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timeseriesdb: Manage and Archive Time Series Data

in Establishment Statistics with R and PostgreSQL

Matthias Bannert
KOF Swiss Economic Institute, ETH Zurich

Abstract

timeseriesdb is an R package which suggests a PostgreSQL database structure to store
time series alongside extensive multi-lingual meta information and provides an R database
interface including a web based GUI. The timeseriesdb package was designed to handle
time series in establishment statistics. Information such as the GDP or data stemming
from the aggregation of economic surveys is typically published on a monthly, quarterly
or yearly basis. Hence the package is optimized to handle a large amount of different time
series as opposed to managing a smaller number of high frequency time series such as real
time data obtained from measuring devices. The particular focus of timeseriesdb is to help
the user find and extract a particular set of information within a larger set of information.
The timeseriesdb package intends to provide the infrastructure for a time series catalog
as opposed to handling time series operations on database level. The underlying structure
relies on PostgreSQL’s hstore data type which allows to store an array of key-value pairs
in a single cell. The hstore data type is not only used to reduce the number of records by
storing an entire time series in a single record but also to store a record specific amount
of multi-lingual meta information items flexibly.

Keywords: time series, data management, relational database, establishment statistics, official
statistics, hstore, NoSQL, economic data, reproducible research, R, PostgreSQL.
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1. Introduction1

Time series data are used in a plethora of research fields from ecology to econometrics. Thus
the R Language for Statistical Computing provides a broad variety of time series related
functionality already in its basic setup. In addition, a large number of extension packages
can be downloaded from CRAN to meet heterogenous demands. Also, the R community
provides a CRAN Task View (CTV) entirely dedicated to time series2. While most packages
are designed to handle times and dates, seasonality, stationarity, unit roots, cointegregation,
define time series classes, do forecasting and modelling, frequency analysis, decomposition and
filtering or resampling, packages that actually aim at archiving time series are rather scarce.
This can be regarded as a shortcoming of the R ecosystem so far as archiving particular
versions of time series can be crucial for reproducibility of publications.

Though it is suitable for most researchers to store time series in R’s own .RData format or
to use standard flat files formats like .csv or .dif it is not sufficient to manage larger archives
of several hundred million time series. Yet already at a much smaller amount of time series
researchers can profit from storing and managing data in a relational database. Databases
are designed to find a particular set of information within a larger set of information. Also
relational databases provide the opportunity to add further information that relates to one or
more sets of information. In order to effectively make use of information stored in a relational
database from inside an R session the common database interface R package DBI (Databases
2014) can be used. A connection to directly query the database can then be set up using the
database management system (DBMS) specific package, e.g. RpostgreSQL (Conway et al.
2013) or ROracle (Denis Mukhin and Luciani 2014).

However, these basic interfaces do not provide a higher level interface in the sense that they
map R classes such as ts for time series to the database tables and vice versa. Rather these
packages can be used to write SQL queries as character strings and send them as queries
to the database. Typically, results are returned as standard R data.frames. Built on top
of the interface described above, the pionieering TSdbi (Gilbert 2013a) package along with
a family of corresponding DBMS specific packages such as TSMySQL (Gilbert 2013b) or
TSPostgreSQL (Gilbert 2013c) have adressed the need to conveniently map R time series
objects to relations in a database.

This paper introduces timeseriesdb (Bannert 2015) and suggests an alternative approach
to store and manage time series data in a relational database. The timeseriesdb package
distinguishes itself from existing packages by two factors in particular: First, an entire time
series is stored in a single table cell as opposed to storing one record per observation. This
reduces the number of records substantially, particularly for high frequency data and long time
series. Second, timeseriesdb enables users to store extensive meta information in multiple

1I would like to thank Jan-Egbert Sturm, Ulf-Dietrich Reips and Klaus Abberger for their great support
of my work in between the fields of economics, psychology, statistics and software development. I also would
like to thank the participants of the Webdatanet Conference for helpful remarks as well my colleagues Andreas
Dibiasi, Dirk Drechsel and Pauliina Sandqvist for fruitful discussions, their testing efforts and feedback. I am
thankful to Ioan Gabriel Bucur and Charles Clavadetscher for their valuable contributions and code reviews.
I would also like to thank Craig Ringer for his insights on concurrent database inserts. Further I am thankful
to the participants of the Webdatanet Conference in Salamanca for their valuable comments. This working
paper version uses a modified version of the JSS Rmarkdown template by Achim Zeileis.

2CTVs monitor, describe and summarizes R packages in a particular field. The CTV for time series analysis
is maintained by Rob J. Hyndman and can be found at http://cran.r-project.org/web/views/TimeSeries.html.
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languages. Also the amount of translated meta information items may vary from record to
record. Furthermore, timeseriesdb strives to optimize query time when reading from the
database or writing to it.

The subsequent chapter continues to further motivate the use timeseriesdb particularly in con-
text of reproducible research and archiving data alongside corresponding meta data. The re-
mainder of this paper is structured as follows: The third chapter covers data storage in greater
detail and eloborates on the relational structure of the underlying PostgreSQL database. The
fourth chapter gives an overview of the mapping functionality of timeseriesdb and shows how
R objects are mapped to database relations. Chapter five provides applied code examples to
illustrate basic features such as reading and writing from the database. Besides the web-based
graphical user interface is introduced. Finally the paper is concluded and an outlook to future
releases is given.

2. Motivation

Originally designed to archive economic survey data on the aggregated level, timeseriesdb is
well suited to handle any kind of official statistics time series with a monthly, quarterly or
yearly release cycle. Establishment statistics are often shared on the aggregated level only,
because micro level data – i.e. company or household level data is sensitive. If data is not
shared at the micro level and time series cannot be reproduced by the recipient, proper meta
information becomes particularly crucial. Against the background of the ongoing development
in reproducible research (Koenker and Zeileis 2009) the ability to trace data back to their
provider and to describe data extensively becomes a central aspect of an empirical researcher’s
work3. McCullough and Vinod (2003) check five years of American Economic Review articles
that involve non-linear solvers for their authors’ efforts to verify solutions provided by their
respective software package. Despite the fact that previous research (Stokes 2004) had pointed
out issues to reproduce even top contributions of the profession that involve non-linear solvers,
McCullough and Vinod (2003) does not find a single author who reports some kind of efforts to
verify results produced by statistical software that involves non-linear solvers. Consequently
McCullough and Vinod (2003) claims that policies yet alone are not sufficient and only both,
data and code archives can ensure reproducibility of empirical economic research. When
reproduction problems occur at a later stage solid code and data archives are mandatory to
trace back results and circumstances of the data generating process.

McCullough (2009) shows an overview of economic journals that have made data and code
archives mandatory since 1990. By today, the list includes top journals of the economic pro-
fession like the American Economic Review (AER) which introduced their archive ten years
ago in 2004. Also more recently Reproducible Research has experienced yet another push
with the R community at the forefront: particularly the knitr package (Xie 2015), (Xie 2013),
(Xie 2014) and rmarkdown (Allaire et al. 2014) are widely used to create documents dynam-
ically from text, code and data. Gandrud (2013) provides a summary on creating dynamic
documents with R including application examples. However, with a reproducible approach to
generate reports and research papers, data descriptions can also be loaded dynamically if com-
prehensive meta information is available. In this context of archiving data and reproducing

3Buckheit and Donoho date the origin of the reproducible research movement back to Stanford geophysicist
Jon Clearbout, quoting his claim that the scientific publication is not the scholarship but rather its advertising.
Consequently he claims that software is the actual scholarship in a computing driven research project.
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research documents Leeper (2014) expresses the need for services that offer data with sophis-
ticated meta data support. Hence the motivation to create timeseriesdb came in large parts
from the intention to design a time series archive that allows to store comprehensive meta
information and make this information available in context of a dynamic process such a creat-
ing reproducible documents with knitr or rmarkdown. Also, multi-lingual meta information
should help to find data and thus foster global exchange of time series information. This meta
information also becomes important when storing time series information that potentially has
multiple versions (vintages). National Accounts and GDP time series for example are subject
to revisions (Shrestha and Marini 2013),(Branchi et al. 2007) and thus it is important to
know which version of time series was used in research or forecasting exercises. The ability of
timeseriesdb to store extensive meta information and make it available in the context of the
computational process helps to avoid confusion of series as users can label and select series
dynamically. With its license cost free open source components, light weight architecture and
low maintenance costs timeseriesdb is designed to also suit smaller data providers4.

Another important aspect that motivated the development of timeseriesdb is its explicit
focus on archiving. While other approaches such as druid (Yang et al.) often execute adhoc
computation on database level at query time, timeseriesdb leaves time series operations to
R and packages that were explicitly designed to process time series. Time series in official
statistics can often be the result of complex or computationally intensive processes such as
hierarchical aggregation schemes or seasonal adjustment which use specific software. Seasonal
adjustment for example, is most often done with the U.S. Census Bureau’s X13-ARIMA-
SEATS Fortran program. The seasonal package (Sax 2014) provides the opportunity to use the
Census Bureau’s software from within R. Furthermore R reads numerous foreign file formats,
e.g. using foreign (R Core Team 2015) or R.matlab (Bengtsson 2015) and offers interfaces
to various standard software packages as well as to domain specific software. Thus R can
be used as a flexible interface between other software and the archive database suggested by
timeseriesdb. In other words timeseriesdb explicitly focuses on storing pre-computed time
series and providing a data catalog while avoiding the need for comprehensive SQL knowledge
from the user.

4Please find installation and setup instruction for the database in the appendix of this paper.



KOF Working Paper Series 5

3. Data Storage

This chapter covers the relational structure of the PostgreSQL database that is used in time-
seriesdb. Figure 1 provides an overview of all tables and views used in the database schema.
The following sub chapters explain the details of storing time series records as well as corre-
sponding meta information.

Figure 1: Overview: Relational Structure

3.1. Data: Time Series Records

The time series records are stored in a simple three column table called timeseries main.
While the unique identifier of the record as well as the frequency of the time series are stored
are stored as standard varchar and integer data types respectively, the time series are stored
in the PostgreSQL specific hstore format. The hstore data type stores key-value pairs in a
single table cell. In the case of time series the date is regarded as the key while the actual
value represents the value of the pair. By using hstore an entire time series can be stored in a
single row and does not need to be stored in an one-row-per-observation format. PostgreSQL
provides functionality to access hstore keys inside a row to extract specific parts of the series.

In order to facilitate access timeseriesdb provides a view5 called v timeseries json which casts
data into the popular, more standard JSON 6 format. JSON allows for nested structures and
thus an entire time series record, that is key, frequency and time series data itself, can be cast
into a single JSON entry. With the help of this JSON based view reading time series into R
could be speeded up substantially compared to using multiple select statements or splitting
results of a single call on the R level 7. On the R level timeseriesdb makes use of RJSONIO

5Views are basically stored select statements in SQL.
6JavaScript Object Notation.
7see Appendix ’benchmarks’ for a detailed summary on the reading speed.
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(Lang 2014) to process JSON.

3.2. Meta Data: Localized and Unlocalized information

While the hstore format implements non-relational concepts inside a relational database, meta
information is stored in separate relations and linked to the main records. timeseriesdb uses
two tables to store meta information: the table meta information unlocalized is structured to
store meta information that is not translated such as usernames or time span of coverage. The
second meta information table, namely meta information localized holds meta information
that could be translated. Information such as wording of questions in survey based time
series or elaborate descriptions are stored in the latter table. Again the hstore format is used
in both tables to allow for a flexible amount of meta information for each record. For example
some record may have a meta description in French, German and English while another
record only contains German and English meta information. Using hstore this situation can
be covered in a single table without storing empty values.

3.3. Storing Sets of Time Series

The second helper table called timeseries sets allows users to store a set of time series keys
under a setname (varchar). This can be helpful when users return regularly to retrieve updates
of the same series at a later stage. The table timeseries sets will also store the username as
a varchar and the current timestamp at the time of storage. The set of keys itself is stored
in the hstore format with the time series key being the key and the type of key being the
value. This allows to use other keys than the primary time series key, e.g. meta information,
to identify the time series that belong to a set. In addition a set description can be added as
varchar and the active flag can be used to deactivate respectively activate an existing set.

4. Mapping SQL relations to R objects

The focal functionality of timeseriesdb is to map R objects to database relations and vice
versa. In general time series are identified by an unique primary key. Hence this chapter
introduces the most important functions to perform the object - relational mapping between
R and PostgreSQL based on identification by an unique time series key8:

readTimeSeries()

readMetaInformation()

storeTimeSeries()

storeMetaInformation()

createMetaDataHandle()

createHstore()

4.1. Function Overview

As its name suggests, the first function reads the time series itself from the database by its
key and returns a list that contains at least one R object of class ts. The function readMetaIn-

8For more detailed information see the code examples in the next chapter.
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formation reads meta information from the database given unique identification of time series
and returns an environment which contains meta information. This environment holds meta
information objects named like the corresponding time series records. By using a separate
environment objects can have the same name as the corresponding time series and are thus
easy to link. Also the resulting meta information environment can be updated by further
calls of readMetaInformation at a later stage.

Similarily storeTimeSeries stores time series that reside in an R environment or list to the
database. Again, a character vector containing time series names can be passed to storeTime-
Series. The function storeMetaInformation works analogously to the readMetaInformation
as it reads meta information from a specified environment and stores them to the database.

The second but last in the list of functions presented above is less essential but provides an
easy way to create convenience operators. These operators help to look up the database using
regular expressions. The code chunk below shows a general example of a pre-defined operator
that works with the main tables fixed primary key ts key.

con %k% 'ts[1-9]{1}$'

The object con is a PostgreSQL connection object and character string is a regular expression
pattern. In this example the pattern matches all keys ∈ ts1, ..., ts9. The %k% operator
searches the main tables keys for all records that fit the expression and returns a list of time
series that matched the query. Such an operator is easy to pre-define because the primary key
is fixed and typically not changed by the user. However, querying meta information is very
different because users define the amount of meta information keys and their names. Thus
timeseriesdb provides a function to create such operators for flexible keys.

"%lk%" <- createMetaDataHandle("legacy_key")

con %lk% 'old_key[1-9]{1}$'

The example above assumes that there is a meta information field for legacy keys. This means
that at least one hstore record contains a key called legacy key. After the corresponding
operator is created, the operator can be used just like the operator in the fixed key example
presented above. Note that, the operators created by createMetaDataHandle reside in the
global environment as opposed to the namespace of the package and are thus removed when
the global environment is cleared, e.g. by rm(list=ls()). The last function in the list, namely
createHstore is a method typically not used by the user but is a helper function which is
crucial and often used in the mapping process. The function uses the PostgreSQL function
hstore to create key value pairs from different types of R objects. As of version v0.21 of
timeseriesdb methods for classes ts, data.frame and list exists. It is important to understand
that hstore does not understand nested formats. Hence the input is limited to simple, unnested
data.frames and lists

5. Code Examples

The core functionality of timeseriesdb is to read and write time series data and their cor-
responding meta information into a PostgreSQL database using R. The following examples
illustrate this basic functionality step by step and continue to describe convenience functions
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such as plotting a list of time series. For the subsequent examples to work a database con-
nection to a database that contains a schema called timeseries with the relations suggested
by timeseriesdb is needed. SQL statements for a first time set up of all necessary relations,
functions and triggers can be found in the inst/sql folder of timeseriesdb9.

The database connectivity of timeseriesdb depends on the R packages DBI (Databases 2014)
and RPostgreSQL (Conway et al. 2013)10. The timeseriesdb package comes with a conve-
nience function createConObj to create a PostgreSQL connection object. The createConObj
function expects several connection parameters which can be either directly passed to the
function or stored as constants using Sys.setenv. The advantage of using the system environ-
ment as opposed to any object in R’s global environment is that is not affected by clearance of
session memory. If the database connection does not change regularly it can be attractive to
store the host name, database name and schema either in a global or user specific .Renviron
file. User .Renviron files are typically located in the user’s home directory.

library(timeseriesdb)

# set database name

Sys.setenv(TIMESERIESDB_NAME = "sandbox")

Sys.setenv(TIMESERIESDB_HOST = "localhost")

Sys.setenv(TIMESERIESDB_SCHEMA = "timeseries")

con <- createConObj(passwd = "")

The local example database used in this paper does not use a password. Obviously this is not
suitable for most production use cases. If password protection is desired, entering passwords
interactively should be preferred over storing password in text files. R Studio provides the
opportunity to use its interface to make use of an interactive passwords prompt that hides the
password from the screen. Figure 2 shows R Studio’s password dialogue. Also note that the
user is taken from Sys.info and needs to specified separately as an argument of createConObj
if the database user deviates from the system user.

9Further installation notes can be found in the appendix of this paper.
10We will closely monitor the development of RPostgres which is currently being developed by Hadley

Wickham, but is not an official CRAN package yet. It also relies on DBI but has a different design approach.
The Rpostgres packages might be an alternative to implement database connectivity or could also be supported
additionally.
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Figure 2: R Studio Password Prompt

5.1. Write Time Series to Database

In order to demonstrate writing to the database, a set of 100 random time series is created
first. The created time series are of R’s standard time series class ts. All time series are
generated using a random normal and resulting series are stored in a list. List elements are
named with a unique, sequential identifier.

# set a seed to make

# the result fully reproducible

set.seed(123)

nms <- paste0("ts",1:100)

ts_list <- lapply(nms, function(x) ts(rnorm(50),

start = c(1998,1),

frequency = 4))

class(ts_list[[1]])

[1] "ts"

names(ts_list) <- nms

The function to actually store R time series objects to the database is storeTimeSeries. It takes
names of time series as arguments and searches for corresponding time series in an environment
or list. For performance reasons the function storeTimeSeries has been optimized to only use
one single SELECT statement to store multiple series. Thus the user should avoid looping over
storeTimeSeries respectively not use apply family functions with storeTimeSeries. Rather a
vector of time series names should be passed to the storeTimeSeries when multiple series
should be stored.

storeTimeSeries(nms,con,li = ts_list)

[1] "100 data and meta data records written successfully."
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As the output from storeTimeSeries shows, information is stored to the main time series
table as well as to meta information table. When a time series record is stored, a minimal
amount of meta data is stored to the unlocalized meta information table. These data are user
information, time and timespan covered by the time series. All of this information can be
derived from the storage process or the time series itself. Figure 3 shows a PostgreSQL client
window with a query on the main time series table displaying one of the test time series.
Figure 4 shows the corresponding minimal meta information that is generated with the initial
storage process.

Figure 3: PostgreSQL Client: A Time Series Record

Figure 4: PostgreSQL Client: A Meta Information Record
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5.2. Read Time Series From the Database

The corresponding function to read time series from the database is called readTimeSeries.
Analogously to storeTimeSeries, readTimeSeries takes a vector of time series keys and a
connection object as its minimal arguments11.

# clear the memory

rm(list=ls())

con <- createConObj(passwd = "")

results <- readTimeSeries(c("ts1","ts2","ts3"),con)

# note the class of results

class(results)

[1] "list" "tslist"

Note that readTimeSeries always returns a list of time series, no matter how many elements
different from zero (i.e. time series) are actually returned. Again, readTimeSeries has been
optimized for bulk loading a large amount of time series from the database. Hence multiple
SELECT statements are avoided by the function as it allows to process a vector of time series
keys directly. In turn the user should not use readTimeSeries in loops or apply constructions12.

5.3. Adding and Reading Elaborate Meta Information

Meta information can either be added on data base level or using R. When adding compre-
hensive meta information timeseriesdb distinguishes between meta information that cannot
be translated (e.g. username or timestamps) and meta information that is typically translated
(e.g. a spoken meta description). In both cases timeseriesdb uses the flexible hstore format
again. The use of hstore enables timeseriesdb to store a different amount of meta information
for every record without having to create empty data cells in a rectangular data format for
those records that do not have a particular type of meta information.

While a minimal amount of meta information has been stored when a time series record itself
was stored, users can add further localized and unlocalized meta information to the database.
First the code chunk below shows how to add additional meta information without a specific
locale The basic idea is to generate a separate environment that holds all unlocalized meta
information while the time series may reside in the .GlobalEnv or any other environment
distinct from the meta environment. Meta information is meant to have the same object
name as the corresponding time series.

# add seed info that was

# used to create the series and some legacy id

meta_ts1 <- list(seed = 123,legacy_key = 'series1')
meta_ts2 <- list(seed = 123,legacy_key = 'series2')

11This document has been created using the knitr (Xie, 2015) package for reproducible research. All code
chunks in this paper are executed during compile of the document. Thus objects are removed from R’s session
memory to truly illustrate interaction with the database.

12For a more detailed insight on query performance, see Appendix: Query Benchmarks.
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meta_unlocalized <- addMetaInformation("ts1",meta_ts1)

addMetaInformation("ts2",meta_ts2,meta_unlocalized)

x contains 2 meta information object(s).

The same function can be used in analogous fashion to create an enviroment that holds
localized meta information. The following example adds English meta information to the
time series ts1. Note that the locale argument of addMetaInformation defaults to NULL and
thus only needs to be set when localized meta information is added.

en <- list('short_description' = 'Random Series',
'full_description' = 'Random Time Series generated

from a Standard Normal using seed 123.'
)

meta_en <- addMetaInformation('ts1',en)
meta_en$ts1

$short_description

[1] "Random Series"

$full_description

[1] "Random Time Series generatedrom a Standard Normal using seed 123."

attr(,"class")

[1] "miro" "list"

In both cases meta information is stored in separate R environments. In a second step we can
store all records contained in these environments to the database as shown in the following
code chunk.

# store localized Information

storeMetaInformation("ts1",con,locale = "en",

lookup_env = "meta_en",overwrite = T)

[1] "en meta information successfully written."

# store unlocalized information

storeMetaInformation("ts1",con,tbl ="meta_data_unlocalized",

"meta_unlocalized",

locale = NULL,

overwrite = T)

[1] " meta information successfully written."
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Similarily, meta information can be read from the database into an R session. Loading meta
information is done explicitly because meta information should not be implicitly loaded into
the R session when reading in time series. Also, users should be able to vary the amount of
meta information that is loaded into context. Depending on the different use cases such as
batch processing or exploratory data research a different amoung of meta information may
be desired. Thus reading meta information is separated from reading data.

m_unlocal <- readMetaInformation('ts2',con,NULL,tbl = "meta_data_unlocalized")

m_local <- readMetaInformation('ts1',con,"en")
m_unlocal$ts1 #$

NULL

m_local$ts1 #$

$full_description

[1] "Random Time Series generated from a Standard Normal using seed 123."

$short_description

[1] "Random Series"

attr(,"class")

[1] "miro" "list"

Meta information can be used to label figures and tables dynamically. Figure 5 shows a time
series plot with a dynamically created title loaded from a PostgreSQL database.

plot(results$ts1, main = m_local$ts1$short_description)

5.4. Plot a List of Time Series

The timeseriesdb package will return a list of time series to the R session when the database
is queried for time series records. Because base R does not provide a function to plot a list
of time series out of the box, timeseriesdb comes with a convenience method that accepts
a list with the additional class ‘tslist’ containing one or more elements of class “ts”. Thus
timeseriesdb functions that return lists of time series, namely the readTimeSeries as well
as the quick handle operators presented in chapter 4, add the class attribute ‘tslist’ to the
returned list. Thus the user can simply use

plot(results)

to plot all time series contained in such a list. The dimensions and axes will automatically
created to suit all series. Internally, the canvas is built using the most extreme values out of
all time series. Subsequently further series are added using the basic lines command. Figure
6 shows a list of time series plotted using the tslist method for plot.
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5.5. Data Explorer

Another way to explore the content of a timeseriesdb based database is the data explorer.
The data explorer is a simple web based graphical user interface (GUI) based on the popular
shiny (Chang et al. 2015). Users can skim data interactively given a database connection. To
start the GUI, run the code shown below, where con is a valid PostgreSQL connection object.

exploreDb(con)

Once the GUI has started up, the user has three options to query the database using the GUI:
A Key Based Query lets the user look for matches with either the time series’ primary key
or within fixed meta information keys. The latter can be a relevant alternative when short
cut aliases or legacy keys are used. The second option is to query localized meta information.
Third, users can load pre-defined sets of time series that they had stored previously. In any
case all query types return zero or more time series keys. Figure 7 shows the tab to build
queries.

Figure 7: Web based Data Explorer: Build Queries

After creating a valid query, the user may switch to the Plot and Export tab and select those
series that should be plotted, exported or saved in a set. After a selection is made, the keys
of the selected series can be stored under a set name. By doing so, the set will be stored to
the database and can be loaded again at a later stage. Also, time series can be exported as
.csv files in either wide or long format. Also selected series will immediately plotted below to
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give users an overview of the selected series. Note that, R’s own localhost that hosts the shiny
based data explorer and needs to be stopped if the user wants to go back to R’s interactive
console. Otherwise a separate R session needs to be started. Figure 8 shows the Plot and
Export tab.

Figure 8: Web based Data Explorer: Plot and Export

6. Conclusion and Outlook

Though a brief paper cannot cover all details of timeseriesdb’s functionality, the general idea
and core functionality has been presented in the previous chapters: timeseriesdb is a package
to manage and archive time series data along with comprehensive meta information. Us-
ing R and PostgreSQL the closest existing CRAN package is TSPostgreSQL. Besides queries
optimized for bulk storage and the use of the hstore data type, the main distinction of time-
seriesdb from TSPostgreSQL is its support for extensive meta information. Using different
storage types and optimizing queries comes at the cost of not being able to flexibly switch
the DBMS like the TSdbi package family does (e.g. to MySQL), but PostgreSQL’s advanced
and comprehensive approach is worth the loss of this particular flexibility.

Designed to bridge the gap between domain specific computation and archiving data, time-
seriesdb makes use of R’s ability to handle numerous foreign data formats and to provide
interfaces to many software packages including most standard relational DBMS. timeseriesdb
aims at researchers who intend to use their own domain specific software package as opposed
to implementing computation on the database level. Thus an important part of timeseriesdb’s
future development strategy is to move SQL code that resides in R functions to the SQL level.
Placing query code inside SQL functions will foster the development of interfaces to other
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software packages but R. Though additional functionality such as plotting or merging time
series will only be available in R using SQL functions will open up timeseriesdb to a broader
audience whose software can connect to SQL databases. Further, upcoming extenstions will
continue to increase the support for a broader variety of frequencies including irregular time
series. While this is basically possible with the current database structure already, future
version will explore the use of zoo (Zeileis and Grothendieck 2005) and xts (Ryan and Ulrich
2013) as a general time series representation on the R level instead of R’s basic ts class.

Thanks to advances in development of technologies that bring R to web servers, extending
timeseriesdb’s functionality to create outputs that could be used to provide a web service
seems appealing. Most prominently shiny which has already been used to create the web
GUI inside timeseriesdb, along with shiny server could be used to create such a service. Also
opencpu (Ooms 2014) provides a promising alternative approach that completely separates
concerns and allows users to use functions of their own packages via a web service. In gen-
eral future versions of timeseriesdb will extend the web interface of the package. Particular
attention will be given to functionality such as shopping cart like data bookmarks in order to
provide an infrastructure to host a data service that can be accessed from the web.
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7. Appendix

7.1. Installation Notes

R stable version

The stable version of the timeseriesdb R package itself can be downloaded and installed from
CRAN (R’s official repository). The package source as well as binaries for Windows an OS X
are available from CRAN. The package can be installed following R’s standard procedure to
install packages either by running:

install.packages("timeseriesdb")

or using R’s GUI.

R developer version

The developer version of timeseriesdb can be obtained from github.com/mbannert/timeseriesdb.
The most convenient way to install the latest developer version from inside an R session is to
use the devtools package (Wickham and Chang 2014):

library(devtools)

install_github('mbannert/timeseriesb')

PostgreSQL

However, because timeseriesdb depends on RPostgreSQL to connect to PostgreSQL databases,
the user needs to make sure that the PostgreSQL’s own library and header files are present
and can be found by RPostgreSQL. For Windows, this library called libpq is attached to
the RPostgreSQL package and will thus be installed with the RPostgreSQL package. Hence
Windows users should not experience not experience troubles.

For OS X and Linux the installation is a bit different when libpq is not present. For some Linux
distributions the corresponding library can be obtained with the postgresql-devel package.
Similarly on OS X, the user needs to make sure that libpq is present and can be found
by RpostgreSQL. It is recommend to use the homebrew package manager running brew

install postgresql. OS X and Linux users should note that previously installed versions
of PostgreSQL may not contain the libraries provided by postgresql-devel package.

Database setup

If you do not have a PostgreSQL database that contains a timeseries schema that suits time-
seriesdb, create a schema called timeseries and run setup.sql. The file is located in inst/sql
of your package folder. Start a psql client console from the inst/sql directory and run:

\i setup.sql
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If a you are not familiar with running a PostgreSQL console, copy and paste the content of
that file to the SQL window of your favorite GUI tool, e.g. PGadmin and run it.

7.2. Benchmarks

Because timeseriesdb aims at storing a large number of time series, it is likely that time-
seriesdb is used in bulk processes such reading thousands of time series into an R session,
process them in R and write results back to the database. At this amount the speed of read-
ing and writing to the database can become a substantial part of a process’ runtime. Thus
timeseriesdb strives to speed up reading and writing. The benchmark example shown in table
1 compares three different ways to read from the database.

test replications elapsed relative

1 lapply(paste0(”ts”, 1:100), loopRead, con = con) 100 79.38 15.41
2 readAndSplit(paste0(”ts”, 1:100), con) 100 21.51 4.18
3 readTimeSeries(paste0(”ts”, 1:100), con) 100 5.15 1.00

Table 1: Benchmark: Reading 100 Time Series, 100 replications

The first line shows benchmark results for a simple read function that reads a single time
series from the database given its key. Using a function that reads a single series and loop
over it seems to be the most intuitive solution for most users. However, doing so creates a
new SELECT statement for every query that is executed. Plus, a new database transaction
is started for every iteration. Particularly using multiple SELECT statements slows reading
down considerably. Hence the approach shown in line 2 of the benchmark resolves the hstore
data type and returns all observations from every time series to an R data.frame. Subsequently
this data.frame is split by key and sorted by time using the data.table package (Dowle et al.
2014). The data.table package moves the split operation to C++ mainly and is therefore
able to speed up the read process substantially, but splitting the data by key is still costly.
The third line displayed in the benchmark is the version that is currently used within the
timeseriesdb package. The function readTimeSeries makes use of a view that exposes entire
time series records including key and frequency in a JSON object. Therefore the current read
function only needs one SELECT statement and uses a WHERE IN clause. With the help of
RJSONIO, the JSON objects can be resolved easily without using costly split actions. That
makes the current version more than 15 times faster than the basic solution and still more
than four time faster than having to split the set on R respectively C++ level.
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