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Abstract

The process of land use and land cover changeis closaly related to awide variety of socio-economic
and environmenta issues. Functions of land such as food production, housing, industry and habitat
are in permanent competition, resulting in an optima or suboptima dlocation of land use. At the
sametime, certain land use types are associated with the issue of climate change through carbon
sequestration and the emission of trace gasses. Researchersin these issues have devel oped severd
approaches to modelling the land use allocation process. As each gpproach hasits own benefits and
its specific god, these gpproaches need to be given a postion in the wide fidd of land use moddlling.

This paper describes and compares a number of approaches to the modelling of agricultura land
use. A number of economic gpproaches are described, such as general equilibrium models, discrete
choice models and linear programming model s and models based on heurigtic decison rules. The
gpproaches are compared based on criteria of theoretica foundation and data requirements.

Many models tend to be of ahighly detailed level, while appropriate data for parameterisation of
the modd is often not available. We will therefore demonstrate and compare two
estimation/modelling approaches with an existing data set thet is representative for many spatid data
sets based on census data.

1. Introduction

Land use dlocation is a complex process in which many biophysical and socio-economic factors play
arole. On one hand there is the natural environment, including factors like soil fertility, precipitation
and temperature, which determines loca potentia crop or cattle production or benefits from other
land use types. On the other hand, socio-economic factors like crop prices, income, government
policy, employment and technologica development play arole, that influences the potentia gains
from dternative land uses. It is dear that modelling and analysing such a complicated system requires
understanding of both natural and socid sciences.

Theissue of land use change has been studied with regard to topics such as deforestation
(Angdsen and Kaimowitz, 1997;Kaimowitz and Angelsen, 1998;Chomitz and Gray, 1996),
development policy (Schipper et d., 1998), naturd resource management (Van De Putte, 1988),
land use planning (Schotten et al., 1997) and environmenta pollution (Jones and O'Neill, 1993).
With regard to globd warming, the modds IMAGE (Alcamo et d., 1994) and CLUE (Vedkamp
and Fresco, 1996) have been developed. IMAGE (Integrated Modd to Assess the Greenhouse
Effect) isamultidisciplinary, integrated modd to smulate the dynamics of the globa society-
biosphere-climate system. The CLUE modd (Converson of Land Use and its Effects) has so far



been used to analyse land use/cover change on anationa or regiona scale, for various countries and
regionsin the world.

Because of the importance of socio-economic factors, economic theory can offer asignificant
contribution to understanding and modelling the process of land use and cover change. Economic
modelling uses causal relations between economic parameters (prices, technology, demand, etc.) to
congiruct a consstent and reliable representation of the society under investigation. Socio-economic
factors play an important role in the process of land use and land cover change. Spatialy explicit
economic modelling can take account of socio-economic factors explicitly and might be able to
improve the understanding of land use/cover change.

Aim of this study

This paper explores and compares gpproaches to spatia explicit modeling of land use/cover change
based on economic theory. The study is of limited extent and seeks to further integrate biophysica
and economic aspects.

This research aim involves anumber of research questions. First, how does economic theory dedl
with the subject of land use/cover change? How are spatid patterns of land use and their changes
explained? Second, what approaches exist in economics for the modeling and explanation of land
use/cover change? Third, how can economic theory on land use/cover change be incorporated in a
spatidly explicit modeling framework? And fourth, what are the advantages and disadvantages of the
dternative approaches to land use modelling?

Methodol ogy

Answering these questions requires a collection of previous studies and existing models of land
use/cover change, but also the gpplication of moddling approachesin an empirica context. The first
sep in the research was to examine the literature on land use modelling and spatia economics. The
god of this step was to explore and collect different gpproaches to land use modelling, and to
compare these gpproaches on their characterigtics.

In many study aress, the only data available are census data. Unfortunately, these data tend to be
highly aggregated, so that detailed modds need additiona information in order to estimate the
parameters. Therefore, modd parameters have been estimated by means of an existing data set that
is based on census data of Java. The empirica application followed two different approaches,
namely aggregated production function estimation and parameter estimation by means of maximum
entropy econometrics. Each gpproach has its own benefits and drawbacks: in both cases, models
have to be adapted to the data structure and/or the estimation method. Once dl parameters are
estimated the question is whether the models produce redistic results. The model parameterisations
have been usad to Smulate the process of land use dlocation in Java. The results of the smulations
and parameterisations offer gppropriate materia for comparison and evauation of the two
mode ling/parameterisation approaches and to indicate possibilities for further development.

2. Resultsof theliterature study

2.1 Introduction

This chapter discusses the modelling of land use/cover change based on economic theory and
describes earlier sudiesin spatia economic moddling. It starts with agenerd discusson on the
economic approach. From there, a number of earlier studies are described. In the last section of the
chapter, the gpproaches to land use modelling are evaluated.



2.2 Theeconomic approach to land use modelling

According to Hazell & Norton (1986), a sector modd contains, implicitly or explicitly, five
elements. The same five dements can be found in modds of land use/cover change dso: (1) a
description of producer's economic behaviour; (2) a description of currently available and potentia
production functions, or technology sets, now and/or in the future; (3) a definition of the resource
endowments held by each group of producers; (4) a specification of the factor and product markets
and (5) aspecification of the policy environment. One can add two eementsto thislist: (6) a
specification of the time scale and (7) a Specification of the spatia scae.

In most economic models, one assumes that economic subjects, i.e. producers and consumers,
are optimisars, i.e. they maximise or minimise a given variable under given redrictions. This can imply
profit maximisation or cost minimisation, but also the maximisation of utility, in which there can exist a
trade-off between welfare and leisure,

Production functions can take the form of a continuous relation or of a set of production
techniques. One important feeture of the production function is whether the returns to scale are either
diminishing, congtant or increasing. WWhen more than one production factor is used in a production
function (e.g. when production is a function of labour and pesticides), the subgtitution easticity
between production factors becomes important.

The most important resource in land use modelling is land. Land can differ in qudity, depending
on anumber of local circumstances, such as distance from markets (factor markets and product
markets) and suitability for crop production. Land (or rather location) quality is aso related to other
resource endowments, such as labour force (population density) and fresh water.

Regarding to the specification of factor and product markets, the easiest thing to do in amodd is
to assume congtant factor and product prices. This assumption alows a smple specification of the
prices and avoids the existence of feedback mechanismsin the mode. However, some models (like
generd equilibrium models) take severd markets into account.

Government policy can influence an economy through instruments such as taxes, quotas and legd
redrictions. In the case of land use moddling the designation of nature reserves isimportant.

A mode can be either gatic or dynamic. A gtaic modd considers only one moment in time, while
adynamic model congders more moments at the sametime. A comparative static modd is run
separately for a number of periods, where in each period one or more than one parameters are
atered.

This specification refers to the number of regions or locations consdered in the model and
whether the topology isincluded. The distinction between regions and locations as spatia unitsis not
drict. In this study aregion is seen as an area, whose boundary is determined by the relative
homogeneity of the areawithin. A location is amere point on amap. Asthe number of pointson a
map isinfinite, the points are aggregated to a finite number of grid cdls.

In many land use models, severd regions or locations have been taken into account and their
topology is aso included. The topology revedsitself in features such as distance from markets and
natural resources, and loca endowments of resources. External effects from other regions, e.g. air
pollution, dso have a spatiad dimension and can be included in the topology.

2.3 Classification of studies

To be able to compare approaches to land use modelling, it is necessary to make some kind of
classfication. Four categories have been distinguished in this study: (1) Optimisation models, (2)
Generd equilibrium models, (3) Discrete choice models and (4) Models based on heuristic decison
rules.



Although many modds are solved by means of optimisation techniques, optimisation models have
been distinguished separately, as many optimisation models are more complex and devel oped
primarily for scenario analysis. These models can be used to determine an optima policy, but an
optimisation mode can also be developed for the analyss of ‘what-if’ scenarios. These optimisation
models are based on the assumption that economic subjects (such as farmers and consumers) show
optimising behaviour, and that the market comes close enough to theided of perfect competition to
alow negligence of ingtitutiona issues. The approach requires that production costs and production
relations be known. In the case of profit maximisation, prices of crops must also be known.

Unlike the aforementioned optimisation models, generd equilibrium models take severd markets
into account instead of only the alocation of land use. Product markets, such as crop markets, and
factor markets, such as the labour market, are included in the modd!.

Discrete choice modes have originaly been developed for the andysis and prediction of choices
of individuas between mutualy exclusive dternatives. The discrete choice method estimates per
dternative the probability that a given individud will chooseit. In land use moddling, afarmer on a
small spot of land has dso severd dternatives (and let’s assume that because of the Size of his spot
of land, the dternatives are mutualy exclusive). His choice can aso be andysed by means of discrete
choice moddling. If his set of probabilitiesis trangposed to a higher scae (i.e., the modd takes
account of alarge number of farmers), the distribution of cropsis expected to be equivaent to the
probabilities set.

Instead of mathematical calculations, heuristic decison rules can be used to make a mode
operative. A recent exampleis the cellular automata approach (Engelen et d., 1995), in which rules
are gpplied that determine land use in a given location based on surrounding land use types.

2.4 Brief description of existing models

This chapter discusses earlier sudiesin land use modelling. In Appendix A the studies are compared
with regard to features such as modd category, time scale and spatid scale.

2.4.1 An optimisation model: The NERC-ESRC Land Use Programme (NEL UP)

The Natural Environment Research Council-Economic and Socid Research Council Land Use
Programme (Moxey et a., 1995a;Moxey et a., 1995b;0'Callaghan, 1995) conssts of three
quantitative models, each describing a separate part of the process of land use: a group of
hydrologica models, an ecologicd modd and aregiond agricultural economic model.

In Moxey et d. (Moxey et a., 1995a), the economic model is applied to the catchment area of
the River Tynein Northern England. The modd iswritten as alinear programming problem. Profit is
maximised for a single-macro farm that represents dl farms in the catchment area under restrictions
of production possihilities, resource availability and a given rate of adjustment. The leve of the
adjustment coefficients represents the largest feasible change between two years for an enterprise
leve.

2.4.2 A general equilibrium model: The LUC mode of Fischer et al.

Fischer et d. (1996) describes a comprehensive generd equilibrium modd of land-use and land-
cover change dynamics, based on wefare andysis.

Supply is represented following a nested approach. The mode distinguishes three aggregate
sectors: agriculture, forestry and other. Aggregate sectors are divided in sectors, which are divided in
sub-sectors. Sub-sectors consist of products. Some sub-sectors produce the same products, such as
biofuel and other energy sources, producing power.



The representation of agriculturad supply is based on a combination of non-linear optimisation and
the revenue function gpproach. Supply is driven by profit maximisation on the level of representative
firms. Demand is described by demand systems, which are mathematicdly derived from a micro-
economic utility maximisation problem.

The study region is subdivided into compartments, reflecting structured entities, i.e., sub-systems,
of the broader region under congderation and their economic and other interactions. As geographical
data sets are mostly organised on rectangular grids, compartments are defined as collections of grid
cdls, and can possibly vary over time. Depending on scale, acompartment may correspond to a
collection of farms, to awatershed, azone in a country, or a group of provinces.

Compartments interact through commodity trade and financid markets, and flows of mobile
resources and pollutants. They compete for adlocation of limited public resources and foreign
investment and are jointly affected by government policies. Human migration may generate
demographic flows.

Land resources are described by Ste classes that are defined in terms of intrinsic land properties,
such as temperature regime, moisture regime, land accessibility, etc. A location can be transferred
between ste classes by land improvement, land degradation or climate change.

Land-use is described in a nested way. At the highest level, mgor land uses are defined. Within
each of the mgor land-use classes, several land uses are described by alist of land-use classes. Two
processes of land-use/cover change are distinguished: land conversion, which is atransfer between
magor land uses, and land modification, which isatransfer between land-use types within amgor
land-use.

2.4.3 Discrete choice models

A Spatial Modd of Land Usein Bdlize
Chomitz & Gray (1996;Chomitz and Gray, 1995) describes amultinomid logit mode based on the
classic Von Thiinen modd, thet is gpplied to the issue of deforestation in Belize. The modd isto a
large extent Smilar to thet of McMillen (McMillen, 1989), but its derivation from the VVon Thiinen
model makes it interesting enough to be described here.

In the classical VVon Thiinen model, we have seen that the potentia rent R associated with
devoting plot i to use or commodity K is'

Rk = PiQik - CirXik (2.1

where Pj denotes the output price, Cix denotes a vector of input prices and X;, denotes the optimal
quantities of inputs and Qi the potentid output of k a point i. Unfortunately, P, C, and Q are
unobserved. However, in some cases determining factors of price and productivity are observed and
therefore a reduced-form model can be formulated. Therefore, following VVon Thiinen, prices and
costs are determined by the distance from the market:

Pik - eQOk+91kDi (22)
Qk — edok +d1i Dj (23)
where output prices are assumed to decrease with distance (gk < 0) and input costs to increase (dik
> (). The production function for use k is assumed to be a Cobb-Douglas function, which depends
on Xix and a parameter S, which isthe product of agroclimatic and other variables. From these

! Assuming a static framework



equations, aloglinear equation is derived, which relates the potentia rent to observed parameters
such as distance and other biophysica parameters.

|an = agt alkDi + a2k|r(8_|_|) + ...+ Uiko ZiAk + Uik (24)

where Z isthe vector of independent variables and A is avector of reduced form parameters. To
estimate the model, we assume that land is devoted to the highest-rent use: point i is devoted to use k
if

R«>Rj," jt k

If the disturbances are Weibull distributed and uncorrelated across uses |, then this equation is
equivadent to amultinomia logit mode in which the probabilities thet plot i is devoted to usek is
7 Ay

(S]

Prob(i devoted tok) = — (2.5)
a

Fyen
J

The multinomid logit mode dlows usto estimate the coefficients in equation (2.4) provided that the

coefficients of one use - for example, natural vegetation - are normaised to zero.

The spatial hedonic model of Geoghegan et al.
Although not grictly alogit modd, the hedonic approach (Geoghegan et d., 1997;Bockstael, 1996),
can be categorised as a discrete choice model. In this approach land use change is driven by changes
in land pricesfor agiven land use type. A Markov matrix isformulated of transition between land use
types in which the probabilities of land use converson are interpreted as discrete choice probabilities,
asit is assumed that the choice of land use is mutudly exclusve.

In the smplest characterisation of the problem, a parcel of land or cdll in the landscape, denoted
j, whichiscurrently in gate a, is converted to statei a timet if
ijit|a h Cjit|a 3 ijn1|a - ijt|a
fordl landusessm=1, ..., M (induding a). We define Wi, as the present vaue of the future stream
of returnsto parcel j in Satei a timet, given that the parcd wasin sate aintimet-1, and Cjiya 8s
the cost of converting the parcel from state a to state i (whichwill beOif a = i).
Not dl factors affecting W and C are observable. Therefore, W - C isrewritten in a systemdtic
portion V and arandom portion h. The modd is estimated in two steps. In the first step, the value of
land in dternative uses is estimated. The second step is the estimation of a probability of agiven
parcel being converted, conditiona on its vaue in dternative uses and its costs of conversion.

2.4.4 Modesbased on heuristic decision rules

M odels based on cellular automata

Cdlular automata are examples of mathematical systems congtructed from many identical
components, each smple, but together capable of complex behaviour (Wolfram, 1984). A cdlular
automaton consists of an array of cellsin which each cell can assume one of k discrete states at any
onetime. Time progressesin discrete steps, and dl cdls change state Smultaneoudy as a function of
their own State, together with the state of the cellsin their neighbourhood, in accordance with a
specified set of trangtion rules (Engelen et d., 1995).



In Engdlen et d. (1995) the concept of cdlular auttomataiis gpplied in exploring the impact of
climate change on asmall idand. The philosophy behind the cellular automata approach is that the
effects of land-use/cover change drivers, even macro-scale drivers such as climate change, are
actualy expressed at the micro-scae leve.

Application to a small isand
In exploring the impact of climate change on asmdl idand, the modelling framework conggts of two
linked components: one for macro-level processes and one for those operating a micro-level.

At the macro-level, the modelling framework integrates several component sub-models,
representing the natura, socid and economic sub-systems. These are dl linked to each other ina
network of mutud, reciproca influence.

The land demand module takes the growth coefficients caculated by the macro-level modd and
returns the amount of additiona space required to carry out the corresponding activities. The total
area of land required by each activity drives the micro-level part of the modd.

At the micro-leve, land-use change is cadculated by means of cdlular automata. In this case, the
neighbourhood isa circular template of 113 cells. Each cdll in the grid isin one of thirteen Sates,
each representing aland-use. The suitability of a cell depends on aggregeate, distance weighted push
and pull effects of dl the cdllsin the neighbourhood (locationd suitability) and on its own physicd,
environmenta and ingtitutiona characterigtics.

TheLand Cover Modd in IMAGE

IMAGE (Integrated Modd to Assess the Greenhouse Effect; see Alcamo et d. (1994)) isa
modelling framework conggting of a number of models, that is developed to investigate linkages and
feedbacks in the globa society-biosphere-climate system, and to eva uate consequences of climate
policies. The framework includes three systems, an Energy-Industry system, an Atmosphere-Ocean
system and a Terrestria Environment system. Thirteen world regions are considered, of which only
three regions refer to countries: other regions refer to groups of countries.

The Land Cover Mode in IMAGE (Zuidemaet d., 1994) digtinguishes only three land use types.
agricultura land, where crops are grown; range land, where cattle is kept and exploited forest, where
fuedwood is grown. The modd is demand-driven: agriculturd demand isthe main driver of land use
change. For crops and animal products, demand is calculated by the Agricultura Demand Model in
the Terrestrid Environment system. For fuelwood, demand is caculated by the Energy-Economy
Mode in the Energy-Industry system. It is assumed that wood is only used asfud.

A Terredrid Vegetation Mode in the Terrestria Environment system trandates loca biophysica
circumgtances into potentia crop productivity. By means of heurigtic land use rules, potentia
productivity and land use demand are reconciled. There are eight land use rules:

1. Hierarchy of land use demands: (1) agricultura land (2) range land (3) exploited forest;

2. Agriculturd land expands only when current land cannot satisfy demands,

3. New agricultura land is alocated adjacent to current agricultural land;

4. New agriculturd land is dlocated to land with highest pot. productivity;

5. Grasdand expands only if it is replaced dsawhere by agricultura land, or if the number of animals

in the region increases;

New grasdand is dlocated adjacent to current agricultural land, grasdand or savanng;

7. Urban fudwood demand in Africa, India, South Asa and East ASais stisfied by clearing existing
foredts;

8. Agriculturd land taken out of production will revert to its climate-potential land cover.

o



The dlocation procedure starts with the alocation of agricultural land. Once agriculturd land is
dlocated, range land is alocated according to the land use rules. Findly, fuewood is alocated.

2.5 Evaluation of existing models

2.5.1 Introduction

This section compares the model ling approaches described in Section 2.4 by means of two criteria,
namely the theoretica congstency and the data requirements of the gpproach.

Asamodd is arepresentation of redity, one can ask the question to what extent the mathematical
functions in the modd represent mechanisms in redity. Suppose amodd uses a linear function to
describe the influence of x on 'y, can one expect x to have alinear effect on y in redity ds0? The
extent to which thisistrue, isin this report referred to as the theoretical consistency. One could
aso describe this criterion asthe leve of causdity in the modd.

Unfortunately, theoretica condgstency often implies a detailed modd that needs alarge amount of
data before it can be calibrated. Collecting this data can be very difficult, if not impossible. Therefore
it important to take data requirements into account as well as theoretica consstency.

2.5.2 Optimisation models

Like al models, optimisation models are based on a number of assumptions, that can bein
accordance with redlity to asmall or large extent. Typica assumptions in optimisation models are
optimising behaviour of producers and consumers, and that markets will trandate dl individua
decisonsto agloba optimum. It will depend on the area under consideration whether these
assumptions can be made.

Compared to genera equilibrium modes, many optimisation models assume that prices are
congtant. Strictly speaking, prices are hardly ever congtant in redity, unlesstheir leve is enforced by
law: there is dways some fluctuation. However, in asmdl study area, whose influence on nationa
prices can be neglected, the assumption of fixed prices may be judtified.

Essentid information in the optimisation gpproach to land use moddling is the relation between
inputs and outputs. All models are based on production decisions: to find an optima alocation of
crop production under given restrictions. For this purpose, one should be able to calculate the crop
production level under given supply of nutrients, moisture, temperature, etc. Unfortunately, this
information is not dways available, and in the countries examined by CLUE (Codta Rica, Honduras,
China, Java) it isnot.

2.5.3 General equilibrium modds

Generd equilibrium models can be viewed as the ultimate application of neoclassica theory. In that
sense, generd equilibrium is atheoretically sound approach, better than optimisation modelling, asit
is supported by the dominant school of economics. However, there can aso be objectionsto it. As
generd equilibrium moddling is closdy related to optimisation modelling, these objections are Smilar
to those to optimisation modeling. Most generd equilibrium mode s assume optimising behavour of
individuds, full availability of information and perfectly competitive markets (i.e. no oligopolies, no
government intervention). This might not be the case: individuas do not aways optimise their profit or
utility, information is seldomly fully available, markets can be dominated by one company, etcetera
The theoreticd consistency of genera equilibrium modesisin great contrast to the cdibration
possihilities generd equilibrium modelling requires alarge amount of data, of which many data are



not available in an empirica setting. This makes that generd equilibrium models are difficult to goply
for specific empirica studies on land use and land cover change.

2.5.4 Discrete choice models

It is possible to formulate discrete choice moded s in such away that the assumptions behind them are
reasonable. One can assume that the chance of conversion to a given land use type depends on the
expected income from that land use type relaive to the other land use types, as defined by the logit
or the probit equation.

Formulating a discrete choice model in the theoreticaly soundest way (i.e. assuming thet land use
conversion depends on expected income) requires parameters that are not easily estimated. On the
other hand, restricting the andlysis to data thet is better available will decrease the theoretica base of
the approach. For Geoghegan's (Geoghegan et a., 1997) hedonic approach, parcel vaues are
needed.

255 Heurigic decision rules

In one way, heurigtic decision rules are propositions and assumptions, and can therefore be
interpreted as atheory of itsdlf. In another way, optimisation is dso adecision rule, athough it is not
as heuridic astheif...then type of rulesin the approach of Zuidemaet d. (1994).

One can wonder to what extent thistype of decison rulesis aredigtic representation of land use
alocation, because empiricad vdidation of these rulesis not easy. In many cases the economic
judtification for the applied alocation rules is not very strong and rather 'mechanic’ dlocation rules are
applied. The assumptions behind the IMAGE procedure, represented by the land use rules, are
explicit, and can therefore eadily be evaluated. However, it remains difficult to assess their reliability
for long run scenario studies. The assumptions behind the cellular automata approach are less clear.

Both heurigtic gpproachesin this study use demand projections on one hand, suitability
estimations on the other hand and use their decision rules to abstract aland use pattern from these
two parameters. The heurigtic approach seems very flexible in terms of the type of datait requires,
but ill a sufficient amount of information (quantitative or quditative) will be necessary to congtruct a
reliable modd. It seemsthat a priori information on the mechaniamsin land use dlocationsis
essentid for this gpproach.

3. Parameterisation of land use models

3.1 Introduction

The mode s described in the previous section are able to smulate the process of land use and cover
change a a highly detailed level. Thislevel of detail has the disadvantage that data needed for
parameterisation of the models are often not available. In many areas, the most detailed information
comes from census data. These data tend to be highly aggregated, which implies that highly detailed
models cannot be estimated. For example, crop production and total use of production factors are
known, but not the production factor use per crop type.

This chapter estimates the parameters of two non-linear models by means of an exigting data set
based on census data from Java. The data set used is representative of most spatial data sets based
on census data and maps of biophysical parameters. Inputs are not known per crop: only tota inputs
and crop output are known.

Before the estimation of parameters biophysical clusters of cells have been congtructed, based on
major biophysical parameters like temperature, precipitation and eevation, in order to distinguish



between areas of different biophysica character. Within these clugters, two other estimation methods
have been used. The first method estimates a production function where dl crops are aggregated into
one production parameter. In the second method, separate crop production functions have been
estimated by means of an estimation method thet is especidly developed for parameter estimation
from ill-posed or ill-defined data sets.

3.2 Construction of biophysical clusters

By datistical clustering techniques, n-dimensiona observations (e.g., temperature, dtitude and such)
can be summarised in a one-dimensond classfication, where the within-class variation is supposed
to be small compared to the between-class variation. In this study four quantitative biophysica
parameters have been used for the congtruction of biophysicd clusters: (1) cloud cover in percentage
of time; (2) total precipitation in mm; (3) average temperature in degrees Celsus, (4) mean dtitude
(as calculated by the Digital Elevation Mode?) inm.

These parameters have been summarised by means of the FASTCLUS procedure in SAS (SAS
Ingtitute Inc., 1989). The FASTCLUS procedure congtructs clusters by minimising the euclidian
distance between observations and so-called cluster seeds. Cluster seeds can be considered as the
centres of the clusters. As FASTCLUS uses the data without any preparation, it is highly
recommended to standardise the data before starting the procedure as the parameters are not
measured in the same units. Therefore, the parameters are first sandardised so thet all parameters
have an average vaue of 0 and a standard deviation of 1.

The clusters

Table 3-1 shows the number of cells, the average vaue of the parameters and the stlandard deviation

of the parameters per cluster.

Cluser #cdls Cloudiness Precipitation Temperature Altitude

1. 79 -0.83 0.05 -0.98 0.96
051 0.98 0.50 0.66

2. 17 -2.24 -0.07 -2.62 2.70
0.66 0.92 0.50 0.59

3. 149 0.81 -0.64 0.64 -0.59
0.56 0.51 0.39 0.30

4. 84 -0.20 1.10 0.32 -0.41
0.40 0.69 0.48 0.42

TableError! Style not defined.-Error! Bookmark not defined.: Cluster means of the four-cluster classification

One clugter (2) has an extremely high vaue for dtitude and very low temperature and cloudiness.
Cluster 1 can be interpreted as an area between the highest and the lowest parts of Java, with dso
low temperature and cloudiness, but not as low asin cluster 2. Clusters 3 and 4 have roughly the
same dtitude, but there are some differencesin cloudiness and precipitation: cluster 3 is cloudier and
has more precipitation than cluster 4.

Figure 3-1 gives aspatia presentation of the clusters on Java

The Digital Elevation Model (DEM) isadigital representation of a continuous variable over atwo- dimensional
surface by aregular array of z values referenced to a common datum. Its precise structure is beyond the scope of
this study.
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o Cities
Clusters

Figure Error! Style not defined.-Error! Bookmark not defined.: Clustersin Java

3.3 Aggregated production functions

One way of estimating production function parameters from aggregate data is to aggregate crop
production instead of estimating the distribution of inputs. In that case there is only one variable for
output (which congsts of the separate crops) and a number of variables for inputs. In this Stuation
the function can be estimated by straightforward techniques such as OLS.

How should we aggregate separate crops? We could sum the physical weight of crop production,
which would in some way imply that farmers drive for the production of biomass. But amore
sensible assumption would be that farmers strive for the production of income. Therefore, the
aggregate output is defined as the sum of crop production times the price of that specific crop.

3.3.1 Functionsto be estimated
Prices used in the aggregation of crop production are shown in Table 3-2.

Crop Pricein Rp (1994)

Cassava 180.33
Maize 344.42
Soybean 1159.15
Rice 390.90
Groundnut 2058.26

TableError! Style not defined.-Error! Bookmark not defined.. Crop prices (Anonymous, 1996)
We rdlate totd aggregate production to total inputs.

= afb
Qb = ab O I fb (31)
f
To edimate this function with OLS, we take the logarythm of both sSdes:
4
INnQ, =lha, +q a,Inl, (3.2
f

3.3.2 Results

The results of the estimations are shown in Table 3-3. The coefficients have been calculated by
means of normalised data: the values in this table are the rescaled vaues. The values between
brackets are t-vaues of the null hypothesis a=0. Note that the t-vaues of the intercept have the null
hypothess Ina=0, which implies thet they are negativeif a < 1intheorigind caculaions

a R Urea Labour Tractors Land
1 1589925 0.083 0.006 0.045 0.878
2.9 98% 5.0 0.4 6.6 352
2 1246218 0.083 0.013 0.062 0.895
1.8 99% 4.0 0.6 4.0 31.2
3 1836673 0.082 -0.036 0.093 0.892
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5.2 94% 5.4 2.2 18.1 42.1

4 1160586 0.079 -0.004 0.067 0.948
11.5 99% 6.1 0.4 6.9 28.3

TableError! Style not defined.-Error! Bookmark not defined.: Results of OL S estimation of an aggregated
production function

It isnot surprising that land has by far the largest influence on tota production and a coefficient close
to unity. However, it is not equa to unity and an Ftest indicates thet thisis not likely ether (Table

3-4). Thisis conggtent with economic theory, which assumes diminishing returnsto scde for land
input due to the fact that the best spots will be used fird.

Estimation | F p(F)

All 69.96 | 0.00
Cluster 1 24.15| 0.00
Cluster 2 13.36 | 0.00
Cluster 3 26.04 | 0.00
Cluster 4 244 | 0.12

TableError! Style not defined.-Error! Bookmark not defined.. F-values and P-values of HO: a4, =1

3.3.3 Discussion

The results are satisfying: the t-values and the R? indicate that the mode fits well into the data and the
results are condgstent with theoretica expectations. One explanation for the low coefficient value of
labour is that Iabour might be very abundant in Java, so that the input of Iabour is somewhere a the
far end of the production curve. In that case the disturbance in the observations can cause
edtimations with negative coefficients where one doesn't expect them.

3.4 The maximum entropy approach

3.4.1 Introduction

Econometricians have often come upon the problem that the only data that is available is highly
aggregated. For example, in the andys's of multiproduct-multifactor firms data on tota inputs are
avallable, but the specific inputsin a given product are often not known (Lence and Miller, 1998).
The maximum entropy approach (Golan et d., 1996) is epecialy developed for the estimation of

paremaers by means of limited data. The ME formalism is used when:

the data are in the form of averages or aggregates where, as aresult, probabilities must be used

to represent partid information about individud outcomes

we know something but we don't know everything

we don't want to tell any more or any less than we know.

The basic idea of the ME gpproach can be made clear using Jaynes dice problem (Golan et d.,
1996). Suppose we have a Sx-gded die that can take on thevaluesk = 1, 2, ..., 6 and we want to
estimate the probabilitiesp = (py, p2, ..., Pe)' for each possble outcome of the die, but al we know is
the average outcomey: we are not alowed to roll the dice, say, one hundred times in order to
observe the frequency digtribution of the sample.

This means that we want to estimate Six unknown probabilities from two pieces of information: we
know the average outcome 'y and we know that al probabilities should sum to unity. Under these
restrictions, till many combinations of p are possible. We might solve this problem by using prior or
non-sample information to choose from the feasible set of solutions. In this case, we might expect the
die to be roughly fair', i.e. dl probabilities are the same, so the average outcome'y should be

12



somewhere near 3.5. However, if y1 3.5, the underlying ditribution is not likely to be uniform. In
this case, we follow the ME formaism and congiruct the following modd.
We know that the expected outcome isequa to y:

6
a PX =Y (33)

k=1

We adso know that the probabilities should sum to 1:

p, =1 (3.4

Qoo

=
I

1
And dl probabilities are non-negative:

pc® O (3.5)
Under these redtrictions, we want to select the probabilities that maximise

H(p)=-& p.In(p,) 36

k=1
which is Shannon's entropy measure: under restrictions (3.4) and (3.5) H isat its maximum vaueif dl
px are equal. Under additiona redtriction (3.3) the maximum of H will refer to the Stuation where dll
px are as equd as possble, while il satisfying this restriction.

Edtimation of parametersis donein asmilar fashion. Like the die, a parameter can take on many
vaues within agiven range. We will cal these values support values and assign a probability to each
support vaue. Under maximum entropy, the expected vaue of the parameter will lie in the middle of
the interva; additional information can digtract the expected vaue to another place in the intervd, i.e.,
additiond information can put arestriction on the maximisation problem, thereby decreasing the
uniformity of the probabilities.

In the example we used a uniform distribution as a priori probability digribution, but thisis not
aways necessarily the case. A more generd description of the ME formalism is the cross-entropy
formalism, where we have an a priori digtribution g and we want to find the digtribution p thet is
closest to g while gtill satisfying the congtraints. In the cross-entropy case, equetion (3.6) is replaced

by

K K K
1(p.0)=& p. <=3 p,Inp, - & p.ng, 37
k=1 k=1 k=1

k
I(p, g) isthe measure of cross entropy and can be interpreted as the difference between g and p.
Ingteed of maximising generad entropy, this varidble is minimised.

3.4.2 Edimation of parameters by the maximum entropy

The previous section presented a brief decription of the ME gpproach. In this section the model is
described that is congtructed for the estimation of parameters.

In many economic studies of land use and agriculturd production land is seen asamere input like
fertiliser and labour. We will formulate production as follows:

Q — bLI Aa
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where Q represents total production, L tota labour input and A the area of land where the crop is
grown. In this case, scale effects of land are dlowed, which is consstent with economic theory, that
mostly assumes diminishing returns to scale. The rationae behind this assumption isthat the best
pieces of land will be chosen firgt for the production of crops, followed by dightly less suited pieces
of land, etc.

Totd production is related to four inputs, with land as afourth production factor:

3

an :ac(A:n) 6( cfn fn) (38)

f
In this equation capita symbols denote known variables. Since we only know the total factor input
I, this parameter is multiplied by a digtribution parameter f .. This parameter is non-negetive and

should add up to unity:
fun3 O "¢ f,n (3.9)
af.,=1 "fn (3.10)

We should take the logarithms of both sides of equation (6.10) in order to get functionsthat are
easer to estimate and add en error term to these functions:

3
ln an = bc +ac4 ln AEn + é. acf In(f cfnI fn)+ ecn (311)
f

where b, = Ina.. All parameters except f «, will be divided in support variables, that can be
recognised by the additiona index v. The corresponding probabilities are represented by the roman
equivaents of the greek characters that represent the support values. An overview isgiven in Table
3-5.

Parameter | Support | Probability
Ay Aty Acfy
b o bey
€n € Eenv

TableError! Style not defined.-Error! Bookmark not defined.: Symbols of support parameters and probabilities
The relation between a parameter and its support parametersis as follows:

= é cfv a'cfv (312)
= é (3.13)
é cnv cnv (314)

From equal ons (3.11) through (3. 14) thefol Iowi ng equation is derived:
&
In an = é- bcvbcv + ga a(:4v c4v _In A:n + a |9a a‘cfv cfvﬂ (f cfn fn)g a cnv cnv (315)

Thisisthe consstency congraint of the ME model . Beddes this congtraint, additivity condraints are
included in the modd that require that al probabilities of a given parameter add up to unity:
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dan=1 »¢f (3.16)

[o]

a bcv:1 n c (317)
a ecnv =1 " c,n (318)
All probabilities must be non-negetive:

an30 "ocfv (3.19)
b2 0 " cvV (3.20)
enw30 " cnv (3.21)

Before formulating the entropy function we have to ask ourselves what the distributions would look
like under complete uncertainty. The probabilities ac, bo, and ey, can be assumed to distributed
equaly. We are not sure whether thisistrue for the digtribution of inputs. If five cropsare grown in
the area, should we assume a priori that each crop uses one fifth of the inputs? One objection to that
assumption is that some crops, for example sweet potato, have been left out of the estimation
because the production of these cropsis very low compared to other crops. The sdlection of cropsis
somewhat arbitrary, but it would affect the a priori distribution if we assumeit to be equa to 1/n,
where n is the number of crops. Using production levels to indicate the relevance of acrop can be
problematic, as a choice should be made what measure should be taken: the weight of production of
the income it generates? In this study the a priori distribution is based on the sown area of the crops,
so that the a priori fraction of totd inputsis equd to the fraction of the sown area. When the a priori
digtribution of probabilitiesis not uniform, the problem should be formulated as a cross-entropy
modd, where the difference between the estimated probability distribution and the a priori
probability digtribution isminimised. For ac, be, and e, We can assume auniform a priori
probability digtribution, i.e. the a priori probabilities are equa over the support vaues:.

w=w" v!vVvad

é_ w, =1

where w;, denotesthe a priori probability of support parameter v. For the distribution of inputs over

crops, we assume that the fraction of inputs applied to crop c is proportiond to the fraction of
harvested areathat is used for crop c:

A
a A

Now that we have determined the a priori probability distribution, we can formulate the objective
function:

A =

cfn

4 3
E=8Abn2+8 8 A A N2 +3 § AT, —"+8 A & e in (322
c Vv W, c v f

" \/ c n f cn c n v \
The varigble E isameasure of cross-entropy and is to be minimised. In the literature cross-entropy is
normally denoted by the symbal |, but as this would cause confusion with the symboal for inputsin this
sudy, the symbol E is chosen.

Adding regtrictions of optimising behaviour

We can add further regtrictions expressing the assumption that farmers will maximise their profit. If
this is a reasonable assumption, we can abstract more information from the data
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In the optimum the value of margind production should equd the price of inputs:
o, _
ﬂIcf
In case we don't know the value of P, we can derive from this condition thet the vaue of margina
production of input f must be equd for dl crops. After dl, if we havetwo crops 1 and 2 then
i

1f P ﬂQl P2 ﬂQZ

P2 ﬂQ P | T" 1f T" 2f
M. 'f

P ~t=p (3.23)

(3.24)

Let'stake alook at the production function that is being estimated in the ME moded and write this for
amplicity as

Q. =bLUT A

where L represents labour input, U, represents ureaiinput, T, represents tractor input and A¢
represents land input in crop ¢. Unfortunately, we only know the price of urea, so equation (6.24)

can only be applied to this factor:
PC:TT%: PubLlU''T! A =PuU 'bLU'T! A = PuS

I:)U

c

In this restriction there are two varigbles: the coefficient of urea u, and ureainput U, which is subject
to the redtriction
au.=u

For the other inputs we will have to gpply equation (6.25):

I p I% by Q =p1, e
L. IL.. L. “ L.
Pct c& = Pct c' %
Tc Tc
Pcac % = Pc'ac' &
A A

Thefirst order conditions are included in the mode with an error term to dlow for (smdl) deviations
from the optimum. In terms of the modd the equations are as follows:

0 Q. 0 Q.
P ga acfv acfv f a cfnv cfnv = P ?a ac fv c'fv ﬁ (325)
(4] cfn fn \Y A el
0 an -
P (;a. aclv clv f a. clnv clnv - Pl (326)
(%] cln 1in v

Where ureaisinput 1.

Thedigribution of land
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Land isa specid case. We don't know the price of land, but we do know its input distribution over
the crops. Secondly, land has a particular relationship with production that allows further examination
of thisfactor. Theratio of production to land (QJ/A) is aknown parameter: we call it yield.
Therefore, the first order condition for land can be rewritten as

PCvaC = PC'aC'qC'

Within one clugter the parameter a. is assumed to be constant. If we assume that prices do not vary
within one clugter either, we can rewrite the abovementioned equation o thet al congtants are on
one Sde of the equation:

— Pc'ac'

" Pa_ ©

c—c

g

If we assume that both P, and a. are constant: therefore, the ratio between yields should be constant
aso. With the correlation between crop yidds, we can test these assumptions. Appendix B shows
the correlation coefficients between crop yields. These tables show that the correlations between the
yields are very poor. Thisindicates that the assumptions made cannot hold for the Stuation in the
clusters. Thisimplies that adding the first order condition for land input as arestriction to the model
will cause mgor problems in solving the modd. Therefore, the first order condition for land input has
not been included.

Support values

Now the mode equations have been specified, appropriate support values must be chosen. Two
features are relevant in this case: the choice of the gppropriate interval and the choice of the
appropriate number of discrete vauesin the interva. Modtly five is the most convenient number of
vauesin the range that yields an acceptable accuracy. Therefore, five discrete vaues will be used,
which leaves us the question of the appropriate interval.

According to Golan et d. (1996) the range of the interva influences the estimations, though this
influence is not as big for the parameters as it is for the disturbance term. Golan et a. (1996) gives
the advise to set the interva of the disturbance term at {-3s, 3s} where s represents the standard
deviation of the explained variable, in this case g.,. We have aready specified the interva of the
distribution parameter in equations (3.9) and (3.10): itsinterva is by definition {0, 1}.

The choice of parameter intervas s difficult if inputs and outputs are measured in different ranges.
At the same time, the mode will be solved more easily if dl variables have roughly the same scale.
Therefore, parameters are rescaled so that they al have a mean vaue of 1. In this case the choice of
the parameter interval is more clear, though still somewhat arbitrary. Two things should be taken into
congderation:

1. Should the parameters be alowed to be negative?
2. What should be the expected vaue of the interva?

The intercept b, can be negative, as a. will be derived fromit by a = €°. But we don't want our
coefficients to be negative, as thiswould imply that production goes down as inputs go up. In fact this
condderation is another piece of information we use in the estimation of parameters. If we want our
coefficients to be postive, the interval might be something like {0, X} where x isany pogtive vaue.
However, thistype of interva might be contradictory to the second consideration, i.e. the expected
vaue of the coefficient. If the a priori probability distribution is uniform, the expected value of a
parameter will be equd to the middle of the interva, or (lower bound + upper bound)/2. The
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expected vaue of theinterva {0, x} would therefore be x/2, but maybe we don't want to assume
that. If we know absolutely nothing about the value of a coefficient, we would rather assumeit to be
zero. A solution to this problem isto give dl parameters the intervd {-X, X}, and to place alower
bound &t the coefficients:

aasa, 0 (3.27)

In the estimations al coefficients have an interva of {-10, 10}, but it is recommended to check the
mode on the influence of the Sze of the intervas.

Results

Appendix C shows the estimation results. It can be seen that the price of the cropsis to some extent
compensated by alower or higher intercept. Per production factor the coefficients are roughly the
samefor dl crops. The coefficient of land indicates that the relation between land and production is
closeto linear.

Table 3-6 compares the estimated factor input per crop to the estimated average factor input per
crop in the period 1984 - 1993 (source: (Anonymous, 1996)). Labour input per crop is only
available in Rupees per hectare, so both estimated and observed labour ditribution have been
normalised to an average of 1, in order to make the figures comparable.

Ureainput (kg/ha) Cassava |Groundnut |Soybean |Maze |Rice
Edimated 229.8 221.8 257.7) 255.5 266.3
Average 1984 - 1993 70.8 51.6 61.9] 139.1 243.8
Labour (normalised) Cassava |Groundnut |Soybean |Maze |Rice
Estimated (number of workers) 1.00 0.99 1.01 1.00, 1.00
Average 1984 - 1993 (L abour costs) 0.79 0.99 0.86 0.56| 1.81

TableError! Style not defined.-Error! Bookmark not defined.: Estimated and observed distribution of ureaand
|abour

We see that the distribution of ureaand labour are very closeto itsa priori value compared to the
average of observed input distributions. An observed distribution of tractor inputsis not available, so
Figure 3-2 gives an indication of the variation in the retio between a priori input and estimated
tractor input. The figure shows the maximum and minimum vaues of theratio and the{-s, s} -
interva of the mean.

1.80 4
1.60 + —|_

1.40 +

1.20 4 +
1-00—5 —] =5 e S

0.80
0.60
0.40
0.20
0.00 T T T T !

Cassava Groundnut Maize Rice Soybean

Figure Error! Style not defined.-Error! Bookmark not defined.: Ratio between a priori and estimated tractor input
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The figure clearly shows that the estimated digtribution of input factors has remained close to the a
priori digtribution, especialy for the more important crops like rice and maize. Less significant crops
like groundnut and soybean appear to dlow for wider variations, though even for these crops alarge
majority of the estimations remains closeto their a priori vaue.

3.4.3 Discussion

Although some parameter vaues have resulted from the estimation procedure, it is questionable
whether these estimations are reliable enough for gpplication in amode. The smal difference
between estimated input digtribution and the a priori digtribution and the large difference between
(nationd) average inputs per crop and the estimated inputs indicate that the estimated production
functions might not be too different from the actua relationships.

4. Running the parameterised models

4.1 Introduction

In the previous chapter production functions have been estimated based on aggregate data, usng two
methods: that of estimating an aggregate production function and that of estimating the digtribution of
production factors along with the production function coefficients. In this chapter the estimated
production functions are applied in rdatively straightforward land use modds of Java

This chapter discusses the models and the results of both gpproaches. Findly, the two
methodol ogies are compared in the discussion.

4.2 A land use model of aggregated production

4.2.1 Structure of the modd

Estimated production
The caculaion of the esimated production is very sraightforward and only involves arecaculation
of the production as predicted by the modd:

To= anQ [ (4.2.1)

Optimised production
Astractors, labour and land are exogenous in the modd, ureaiinput isthe only free variable left. As
mentioned before, urea useis optimd if the margina production of an input equals the price of that
input. By means of thisrule, we can caculate the optimal ureaiinput. The first order condition for urea
use looks as follows:

T _
T” 4n0 )

o
agn-1 afn —
a4n|4n(r; ano Ian - P4
f

We can rewrite this equation in the following form:
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a
By equation (4.2.2) the optima urea useis caculated, which is used in equation (4.2.1) to calculate
the optima turnover.

@: (}J(‘D)
=}

4.2.2 Results

Figure 4-1, Figure 4-2 and Figure 4-3 show the observed production levels and the estimated and
optimal production levels as ca culated by the modd.

~ Cities
Observed production
[ ]1000 - 2000
[ ] 2000 - 3000
I 3000 - 4000
I 4000 - 5000

FigureError! Style not defined-Error! Bookmark not defined.: Observed production in thousands Rp per knt

=~ Cities
Estimated production
[ ]1000 - 2000
[ 2000 - 3000
I 3000 - 4000
I 4000 - 5000

Figure Error! Style not defined.-Error! Bookmark not defined.: Production estimated by the model in thousands
Rp per knt

~ Cities
Optimal production
[ ]1000 - 2000
[ 2000 - 3000
I 3000 - 4000
I 4000 - 5000

Figure Error! Style not defined.-Error! Bookmark not defined.: Production under optimal ureainput in thousands
Rp per knt

Figure 4-4, Figure 4-5 and Figure 4-6 show the differences between observed, estimated and
optima production.
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« Cities
| |-264--5
B 5 -5
B 5-303

FigureError! Style not defined.-Error! Bookmark not defined.: Difference between observed and estimated
production

» Cities
[ ]-20.2-.5
Bl 5-5
Bl 5-334

FigureError! Style not defined.-Error! Bookmark not defined.: Difference between observed production and
production under optimal ureainput

e Cities
B 37-5

5224

FigureError! Style not defined.-Error! Bookmark not defined.: Difference between estimated production and
production under optimal ureainput

The figures show that the differences are not shockingly large. In about 57% of the grid cells, the
predicted production remains within a distance of 5% from the observed vaue. About 90% of the
grid cdls lies within a 10% distance from the observed vaue.

The production levels under optimised ureaiinput differ somewhat more from the observed vaues.
Still, 45% lies within a distance of 5% difference from the observed value. Under optimised urea
input, production is more likely to be overestimated than it is to be underestimated: 50% of the
gridcdls have a production that is more than 5% higher than observed, while the percentage of grid
cdls with production more than 5% lower than observed is only 5%. There does not ssemto bea
clear spatid pattern in these differences.

The differences between estimated production and production under optimised ureainput are
much smdler. In West Java, Y ogyakarta and the southern part of Centra Java the urea input under
optimised urealinput is Sgnificantly higher than observed.

4.3 A land use modd based on ME estimations

In the ME egtimations production functions are estimated of each crop. Therefore, the model based
on these estimations optimises the digtribution of inputs whose totd input is given and caculatesthe
production of each crop.

4.3.1 Structure of the modd

Asin the maximum entropy estimations land is included as an input like urea or machinery, the modd
itsdf isrdaively sraightforward. The model maximises profit defined as turnover minus costs:
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é x ~ a d:l
p = é Eé. é. P(:yacn O lcfr‘;r;/f - é. I cfny Pfy :l; (431)
y 8¢ n f f [ 9|
such that
o]
a I cfny £ any (432)
lmy 3 O (4.3.3)

where the symbols denote the following:

an  Intercept of cropcincdl n

axr  Codficient of factor f for cropcincdl n
lny  Input of factor fincropcincdl ninyeary
Py  Priceof cropcinyeary

Py Price of input factor f inyear y

Sny  Stock of input factor f incdl ninyeary

Thevaueof a., and a.s inagiven cdl ¢ depends on the clugter the cdll is assigned to.

4.3.2 Results
Figure 4-7 shows the absolute area of rice according to the mode!.

a Cities
Absolute rice area
[ ]0-130
I 131 - 260
= [ 261 -390
o . [ 391 -520
a8 521 - 652

FigureError! Style not defined.-Error! Bookmark not defined.: Rice areain square kilometers according to the
model

On firg sght this figure looks reasonable, however, if we look at the relative rice area (Figure 4-8)
we see that the solution found is probably a corner solution: al land is devoted to rice production.

@ Cities
Relative rice area

I 100

FigureError! Style not defined.-Error! Bookmark not defined.: Rice areain % of agricultural area according to the
model

Apparently, in its present form, the modd has no interior solution. In Section Discusson and
conclusons anumber of explanations for these results will be discussed, as well as possibilities for
improvement of the results.

5. Discussion and conclusions

In this paper we have seen awide range in economic models of land use and cover change. Although
many models are based on standard assumptions of economic modelling, recent developments, like
cdlular automata models, have added different gpproaches to economic land use models. The

22



models discussed in this paper have ahigh levd of detail, which is convenient in atheoretica sense,
but hasits drawbacks in empirica applications, asin many study areas census data are the most
detailed source of information. These data are in most cases highly aggregated and only available at
regiond scaes, which is quite high for detalled models of land use and cover change.

The egtimation and running of the aggregated mode! yidds satisfying results: the results of the
model run indicate that it can reproduce exigting patterns of agriculturd activity quite well.
Unfortunately, it does not model the production of separate crops, but for the analysis of phenomena
that depend on land use intensity without making distinction between crops the methodology should
be useful. The approach can be improved if spatid characteristics like distances, transport costs and
local price differences are known.

The detailed modd shows promising opportunities for the parameter estimation of detailed land
use models, dthough it can be improved on many aspects, asit tendsto yield conrner solutionsiin its
present form. Practical agpects of land use and cover change not included in the modd asyet are
converson cogts, converson time, the vauation of risk and the level of subsistence farming. Instead
of moddling land use, the detailed model can be designed to analyse land use change and
subs stence farming can be taken into account by estimating aminimum level of production of each
crop, or aminimum level of food ingredients.
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Appendix AComparison of previouswork

Source Name Category Decision Number of Smallest
level land use types aggregation unit
Von Thiinen (1826) The Isolated State Optimisation -- -- --
McMillen (1989) Discrete Choice Bottom >1 Site
Martinez (1992) Bid-Choice Land-Use Model Discrete Choice Bottom >1 --
Alcamo et al. (1994) IMAGE Heuristic Bottom >1 Cell
Crihfield (1994) Optimisation Top 1 --
Engelen et al. (1995) Heuristic Bottom 1 Cell
Folmer et al. (1995) ECAM Genera Equilibrium Top >1 Country
Moxey et al. (1995) NELUP Optimisation Top 1 Region
Chomitz & Gray Discrete Choice Bottom >1
(1996)
Fischer et al. (1996) LUC Genera Equilibrium Top 1 Compartments
Schipper et a. (1996) REALM Optimisation Top 1 Farm types
Geoghegan et al. Discrete Choice Bottom 1 Cell
(1997)
Schotten et al. (1997) Land Use Planner Discrete Choice Bottom >1 Cell
Source Spatial Timescale Focus Production
scale levels functions
Von Thiinen (1826) 1 Static Optimal land Land use type
allocation
McMillen (1989) 1 Static Urban fringe land use Land use type
Martinez (1992) 1 Static Land use change Land use type
Alcamo et al. (1994) 2 Dynamic Climate change Land use type
Crihfield (1994) 1 Dynamic Strip mining Land use type
Engelen et al. (1995) 3 Static Small island state Land use type
Folmer et al. (1995) 1 Dynamic CAP Reform Mathematic
Moxey et al. (1995) 1 Static Land use change Land use type
Chomitz & Gray 1 Static Deforestation Land use type
(1996)
Fischer et al. (1996) 3 Dynamic Land use change Continuous function
Schipper et al. (1996) 1 Static Land use analysis Land use type
Geoghegan et al. 1 Static Residentia value Land use type
(1997)
Schotten et al. (1997) 1 Static Policy analysis Land use type
Source Scenario environment D ata3 Application area
Von Thinen (1826) -- Prices, costs Germany
McMillen (1989) -- Land quality, adjustment costs Chicago, USA
Martinez (1992) -- Land quality, prices --
Alcamo et al. (1994) climate change Demand, land quality Earth
Crihfield (1994) 9 policies Prices, costs, interest Illinois, USA

Engelen et al. (1995)

climate change

Land quality, population,

St. Lucia, Caribbean

demand
Folmer et al. (1995) CAPreform SAM, historical parameters European Union
Moxey et al. (1995) CAP Reform 1-O rel., prices, costs, resources Tyne catchment, GB

Chomitz & Gray -- Land quality, LUTS, distances Belize

(1996)

Fischer et al. (1996) Prices, quantities, etc. China

Schipper et al. (1996) 8 policy and econ. Prices, land quality, Neguev settlement, Costa
scenarios environment Rica

Geoghegan et al. Housing prices, land qual. Patuxent Watershed, USA

(1997)

Schotten et al. (1997) Demand, land quality The Netherlands

CPB4- scenarios

AppendixA

*Not all data requirements have been mentioned
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“ Centraal Planbureau (Central Planning Office)
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Appendix ACorreation between yields per cluster

Cassava |Groundnut |Maze |Rice |Soy
Cassava 1.00 0.13 052 047 -0.19
Groundnut 0.13 1.00{ -0.02| -0.01 0.4
Maize 0.52 -0.02 1.00[ 0.4 -0.16
Rice 0.47 -0.01] 0.64 1.00 -0.16
Soy -0.19 0.14 -0.16) -0.16 1.00
TableB-1: Correlation between yieldsin cluster 1

Cassava |Groundnut |Maize |Rice |Soybean
Cassava 1.00 -0.61] 0.68] 0.69 -0.16
Groundnut -0.61 1.00[ -0.52| -0.66 -0.04
Maize 0.68 -0.52|  1.00 0.79 -0.10
Rice 0.69 -0.66] 0.79| 1.00 -0.12
Soybean -0.16 -0.04/ -0.10| -0.12 1.00
Table B-2: Correlation between yieldsin cluster 2

Cassava |Groundnut |Maize |Rice |Soybean
Cassava 1.00 0.16] 0.37| 0.34 0.15
Groundnut 0.16 1.00[ 0.12| 0.39 0.08
Maize 0.37 0.12 1.00, 0.50 0.13
Rice 0.34 0.39 0.50, 1.00 0.18
Soybean 0.15 0.08 0.3 0.18 1.00
Table B-3: Correlation between yieldsin cluster 3

Cassava |Groundnut |Maize |Rice |Soybean
Cassava 1.00 0.06) 0.50, 0.38 0.22
Groundnut 0.06 1.00[ -0.22| -0.04 0.31
Maize 0.50 -0.22 1.00] 0.41 -0.14
Rice 0.38 -0.04)  0.41] 1.00 -0.09
Soybean 0.22 0.31| -0.14| -0.09 1.00

Table B-4: Correlation between yieldsin cluster 4
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Appendix ACoefficient estimates by the M E approach

Cassava |Groundnut |[Maze |Rice [Soybean
Intercept 13509 1097| 2343| 4591 1317
Int* price | 1216 1618 977/ 1579 1518
Urea 0.067 0.046| 0.071| 0.044 0.055
L abour 0.002 0.001| 0.002| 0.001 0.001
Tractors 0.020 0.014| 0.021| 0.013 0.017
Land 0.919 0.958| 0.966| 0.976 0.905
R? 98% 99%|  99%| 97% 98%
Table C-1: Production coefficientsin cluster 1

Cassava |Groundnut |Maize |Rice |Soybean
Intercept 11090 830/ 1715 6403 967
Int* price 998 1224 715 2203 1115
Urea 0.066 0.041| 0.068| 0.042 0.052
L abour 0.068 0.045| 0.067| 0.042 0.055
Tractors 0.002 0.001| 0.002| 0.001 0.001
Land 0.803 0.969| 0.909| 0.828 0.880
R? 96% 98%| 100%| 94% 95%
Table C-2: Production coefficientsin cluster 2

Cassava |Groundnut |Maize |Rice |Soybean
Intercept 11022 1018| 2004/ 3261 995
Int* price | 992 1501 836 1122 1148
Urea 0.061 0.046| 0.069| 0.041 0.052
L abour 0.059 0.046| 0.065| 0.038 0.050
Tractors 0.030 0.024| 0.034| 0.020 0.026
Land 0.836 0.824| 0.835| 0.965 0.875
R? 99% 97%|  96%| 98% 97%
Table C-3: Production coefficientsin cluster 3

Cassava |Groundnut |Maze |Rice |Soybean
Intercept 9590 981 1720 2311 1158
Int*price 863 1447 717/ 795 1335
Urea 0.051 0.037| 0.059| 0.034 0.043
L abour 0.043 0.031| 0.047| 0.028 0.036
Tractors 0.069 0.049| 0.077| 0.044 0.058
Land 0.891 0.872| 0.907| 1.031 0.812
R? 99% 97%|  98%| 98% 98%

Table C-4: Production coefficientsin cluster 4
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