 percent and 5.79 percent, respectively.

The average value of the marginal tax rate is about 5.7 percent, that is greater than τh. Similarly,

the lowest and highest value of the average labor income tax rate, T (w1θi,1hi,0)/(w1θi,1hi,0), are 5.5

percent and 5.68 percent, respectively. Its average across individuals is 5.6 percent. The capital

income tax rate, τ∗k,1, is also greater than τk. The normalized level of debt issued in period 1, b∗1,

is lower than b, implying that the amount of taxes collected is larger when non-linear taxes are

available. We also evaluate the welfare gain of using nonlinear taxes in period 1, measured in date 0

consumption equivalent:18 the welfare gain is tiny, less than 0.0002 percent of date-0 consumption.

16Since non linear taxes may affect the distribution of income among consumers, the specification of the Pareto

weights may now matter. In what follows we restrict attention to the case where these weights are identical across

individuals: λi = 1 for all i.

17Note that b is the steady-state value of bt = Bt/Xt (Table 2 reports the steady-state value of Bt−1/Yt instead).

18It is conventional to measure a gain/loss of a policy reform by a proportional increase/decrease of consumption for

all periods. But here, since non-linear taxes are introduced only in one period, we measure its gain by a proportional
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To assess the robustness of the previous finding, we consider various other specifications of the

initial wealth distribution x0,i, i ∈ [0, 1]. But the basic feature remains identical: introducing non-

linear taxes results in (i) small variation in both the marginal and average labor income tax rates

across individuals; (ii) higher average marginal tax rate on labor income; (iii) higher level of the

optimal capital income tax rate in period 1; (iv) small welfare gains. Hence introducing nonlinear

taxes does not modify the main qualitative findings of the previous sections, and in particular may

even strengthen the benefit of capital income taxation with uninsurable shocks to human capital

accumulation.

Our result that allowing for nonlinear labor income taxes increases the optimal capital income

tax rate in period 1, τ∗k,1 > τk, may appear surprising. To understand this, recall that, as reported

above, the optimal (average and marginal) tax on labor is higher. The fact that capital income

should be taxed more can then be viewed as a way to ensure that the desired ratio between physical

and human capital is attained19, as well as the optimal intertemporal allocation of taxes and hence

the optimal debt level.

5 Conclusion

We have studied the Ramsey taxation problem in an incomplete-market model with risky human

capital accumulation. We have analytically demonstrated the benefits of labor and capital income

taxation and government debt in such an environment. The benefit of labor income taxes emerges

for the standard reason: since labor income is subject to uninsurable idiosyncratic risks, taxing it

reduces the risks that workers are exposed to. The main contribution of this paper is the finding

of the benefits of government debt and capital income taxation. They arise because of the rate-of-

return differential between human and physical capital, which is, in turn, generated by the difference

in risk between them. Our quantitative result illustrates that the optimal long-run capital-income

tax rate is sizable.

In order to keep the model as transparent and tractable as possible, we have made a number of

simplifying assumptions. In the environment considered, even though individuals are heterogeneous,

they unanimously agree on the fiscal policy that should be implemented. As a result, the optimal

policy is determined independently of the wealth distribution and equilibrium aggregate variables

are also independent of the distribution. Furthermore, we have considered nonlinear taxes, but

increase in just one period (period 0).

19Note that allowing the government to have more policy instruments does not necessarily make all equilibrium

variables closer to the first-best values. In a related context, this point is emphasized in Dávila, Hong, Krusell, and

Rios-Rull (2012).
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only in a limited way, and we have not considered aggregate shocks. Extending the model in these

directions is left for our future research.
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Table 1: Baseline parameter values

parameter value description

ψ 1 intertemporal elasticity of substitution

γ 3 risk aversion coefficient

A 0.315 coefficient in the production function

α 0.36 share of capital

δk 0.06 depreciation rate of physical capital

δh 0.06 depreciation rate of human capital

β 0.9511 discount factor

g 0.0256 government purchases as a fraction of total wealth

τ 0.1955 tax rate in the baseline policy (τk,t = τh,t = τ)

θ 0.1585 idiosyncratic shock

Table 2: Steady states

notation (1) baseline (2) Ramsey (3) g = 0 (4) b = g = 0

capital tax rate (%) τk 19.95 19.64 11.56 -0.34

labor tax rate (%) τh 19.95 14.88 4.99 0.19

debt-GDP ratio (%) Bt−1

Yt
51 0.19 202.6 0

share of govt purchases (%) Gt
Yt

18 16.6 0 0

growth rate (%) Yt+1

Yt
− 1 1.6 2.26 3.25 4.81

human capital premium (%) (Fh − δh)− (Fk − δk) 5.28 4.74 2.95 4.86

Table 3: Welfare gain of adopting the Ramsey policy

ignoring transition considering transition

8.7320 0.8494
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Figure 1: Different values of risk aversion.
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Figure 2: Different values of the idiosyncratic risk.
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Appendix (to be published online only)

1 Proofs

1.1 Proof of Lemma 1

The proof of this lemma uses an argument similar to Esptein and Zin (1991) and Angeletos (2007).

Since the idiosyncratic shocks, θi,t, are i.i.d. across individuals and across periods, the utility

maximization problem of each individual can be expressed as:

Vt(x) = max
c,ηh

{
(1− β)c

1− 1
ψ + β

(
Et[Vt+1(x′)1−γ ]

) 1− 1
ψ

1−γ

} 1

1− 1
ψ

s.t. x′ = (x− c)
[
Rk,t+1(1− ηh) +Rh,t+1θ

′ηh
]
≥ 0,

c ∈ [0, x], ηh ∈ [0, 1].

Here, Vt(x) is the value function for the utility maximization problem of an individual whose total

wealth is x at the beginning of period t. We conjecture that there exists a (deterministic) sequence

{vt}∞t=0, with vt ∈ R+ for all t, such that

Vt(x) = vtx

Using this conjecture and the budget constraint, we obtain

(
Et[Vt+1(x′)1−γ ]

) 1
1−γ = vt+1(x− c)

{
Et

[(
Rk,t+1(1− ηh) +Rh,t+1θ

′ηh
)1−γ]} 1

1−γ

It follows that in the above maximization problem the individual chooses the portfolio ηh so as to

solve the following maximization problem:

ηh = arg max
η′h∈[0,1]

{
Et

[(
Rk,t+1(1− η′h) +Rh,t+1θ

′η′h
)1−γ]} 1

1−γ

Let ρt+1 denote the maximized value in this problem. Note that neither ηh nor ρt+1 depends on

the initial state x. That is, under the conjectured value function, all individuals would choose the

same portfolio and the same certainty-equivalent rate of return.

Given the certainty-equivalent rate of return, ρt+1, the level of consumption is chosen so as to

solve

max
c∈[0,x]

{
(1− β)c

1− 1
ψ + β [vt+1ρt+1(x− c)]1−

1
ψ

} 1

1− 1
ψ

1



The first-order condition for this problem is

(1− β)c
− 1
ψ = βv

1− 1
ψ

t+1 ρ
1− 1

ψ

t+1 (x− c)−
1
ψ

which leads to

ηc =

{
1 +

(
β

1− β

)ψ
(vt+1ρt+1)ψ−1

}−1

where ηc = c
x .

On the other hand, the Bellman equation implies

v
1− 1

ψ

t = (1− β)η
1− 1

ψ
c + β (vt+1ρt+1)

1− 1
ψ (1− ηc)1− 1

ψ

This equation and the above first-order condition for c imply that

vψ−1
t = (1− β)ψ + βψvψ−1

t+1 ρ
ψ−1
t+1

The bounded solution to this difference equation is

vt = (1− β)
ψ
ψ−1

1 +
∞∑
s=0

s∏
j=0

(
βψρψ−1

t+1+j

)
1

ψ−1

Also, the consumption rate ηc is

ηc,t = (1− β)ψv1−ψ
t

It is straightforward to verify that, constructed in this way, {Vt(x), ηc, ηh} indeed characterizes the

solution to the utility maximization problem. The rest of the lemma follows immediately.

1.2 Proof of Proposition 3

Totally differentiating the constraint of problem (35), we obtain

(r̃ − Fk + Fh − w̃) dηh − (1− ηh) dr̃ − ηh dw̃ = 0.

Evaluating this expression at the benchmark equilibrium, where Gt = Bt = 0, r̃t = F̂k and w̃t = F̂h,

for all t, yields

(1− η̂h) dr̃ + η̂h dw̃ = 0.

Thus, to satisfy the balanced budget, r̃ and w̃ must satisfy the following relationship around (r̃, w̃) =

(F̂k, F̂h):
dw̃

dr̃
= −1− η̂h

η̂h
.
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Hence the effect of a marginal change in r̃, taking into account the induced change in w̃ via the

government budget constraint, is given by ∂
∂r̃−

1−η̂h
η̂h

∂
∂w̃ and will be denoted by d

dr̃ . Since the lifetime

utility is increasing in ρt for each t, it suffices to show that dρ
dr̃ > 0.

The envelope theorem implies that ∂ρ
∂ηh

= 0 at the benchmark equilibrium. It follows that

dρ

dr̃
= ρ̂γE

[
R̂−γx,θ

{
(1− η̂h) + θη̂h

dw̃

dr̃

}]
,

= ρ̂γE
[
R̂x(θ)−γ(1− θ)

]
(1− η̂h),

where R̂x(θ) ≡ (1− δk + F̂k)(1− η̂h) + (1− δh + F̂h)θη̂h. Since E(θ) = 1, we have

E
[
R̂x(θ)−γ(1− θ)

]
= Cov(R̂x(θ)−γ , 1− θ) > 0,

where the inequality follows from the fact that both R̂x(θ)−γ and 1− θ are decreasing functions of

θ. Given that η̂h < 1, this proves that dρ
dr̃ > 0.

It remains to show that the after-tax rental rate of capital, r̃, and the tax rate on capital income,

τk, move in the opposite directions around the benchmark equilibrium. Since τk = 1− r̃
Fk

, we have

dτk
dr̃

=
−F̂k + (−F̂kk + F̂kh)dηhdr̃

F̂ 2
k

. (41)

Differentiating the individual first order conditions (15) yields{
Φr̃ −

1− η̂h
η̂h

Φw̃

}
dr̃ + Φηhdηh = 0,

so that

dηh
dr̃

=

1−η̂h
η̂h

Φw̃ − Φr̃

Φηh

. (42)

Thus we obtain

dτk
dr̃

=
1

F̂ 2
k

−F̂kΦηh + (−F̂kk + F̂kh)
(

1−η̂h
η̂h

Φw̃ − Φr̃

)
Φηh

< 0,

since by Assumption 1 we have Φw̃ > 0, Φr̃ < 0, while Φηh < 0 follows from the strict concavity of

ρ(r̃, w̃, ηh) and Fkh = (1− α)αkα−1h−α > 0. This completes the proof.

1.3 Proof of Proposition 4

We are interested in the welfare effect of a marginal variation of bT+1 evaluated at bT+1 = 0, that

is the sign of dv0/dbT+1

∣∣
bT+1=0

. Denote the variables solving the Ramsey problem under (??) as

vt(bT+1), ρt(bT+1), etc.. It is immediate to see that its solution is the same as under (34) for all

periods except two,

ρt(bT+1) = ρo, ∀t 6= T + 1, T + 2 (43)
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Hence from (12) we get vt(bT+1) = vo, ∀t ≥ T + 2, and dv0/dvT > 0, so that

dv0

dbT+1

∣∣∣∣
bT+1=0

R 0 ⇐⇒ dvT
dbT+1

∣∣∣∣
bT+1=0

R 0

We have so20 ρT+2(bT+1) = ρR(bT+1, 0, ηc,T+1(bT+1)). Recalling again (12), we obtain

vT+1(bT+1) =
{

(1− β)ψ + βψρT+2(bT+1)ψ−1vT+2(bT+1)ψ−1
} 1
ψ−1

. (44)

Here, note that (43) implies ∂vT+2/∂bT+1 = 0. In addition, ∂ρR(0, 0, ηc)/∂ηc = 0.21 Differentiating

then vT+1(bT+1) with respect to bT+1 and evaluating it at bT+1 = 0 yields

dvT+1

dbT+1

∣∣∣∣
bT+1=0

= βψ(ρo)ψ−2ρo1v
o, (45)

where ρo1 ≡ ∂ρR(b, b′, ηoc )/∂b evaluated at b = b′ = 0.22

Next, consider the expression analogous to (44) for date T :

vT (bT+1) =
{

(1− β)ψ + βψ
(
ρT+1(bT+1)

)ψ−1
vT+1(bT+1)ψ−1

} 1
ψ−1

. (46)

Its derivative with respect to bT+1, evaluated at bT+1 = 0, using (45) and again the fact that

∂ρR/∂ηc,T
∣∣
bT+1=bT=0

= 0, equals

dvT

dbT+1

∣∣∣∣
bT+1=0

= βψ(ρo)ψ−2vo
[
ρo2 + βψ(ρo)ψ−1ρo1

]
,

where ρo2 ≡ ∂ρR(b, b′, ηoc )/∂b
′ evaluated at b = b′ = 0.

Let us denote then by λ(b, b′, ηc) the Lagrange multiplier on the flow budget constraint for the

government in problem (32) and by ηh(b, b′, ηc), r̃(b, b
′, ηc), w̃(b, b′, ηc), and Rx(b, b′, ηc) its solution.

Using the envelope property and the fact that b, b′ only appear in this, first constraint (31) of the

20Here and in what follows we omit the dependence of ρR on g whenever gt is constant across periods.

21To see this, recall from the definition of ρR(b, b′, ηc) in (32) that ηc affects ρR only through the government budget

constraint (31). Consider the associated function:

f(b, b′, ηc, ηh, r̃, w̃, Rx)

≡ g + (1− δk + r̃)b− (1− ηc)Rxb′ − F [(1− ηc)(1− ηh)− b, (1− ηc)ηh]

+ r̃ [(1− ηc)(1− ηh)− b] + w̃(1− ηc)ηh

We have ∂f
∂ηc

∣∣∣
b=b′=0

= 0 and so, by the envelope theorem we get the claimed property.

22The superscript o indicates, as in the main text, variables evaluated at a solution of the Ramsey problem under

the constraint bt = gt = 0 for all t.
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problem, we obtain, when bt = gt = 0 for all t:23

ρo1 = −λo(1− δk + F ok ),

ρo2 = λoβψ(ρo)ψ−1Rox,

since

ηoc = 1− βψ(ρo)ψ−1.

Therefore,
dvT

dbT+1

= ξ [Rox − (1− δk + F ok )] , (47)

where

ξ ≡ β2ψ(ρo)2ψ−3λovo

and ξ > 0 since λo > 0, as shown at the end of this proof.

Under Assumptions 1 and 2, as argued in Section 3.1, we have r̃o > F ok . Because the investment

in human capital is risky, its expected return must be greater than the rate of return on physical

capital:

1− δk + r̃o < 1− δh + w̃o

It follows that

Rox = [1− δk + r̃o] (1− ηoh) + [1− δh + w̃o] ηoh

> 1− δk + r̃o > 1− δk + F ok (48)

To establish the sign of (47) and thus completing the proof it remains then to prove that λo > 0.

As argued in Section 3.1, when bt = gt = 0 for all t, problem (32) reduces to (35), whose first order

conditions are:

∂ρ

∂r̃
− (1− ηoh)λo = 0,

∂ρ

∂w̃
− ηohλo = 0,

∂ρ

∂ηh
+ λo(−F ok + F oh + r̃o − w̃o) = 0.

Since ∂ρ/∂r̃ > 0, which follows from the definition of ρ(.) in (8), and ηoh ∈ (0, 1), it follows that

λo > 0.

23To better understand the form of these expressions, notice that, as we see from (31), a marginal increase of bT+1

relaxes this constraint at T + 1 yielding a gain of λo (1− ηc)Rx, while tightening this constraint at T + 2 with a

loss of λoβψ(ρo)ψ−1(1− δk + F ok ) (recall that ρo1 is multiplied by βψ(ρo)ψ−1 in the expression of dvT /dbT+1). Since

(1− ηc) = βψ(ρo)ψ−1, the comparison of these two reduce to the comparison between Rx and (1− δk + F ok ).
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1.4 Proof of Proposition 5

The Lagrangean for problem (33), using (12) and (14) to substitute for ρt+1 and ηc,t, is

v0 +
∞∑
t=0

λvt

{
(1− β)ψ + βψρR(bt, bt+1, (1− β)ψv1−ψ

t )ψ−1vψ−1
t+1 − v

ψ−1
t

}
.

The first-order condition with respect to bt+1 is then

λvtβ
ψρψ−2

t+1 ρ2,t+1v
ψ−1
t+1 + λvt+1β

ψρψ−2
t+2 ρ1,t+2v

ψ−1
t+2 = 0, (49)

where ρt+1 ≡ ρR(bt, bt+1, ηc,t), ρ2,t+1 ≡ ∂ρR(bt, bt+1, ηc,t)/∂bt+1, and ρ1,t+2 ≡ ∂ρR(bt+1, bt+2, ηc,t+1)/∂bt+1.

The first-order condition for vt+1 is

λvtβ
ψρψ−1

t+1 v
ψ−2
t+1 + λvt+1β

ψρψ−2
t+2 ρηc,t+2(1− β)ψ (1− ψ) v−ψt+1v

ψ−1
t+2 − λ

v
t+1v

ψ−2
t+1 = 0, (50)

where ρηc,t+2 ≡ ∂ρR(bt+1, bt+2, ηc,t+1)/∂ηc,t+1.

In a steady-state equilibrium, equation (49) reduces to

ρ2 +
λvt+1

λvt
ρ1 = 0 (51)

and equation (50) to

λvt+1

λvt
= βψρψ−1

(
1− βψρψ−1(1− β)ψ (1− ψ)

ρηcv
1−ψ

ρ

)−1

, (52)

where the term in parenthesis captures the effect on ρ of the change in the savings rate, given by

the second term in (50), which only arises (as we saw in foonote 23) when debt is nonzero.

By a similar argument to the one in the proof of Proposition 4 above, at a steady state equilib-

rium the derivative of ρR with respect to b and b′ satisfies

−ρ
R
1

ρR2
=

1− δk + Fk
(1− ηc)Rx

=
1− δk + Fk
βψρ̃ψ−1Rx

, (53)

where, for the second equality, we used again (14), ηc = (1− β)ψ v1−ψ, and constraint (12), vψ−1 =

(1− β)ψ + βψρ̃ψ−1vψ−1, of problem (33).

Combining (51)-(53) and using again (14), yields the claimed result:

Rx = (1− δk + Fk)
[
1− (1− ψ)βψρψ−2ρηcηc

]−1
.
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2 Exogenous government purchases

Here we extend our analysis to the case where the public expenditure policy is specified in terms

of an exogenous sequence of absolute levels of expenditure {Gt}∞t=0 (rather than per unit of total

wealth). We will obtain conditions characterizing the Ramsey steady state which are analogous

to those obtained in Proposition 5 and Corollary 6. Hence, also in the case of exogenous Gt, the

capital income tax rate must be positive in the long run, as long as the effect on the saving rate is

small enough.

When the sequence {Gt}∞t=0 is exogenously given, we can no longer use the recursive approach

followed in the paper to solve the Ramsey problem in the case where {gt}∞t=0 is exogenously given.

We solve instead the problem in a more direct way. Given X0 and b0, the Ramsey problem consists

in the maximization of v0 with respect to {bt+1, Xt+1, vt+1, r̃t+1, w̃t+1}∞t=0 subject to

vψ−1
t = (1− β)ψ + βψρψ−1

t+1 v
ψ−1
t+1

Gt+1

Xt
+ (1− δk + r̃t+1)bt = (1− ηc,t)Rx,t+1bt+1 + F (kt, ht)− r̃t+1kt − w̃t+1ht

Xt+1

Xt
= (1− ηc,t)Rx,t+1,

where ηh,t, ηc,t, ρt+1, Rx,t+1, kt, and ht are the following functions of r̃t+1, w̃t+1, bt, and vt:

ηh,t = ηh(r̃t+1, w̃t+1) ≡ arg max
ηh

ρ(r̃t+1, w̃t+1, ηh),

ρt+1 = ρ(r̃t+1, w̃t+1) ≡ max
ηh

ρ(r̃t+1, w̃t+1, ηh),

Rx,t+1 = Rx(r̃t+1, w̃t+1) ≡ (1− δk + r̃t+1)(1− ηh(r̃t+1, w̃t+1)) + (1− δh + w̃t+1)ηh(r̃t+1, w̃t+1),

ηc,t = ηc(vt) ≡ (1− β)ψ(vt)
1−ψ,

kt = k(r̃t+1, w̃t+1, bt, vt) ≡ (1− ηc(vt))(1− ηh(r̃t+1, w̃t+1))− bt,

ht = h(r̃t+1, w̃t+1, vt) ≡ (1− ηc(vt))ηh(r̃t+1, w̃t+1),

The Lagrangean for this problem is then:

v0 +

∞∑
t=0

[
λv,t

{
(1− β)ψ + βψρ(r̃t+1, w̃t+1)ψ−1vψ−1

t+1 − v
ψ−1
t

}
+ λb,t

{
[1− ηc(vt)]Rx(r̃t+1, w̃t+1)bt+1 + F [k(r̃t+1, w̃t+1, bt, vt), h(r̃t+1, w̃t+1, vt)]

− r̃t+1k(r̃t+1, w̃t+1, bt, vt)− w̃t+1h(r̃t+1, w̃t+1, vt)−
Gt+1

Xt
− (1− δk + r̃t+1)bt

}
+ λx,t

{
[1− ηc(vt)]Rx(r̃t+1, w̃t+1)− Xt+1

Xt

}]
.
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The first order conditions for vt, bt, and r̃t+1 are so, respectively,24

0 = −λv,t
vψ−2
t

ψ − 1
+ λv,t−1

βψ

ψ − 1
ρψ−1
t+1 v

ψ−2
t+1 (54)

+ λb,tη
′
c(vt)

{
−Rx,t+1bt+1 − Fk,t(1− ηh,t)− Fh,tηh,t + r̃t+1(1− ηh,t) + w̃t+1ηh,t

}
− λx,tη′c(vt)Rx,t+1,

0 = λb,t−1(1− ηc,t−1)Rx,t − λb,t(1− δk + Fk,t), (55)

0 = (ψ − 1)λv,tβ
ψρψ−2

t+1 ρr,t+1v
ψ−2
t+1

+ λb,t

{
(1− ηc,t)Rx,r,t+1bt+1 + Fk,tkr,t + Fh,thr,t − kt − r̃t+1kr,t − w̃t+1hr,t − bt

}
+ λx,t(1− ηc,t)Rx,r,t+1, (56)

where η′c(vt) ≡ dηc(vt)/dvt, Fk,t ≡ ∂F (kt, ht)/∂kt, Fh,t ≡ ∂F (kt, ht)/∂ht, ρr,t+1 ≡ ∂ρ(r̃t+1, w̃t+1)/∂r̃t+1,

Rx,r,t+1 ≡ ∂Rx(r̃t+1, w̃t+1)/∂r̃t+1, kr,t ≡ ∂k(r̃t+1, w̃t+1, bt, vt)/∂r̃t+1, and hr,t ≡ ∂h(r̃t+1, w̃t+1, vt)/∂r̃t+1.

Assuming that Gt grows at an exogenous, constant rate γG > 0, we focus again our attention

on a steady state (balanced growth path) where all the variables in equations (54)-(56) remain

constant, except for the Lagrange multipliers, λv,t, λb,t, and λx,t that grow at the same rate:

λv,t
λv,t−1

=
λb,t
λb,t−1

=
λx,t
λx,t−1

≡ γλ.

Since ρ is constant we have v = (1− β)ψ/(1− βψρψ−1). Also, ηc = (1− β)ψv1−ψ, and so

βψρψ−1 = 1− ηc.

It then follows from equation (54) that, along a balanced growth path,

λv,t
λv,t−1

= (1− ηc) + Λη′c(v),

where Λ is the term

Λ ≡ ψ − 1

vψ−2

[
λb,t
λv,t−1

{
−Rxb− Fk(1− ηh)− Fhηh + r̃(1− ηh) + w̃ηh

}
− λx,t
λv,t−1

Rx

]
,

a constant given the fact that all Lagrange multipliers grow at the same rate.

We can then use equation (55) to derive the following steady-state condition which is the coun-

terpart of the one in Proposition 5:

Rx = (1− δk + Fk)

[
1 +

Λη′c(v)

1− ηc

]
. (57)

24To derive the steady state condition determining the tax rate on capital we do not have to use the first-order

conditions with respect to w̃t+1 or Xt+1. But, of course, we would need those conditions to derive all the steady state

equilibrium variables.
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Just as in the case of a constant, exogenously given level of g, this condition implies that at a

Ramsey steady state the average rate of return on consumers’ portfolios, Rx, is equal to the before

tax return on physical capital (or equivalently the cost of government debt), 1−δk+Fk, augmented

with the effect of public debt on the saving rate, Λη′c/(1− ηc). As long as the latter effect is small,

we get again Rx ≈ 1 − δk + Fk, which implies that the optimal capital tax rate is positive in the

long run: τk > 0.

When ψ = 1, again the effect on the saving rate valishes, so that condition (57) reduces to

Rx = 1− δk + Fk,

which is identical to the condition derived in Corollary 6.

3 Algorithm to solve the model numerically

The Ramsey equilibrium for our model can be computed in a straightforward way. The function

ρR(b, b′, ηc) is computed as the solution to the maximization problem defined in (32). Then the

steady state value of b is obtained by solving equation (37).

The transitional dynamics is computed for the calibrated economy where ψ = 1. In this case ηc

is constant, so the function above can be written simply as ρR(b, b′) and (30) simplifies to

ln(v0) =
∞∑
t=0

βt+1 ln(ρt+1).

In the dynamic programming formulation, the Ramsey problem (33) can be written as

ln v(b) = max
b′

β ln ρR(b, b′) + β ln v(b′).

This problem is solved by discretizing the state space and by the value function iteration.
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