Schill, Wolf-Peter

Article — Accepted Manuscript (Postprint)

Electric Vehicles in Imperfect Electricity Markets: The case of Germany

Energy Policy

Provided in Cooperation with:
German Institute for Economic Research (DIW Berlin)

Suggested Citation: Schill, Wolf-Peter (2011): Electric Vehicles in Imperfect Electricity Markets: The case of Germany, Energy Policy, ISSN 0301-4215, Elsevier, Amsterdam, Vol. 39, Iss. 10, pp. 6178-6189, http://dx.doi.org/10.1016/j.enpol.2011.07.018

This Version is available at:
http://hdl.handle.net/10419/114169

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.

http://creativecommons.org/licenses/by-nc-nd/4.0/
Electric Vehicles in Imperfect Electricity Markets: the case of Germany

Wolf-Peter Schilla,1

aDepartment of Energy, Transportation and Environment, DIW Berlin, Mohrenstraße 58, 10117 Berlin, Germany

Abstract

We use a game-theoretic model to analyze the impacts of a hypothetical fleet of plug-in electric vehicles on the imperfectly competitive German electricity market. Electric vehicles bring both additional demand and additional storage capacity to the market. We determine the effects on prices, welfare, and electricity generation for various cases with different players in charge of vehicle operations. Vehicle loading increases generator profits, but decreases consumer surplus in the power market. If excess vehicle batteries can be used for storage, welfare results are reversed: generating firms suffer from the price-smoothing effect of additional storage, whereas power consumers benefit despite increasing overall demand. Strategic players tend to under-utilize the storage capacity of the vehicle fleet, which may have negative welfare implications. In contrast, we find a market power-mitigating effect of electric vehicle recharging on oligopolistic generators. Overall, electric vehicles are unlikely to be a relevant source of market power in Germany in the foreseeable future.

Keywords: Electric vehicles, Vehicle-to-Grid, Market power

JEL: Q40, Q41, L13, D43

Email address: wschill@diw.de (Wolf-Peter Schill)

1Tel.: +49 30 89789-675; Fax: +49 30 89789-113. The author is a member of the Graduate Center of Economic and Social Research, DIW Berlin.

2I would like to thank Jan Abrell, Steven A. Gabriel, Christian von Hirschhausen, and Michael Pahle for helpful comments on earlier versions of this paper. Of course I am solely responsible for all remaining errors.
1. Introduction

In the light of tighter climate policy and a growing dependency on imported fossil fuels in the transportation sector, electric vehicles are gaining attention. Electric vehicles can use a broad range of energy sources, including renewables, for mobility purposes. In addition, electric vehicles promise to deliver a range of benefits compared to internal combustion engines, including greater energy efficiency with lower noise, CO$_2$, and other air pollutants emitted (Samaras and Meisterling, 2008; Bradley and Frank, 2009). The materialization of these benefits largely depends on the means of electricity generation. Yet the interaction of electric vehicle fleets with power markets is hardly studied. In particular, there is little research on electric vehicles in imperfect electricity markets. We intend to fill this literature gap.

Using a game-theoretic model, we examine the market impacts of a hypothetical fleet of one million plug-in electric vehicles (PIEV) on the imperfectly competitive German electricity market. We separately analyze the market effects of additional load and additional storage capacity on prices, welfare, and power generation. We also examine how having different players in charge of electric vehicle operations leads to different patterns of vehicle recharging and storage utilization. In particular, the model allows investigating the combined decisions of oligopolistic firms on power generation, vehicle loading, and storage. We analyze the utilization of excess vehicle battery capacity for arbitrage, i.e. storing electricity in periods of low prices and selling it back to the market in times of higher prices. We examine if arbitrage is a viable strategy in the light of existing pumped hydro storage and battery degradation costs.

The analysis shows that the introduction of PIEV generally increases generator profits and decreases consumer surplus in the power market (excluding demand for vehicle recharging). This is particularly true if vehicles are recharged in an uncontrolled way. In case of controlled loading of the PIEV fleet, welfare distortions as well as vehicle loading costs decrease substantially. If battery capacity that is not needed for daily driving can be used for grid storage, welfare
effects are very different: generator profits decrease, while the surplus of power consumers and overall welfare substantially increase due to a price-smoothing effect of additional storage capacity. Yet such use of PIEV storage capacity for arbitrage is only profitable if battery degradation costs decrease substantially. Accordingly, storage-related welfare gains may not materialize with current battery technology. In addition, we find that strategic generating firms tend to under-utilize battery storage capacity, which may have negative implications for consumer surplus in the power market. In contrast, consumers may benefit from a market power-mitigating effect of vehicle and storage loading on strategic generators. Finally, electric vehicles increase the utilization of emission-intensive technologies, in particular if an oligopolistic generator is in charge of PIEV operations.

The remainder is structured as follows. First, we briefly discuss the relevant literature. Section 3 describes the model and the main assumptions. Sections 4 and 5 include relevant data and define different cases of PIEV operation. The results section discusses the impacts of different players controlling the PIEV fleet on market prices, welfare and electricity generation. We also perform a sensitivity analysis regarding battery degradation costs and briefly discuss some model limitations. The last section summarizes and concludes.

2. Literature

While there are many different designs of electric vehicles, all share the common feature of complementing or completely substituting a conventional internal combustion engine with a battery-electric drive.3 Future PIEV fleets will have substantial impacts on electricity markets. On the one hand, overall electricity demand increases. This could have negative impacts on network stability, electricity prices, and emissions. Gerbracht et al. (2009) show that

3In our model analysis, we do not differ between electric vehicle concepts, as long as the vehicles recharge batteries from the power grid. We are only interested in the cumulative market impact of grid-connected vehicle fleets. For example, we do not distinguish between hybrid electric cars and pure battery electric drives. Schill (2010) provides an overview of different vehicle concepts.
uncontrolled loading of electric vehicles, i.e. recharging irrespective of market prices or grid situations, will increase German peak load to dangerous levels, even if PIEV fleets are rather small. Vehicle recharging should thus be carried out in off-peak hours in order to minimize negative impacts. On the other hand, future PIEV fleets could also offer valuable services to the electricity system, if bi-directionally connected to the grid and intelligently controlled. Kempton and Tomic (2005a) first develop the idea of integrating electric vehicle fleets into the power system with a ‘Vehicle-to-Grid’ (V2G) concept. Drawing on the empirical fact that around 90% of all vehicles are in a parking position any given time of the day, implementing the V2G concept could realize large synergies between the vehicle fleet and the electricity system (compare also Kempton and Tomic, 2005b). Guille and Gross (2009) provide a framework for integrating PIEV into existing power systems. Within a V2G concept, PIEV fleets could smooth the load curve by recharging batteries at nighttime, and deliver peak load by feeding electricity back to the grid in times of high demand. Grid-connected electric vehicles could thus reduce the need for conventional peak power plants, which increases social welfare. However, Peterson et al. (2010) find that arbitrage profits in different U.S. regions do not provide sufficient incentives for grid storage, if battery degradation is taken into account. Aside from arbitrage on the wholesale market, PIEV could also provide valuable ancillary services like primary, secondary or tertiary control (Tomic and Kempton, 2007). Galus et al. (2010) examine the provision of secondary control services by PIEV fleets. Andersson et al. (2010) find that providing regulating power with PIEV fleets in Germany and Sweden may be an economically viable strategy. Sioshansi and Denholm (2009) demonstrate that the provision of spinning reserves by electric vehicles could increase the efficiency of thermal electricity generation, which in turn decreases emissions. In a more general analysis, Sioshansi and Denholm (2010) analyze the value of plug-in hybrid electric vehicles as flexible grid resources, considering unit commitment and ramping constraints. It is also suggested that PIEV fleets may also be able to balance fluctuating renewable energy feed-in, for example by taking up excess wind generation (compare Lund and Kem-
ton, 2008; Ekman, 2011). However, Sovacool and Hirsh (2009) argue that there might be large social barriers to implementing the V2G concept.

In this article, we focus on the interaction of electric vehicles and imperfect electricity markets. Imperfect competition in power markets is extensively studied. Amongst others, Green and Newbery (1992) and Borenstein et al. (2002) have made seminal contributions. Hortaçsu and Puller (2008) and Mansur (2008) empirically study market power problems in different U.S. electricity markets. Puller (2007) and Bushnell et al. (2008) provide empirical support that Cournot pricing is a reasonable assumption for electricity market modeling. Weigt and Hirschhausen (2008) find empirical evidence of imperfect competition on the German power market. Note that our analysis focuses on the wholesale market. Ancillary services traded on other markets are excluded, for example the provision of regulating power.

In contrast to previous studies, we explicitly model the interaction of PIEV operations and the German wholesale market. We endogenously determine the timing of vehicle recharging and storage operations by profit-maximizing players while taking care of market price reactions. Moreover, we allow for imperfect competition, which complements earlier analyses that assume perfectly competitive markets, for example Göransson et al. (2010) for Denmark, Sioshansi et al. (2010) for the Ohio power system, or Sioshansi and Denholm (2010) for Texas. Moreover, we explicitly quantify the effect of different players being in charge of PIEV operations. We thus quantitatively support the argument brought forward by Andersen et al. (2009) and Guille and Gross (2009), according to which the ‘aggregator’ – i.e. the player in charge of vehicle operations – plays a crucial role for integrating electric vehicle fleets into power markets.

More generally speaking, our analysis also enlarges the understanding of how flexible resources are used in imperfect electricity markets. We not only study strategic electricity storage, as, for example, Schill and Kemfert (2011) or Sioshansi (2010) do, but also the strategic allocation of dispatchable load and its interaction with oligopolistic generation. Although the analysis is motivated by electric vehicles, results may be interpreted in a more general way, as additional
storage and dispatchable demand could also be introduced to the market by other technologies.

3. The model

We assume that PIEV operations are either controlled by individual vehicle owners, utilities, or service providers. Importantly, all these PIEV operators also act as players on the electricity market: they buy electricity to recharge their vehicles, and they may sell stored electricity back to the market. We further assume that there is a fixed amount of electricity that must be delivered to the electric vehicle fleet each day for recharging depleted car batteries. This can be interpreted such that players in charge of PIEV operations have a commitment to deliver a specified daily amount of recharging electricity. On the demand side, car owners face a take or pay situation in which they agree to buy the daily recharging requirement. We do not further specify the contractual relationship between PIEV service providers and individual car owners, but assume that the operators responsible for vehicle recharging try to acquire the necessary electricity at the lowest possible cost. This procedure allows obtaining fairly general results. Note that we do not analyze the relationship or the exertion of market power between vehicle service providers and individual vehicle owners. Rather, we are interested in the role that PIEV operators might play in an imperfectly competitive electricity market, and in their strategic interaction with other actors in that market.

We use a game-theoretic electricity market model. Its solution represents a Cournot-Nash equilibrium. We build upon the ElStorM model described in Schill and Kemfert (2011) and extend it by introducing additional variables, parameters and constraints related to electric vehicles. Table 4 in the Appendix lists all model sets, indices, parameters and variables. The set of players may include firms that generate electricity only (i.e. traditional utilities), players that are only involved in PIEV operations, or players that combine both activities. Individual vehicle owners may also be players, if they are able to respond to
hourly wholesale market prices while recharging their vehicles.4

Equations (1a-1k) describe individual players’ constrained maximization problems. Player’s indices \(f \in F \) are omitted in order to improve readability. The players maximize profits by deciding on a set of hourly \((t \in T)\) decision variables, including electricity generation \(x_{i,t} \) of various technologies \(i \in I \), the timing of vehicle loading \(vload_t \), as well as loading \(stin_{j,t} \) and discharging \(stout_{j,t} \) of different storage technologies \(j \in J \). Equation (1a) represents the profit function faced by each player in the model. It includes revenues from selling electricity, which was either generated by a specific technology \((p_t x_{i,t})\) or previously stored \((p_t stout_{j,t})\). It also includes technology-specific variable generation costs \((vgc_i)\), variable costs of storage operation \((vstc_j)\), costs of storage loading \((p_t stin_{j,t})\), and costs of vehicle recharging \((p_t vload_t)\). The latter terms reflect the fact that electricity stored at period \(t \) had to be bought or could have been sold on the market at the price of the respective period. The decision variables are subject to a range of constraints, which are shown in (1b-1k). Due to the complexity of the model, we abstract from including network constraints or different voltage levels.

\[
\begin{align*}
\max_{x_{i,t}, vload_t, stin_{j,t}, stout_{j,t}} \sum_{t \in T} \left[p_t \left(\sum_{i \in I} x_{i,t} - vload_t + \sum_{j \in J} (stout_{j,t} - stin_{j,t}) \right) - \sum_{i \in I} vgc_i x_{i,t} - \sum_{j \in J} vstc_j stout_{j,t} \right]
\end{align*}
\]

4In addition, players may own other electricity storage technologies. In the model application, we include pumped hydro storage, as this technology is the only large-scale storage technology that is economically feasible.
\[s.t. \quad x_{i,t} - x_{i,t-1} \leq 0, \forall i, t \quad (\lambda_{i,t}^{gen}) \tag{1b} \]
\[x_{i,t} - x_{i,t-1} - \xi_{i}^{up} \Pi_{i,t} \leq 0, \forall i, t \quad (\lambda_{i,t}^{rampup}) \tag{1c} \]
\[x_{i,t-1} - x_{i,t} - \xi_{i}^{down} \Pi_{i,t} \leq 0, \forall i, t \quad (\lambda_{i,t}^{rampa}} \tag{1d} \]
\[\sum_{t \in d} vload_{t} - vldaily_{d} = 0, \forall d \quad (\lambda_{d}^{vldaily}) \tag{1e} \]
\[stin_{PIEV,t} + vload_{t} - \overline{stin}_{PIEV} \leq 0, \forall t \quad (\lambda_{PIEV,t}^{st}) \tag{1f} \]
\[stin_{j,t} - \overline{st}_{j}^{in} \leq 0, \forall j \neq PIEV, t \quad (\lambda_{j,t}^{st}) \tag{1g} \]
\[stout_{j,t} - \overline{stout}_{j} \leq 0, \forall j, t \quad (\lambda_{j,t}^{st}) \tag{1h} \]
\[\sum_{\tau=1}^{t} stout_{j,\tau} - \sum_{\tau=1}^{t-1} stin_{j,\tau} \eta_{st,j} \leq 0, \forall j, t \quad (\lambda_{j,t}^{st}) \tag{1i} \]
\[\sum_{\tau=1}^{t} stin_{j,\tau} \eta_{st,j} - \sum_{\tau=1}^{t-1} stout_{j,\tau} - \overline{stcap}_{j} \leq 0, \forall j, t \quad (\lambda_{j,t}^{st}) \tag{1j} \]
\[x_{i,t}, vload_{t}, stin_{j,t}, stout_{j,t} \geq 0, \forall i, j, t \tag{1k} \]

Condition (1b) demands that a player’s electricity generation never exceeds its available generation capacity \(\Pi_{i} \). (1c) is a ‘ramping up’ restriction: between two subsequent time periods, electricity generation of a specific technology can only be increased to a certain degree, depending on the total available capacity and a technology-specific parameter \(\xi_{i}^{up} \), which takes on values between 0 and 1. Likewise, condition (1d) represents a technology-specific ‘ramping down’ restriction. Note that we relate ramping restrictions to the total available technology-specific capacity of a firm and not to starting up and shutting down of individual plants. In doing so, we avoid a unit commitment problem with a mixed-integer formulation, which would be very hard to solve in a game-theoretic framework.

Condition (1e) specifies the daily vehicle recharging requirement. We assume that the electric vehicle fleet requires a certain amount of energy for driving purposes, which has to be recharged at some point in time for each 24 hour period. \(vldaily_{d} \) is the daily vehicle recharging requirement (in MWh) for each player \((vldaily_{d} = 0 \) for players without PIEV operations). (1e) does not further restrict the timing of vehicle loading: It can take place during any given hour of the
day, or it could be split up over all 24 hours. (1f) ensures that the PIEV battery loading rate never exceeds the fleet’s cumulative connection power $\overline{sl}_{PIEV}^{in}$ (in MW). Note that battery loading consists of vehicle recharging for driving purposes ($vload_t$) and loading of unused battery capacity for arbitrage ($stin_{PIEV,t}$). Both activities draw on the same physical connection between the car and the power grid, and both result in the battery being charged. However, charging is carried out for different purposes, i.e. driving versus arbitrage on the wholesale market. (1g) is a similar loading condition for other storage technologies. Likewise, (1h) ensures that selling electricity back to the market from storage never exceeds the available storage discharging capacity \overline{sl}_{out}^{j}, i.e the fleet connection power in case of PIEV.

(1i) ensures that storage output never exceeds the net of previous storage inputs and outputs. (1j) represents an upper storage capacity constraint. For each period t, the amount of electricity that can be stored cannot exceed the total available capacity of a given storage technology \overline{sl}_{cap}^{j} (in MWh), minus previous inflows plus previous outflows.\(^5\) Condition (1i) demands that selling previously stored electricity to the market stops once the batteries are empty. As neither batteries nor pumped hydro storage have perfect roundtrip efficiencies, (1i) and (1j) include efficiency losses: only a share $\eta_{st,j}$ of previously stored electricity can be sold back to the market. Finally, (1k) ensures non-negativity of the decision variables.

A market clearing condition is required in order to link the players’ constrained maximization problems. Equation (2) defines total hourly supply to the wholesale electricity market, consisting of total electricity generation minus vehicle recharging plus storage output minus storage input. (3) demands that supply equals demand in all periods. We assume that demand is characterized by an iso-elastic function with price elasticity σ, drawing on exogenous hourly reference demands $d0_t$ and prices $p0_t$. In other words, we assume that electricity

\(^5\) We consider $\overline{sl}_{cap}^{PIEV}$ as a fraction of the overall vehicle battery capacity that is - on average - not utilized for driving purposes and that is thus available for arbitrage.
demand on the wholesale market is elastic, whereas the daily vehicle recharging requirement is fixed.

\[
X_t = \sum_{f \in F} \left[\sum_{i \in I} x_{f,i,t} - vload_{f,t} + \sum_{j \in J} (stout_{f,j,t} - stin_{f,j,t}) \right], \quad \forall t \quad (2)
\]

\[
X_t = d0_t \left(\frac{p_t}{p0_t} \right)^{-\sigma}, \quad \forall t \quad (3)
\]

We formulate the optimization program as a mixed complementarity problem (MCP), which is the suitable formulation for this type of problem. The definition of a MCP, its application to economic analyses and its implementation in GAMS is described by Rutherford (1995) and Ferris and Munson (2000). We combine the market clearing condition (3) with (2), solve for \(p_t \) and insert the expression into (1a). The resulting equation does no longer include the market price \(p_t \), but only the production decisions of different players. We then derive the Karush-Kuhn-Tucker (KKT) optimality conditions by differentiating with respect to the decision variables. The KKT conditions are listed in the Appendix (6a-6n). These include market shares, which indicate a player’s ability to raise prices beyond marginal costs. By multiplying market shares with market power parameters \(\theta_{f}^{\text{gen}} \), \(\theta_{f}^{\text{load}} \), and \(\theta_{f}^{st} \), and by exogenously assigning values 0 or 1 to these parameters, market power can be ‘switched’ off and on. The KKT conditions form a nonlinear mixed complementarity equation system, which we implement in the General Algebraic Modeling System (GAMS), drawing on the data described in section 4. In the numerical application, the problem consists of more than 140,000 equations and variables. We solve with the solver PATH, which represents a generalization of Newton’s method, including a path search (Ferris and Munson, 2000).

After solving the model, we calculate consumer and producer surplus on the electricity market. Consumer rent of period \(t \) is determined according to equation (4). Producer rent for each player is calculated according to equation (5). Note that we determine welfare outcomes only for the electricity market, but not for the market for vehicle recharging, as we do not specify the contrac-
tual relationship between the service providers responsible for vehicle recharging and individual car owners. Accordingly, we do not model costs, revenues or consumer surplus related to the recharging business. Instead, we focus on PIEV-related welfare effects on the electricity market, which are caused by increasing electricity demand and additional storage capacity. The arbitrage profits made by PIEV operators from using excess battery capacities are explicitly included in (5), as arbitrage activities take place on the wholesale electricity market. Focusing welfare considerations on the electricity market allows comparing welfare outcomes between different cases with electric vehicles and the Baseline without such vehicles in a meaningful way.

\[
\text{rent}_t = \int_0^{x_t} p_0 \left(\frac{x}{d_0} \right)^{-\frac{1}{\gamma}} dx - p_t X_t, \quad \forall t
\]

\[
\text{rent}_{f,t} = \sum_{i \in I} x_{f,i,t} (p_t - v_{gc_i})
\]

\[
+ \sum_{j \in J} (sout_{f,j,t} (p_t - v_{stc_j}) - \text{stin}_{f,j,t} \cdot p_t), \quad \forall t
\] (4) (5)

4. Data

We apply the model to the German wholesale electricity market and run it for two consecutive weeks (336 single hours) in order to reflect different load situations. Reference demand and price data \((d_0\) and \(p_0\)) for each hour is taken from the German energy exchange (EEX). We draw on two characteristic winter weeks between 16 and 29 January 2009, as the effect of additional electricity demand should be greatest in winter, when demand is high. We start the model on a Friday in order to generate meaningful storage patterns over during two weekends. As in Schill and Kemfert (2011), we assume a price elasticity of

\footnote{Note that vehicle recharging can also be carried out by individual car owners without the help of a service provider.}

\footnote{We assume that all storage capacity is completely empty at the beginning. Results do not change significantly under the assumption that storage is initially loaded, as we model a sufficiently long period of two full weeks.}
demand of $\sigma = 0.45$. This value allows a good replication of the reference data.

For reasons of simplicity and traceability, σ is assumed to be time-invariant.

<table>
<thead>
<tr>
<th>Available generation capacity:</th>
<th>EnBW</th>
<th>E.ON</th>
<th>RWE</th>
<th>Vattenfall</th>
<th>Fringe</th>
<th>RES</th>
<th>NoGen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>3,974</td>
<td>7,553</td>
<td>3,496</td>
<td>1,402</td>
<td>946</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lignite</td>
<td>398</td>
<td>1,302</td>
<td>8,494</td>
<td>7,201</td>
<td>403</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hard coal</td>
<td>1,570</td>
<td>5,833</td>
<td>2,615</td>
<td>979</td>
<td>3,604</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Natural gas</td>
<td>686</td>
<td>2,543</td>
<td>1,959</td>
<td>1,382</td>
<td>4,302</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oil</td>
<td>103</td>
<td>348</td>
<td>5</td>
<td>152</td>
<td>127</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydro</td>
<td>299</td>
<td>1,055</td>
<td>447</td>
<td>0</td>
<td>625</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Wind</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>25,777</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Available pumped hydro storage capacity:</th>
<th>Loading/discharging rate in MW</th>
<th>Capacity in MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnBW</td>
<td>503</td>
<td>1,440</td>
</tr>
<tr>
<td>E.ON</td>
<td>509</td>
<td>1,358</td>
</tr>
<tr>
<td>RWE</td>
<td>512</td>
<td>1,392</td>
</tr>
<tr>
<td>Vattenfall</td>
<td>1,447</td>
<td>3,428</td>
</tr>
<tr>
<td>Fringe, i, t</td>
<td>228</td>
<td>440</td>
</tr>
</tbody>
</table>

Table 1: Available generation and pumped hydro storage capacity in MW

We include seven players, among them four oligopolistic generating firms: EnBW, E.ON, RWE, and Vattenfall. Combined, these firms hold more than 80% of total German generation capacity. The remaining conventional generation capacity is assigned to a price-taking generating firm named ‘Fringe’. Accordingly, $\theta_{gen}^f = 1$ for $f=$EnBW, E.ON, RWE, Vattenfall and $\theta_{Fringe,i,t}^gen = 0$ in the KKT conditions (Appendix). Another price-taking player named ‘RES’ holds the total installed wind capacity ($\theta_{RES,wind,t}^{gen} = 0$). In addition, we include a player ‘NoGen’ without any generation capacity, which may only engage in vehicle operations. This idea follows Andersen et al. (2009), who argue that new PIEV players will emerge. The NoGen player may either act as a price-taker or in a strategic way, depending on the scenario as defined in 5. We include the generation technologies nuclear, lignite, hard coal, natural gas, oil, and hydro power. Natural gas is an aggregate of combined cycle, steam, and gas turbines. Hydro power includes run-of-river and other hydroelectric plants, but excludes pumped storage. Table 1 lists generation capacity available to each player. Data is derived from Traber and Kemfert (2009) and adjusted with technology-specific plant availabilities in order to reflect regular maintenance and outages. Note that the wind capacity listed in the table (BMU, 2010) hardly matters as wind generation is exogenously set according to hourly feed-in levels between 16 and
29 January 2009 in order to reflect the German regulation which grants priority feed-in to renewable power sources. Hourly wind generation data comes from publicly available sources provided by German transmission system operators. Table 1 also includes available pumped hydro storage capacity in Germany according to Schill and Kemfert (2011). We assume that 50% of the cumulatively installed loading/discharging rate and only 20% of the total pumped hydro storage capacity are available for arbitrage in any given hour. These values are based on interviews with industry experts and reflect the fact that a substantial share of the German pumped hydro storage capacity is reserved for frequency control, reactive power supply, and seasonal storage. \(\theta_{st}^{f} = 1 \) for \(f=\text{EnBW, E.ON, RWE, Vattenfall} \) and \(\theta_{st}^{Fringe} = 0 \). Table 2 lists ramping parameters and variable costs for all generation technologies (Schill and Kemfert, 2011). Variable generation costs reflect fuel and other operational costs as well as emission costs. Data sources include dena (2005), Wissel et al. (2008), EEX and the International Energy Agency.

<table>
<thead>
<tr>
<th>Ramping parameters</th>
<th>Nuclear</th>
<th>Lignite</th>
<th>Hard Coal</th>
<th>Natural Gas</th>
<th>Oil</th>
<th>Hydro</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xi_{up}^i)</td>
<td>0.05</td>
<td>0.07</td>
<td>0.22</td>
<td>0.28</td>
<td>0.68</td>
<td>0.22</td>
</tr>
<tr>
<td>(\xi_{down}^i)</td>
<td>0.10</td>
<td>0.06</td>
<td>0.18</td>
<td>0.26</td>
<td>0.72</td>
<td>0.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable generation costs</th>
<th>10</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{vgc}_i) in (\text{€}/\text{MWh})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Parameters for conventional generation technologies

As for a hypothetic electric vehicle fleet, we draw on the official target of the German government of having one million electric vehicles on the road by 2020 (Bundesregierung, 2009). We derive the characteristics of future PIEV fleets from scenarios developed by Wietschel and Dallinger (2008). Accordingly, one million PIEV have a cumulative connection power of around 5 GW (\(\sum_{f} st_{f,PIEV}^{in} \) and \(\sum_{f} st_{f,PIEV}^{out} \)). The average daily recharging requirement amounts to 4 GWh (\(\sum_{f} vldaily_{f,d} \)). The overall battery capacity is around 13 GWh, such that around 9 GWh should be available on average for arbitrage.
These numbers certainly represent only rough estimates of future PIEV fleet characteristics. We are, however, more interested in general effects than in absolute numbers in our numerical application.

We estimate that around 80% of all electric vehicles are not on the road, but parked at any given hour (Kempton and Tomic, 2005a, even assume 90%). We furthermore assume that all parked cars are connected to the electricity grid. Thus 80% of the PIEV capacity is available any point in time. Drawing on Sioshansi et al. (2010), we assume a round-trip efficiency of $\eta_{st,PIEV} = 0.9$ for vehicle batteries. Accordingly, for each MWh that is stored in PIEV batteries, only 0.9 MWh can be retrieved again later. As for pumped hydro storage, we assume an average round-trip efficiency of only $\eta_{st,PHS} = 0.75$ (dena, 2008).

Regarding variable storage costs (aside from opportunity costs $p_t \cdot st_{in,t}$), we initially set $vstc_j = 0$ for both vehicle batteries and pumped hydro storage. We relax this assumption in section 6.4 in order to assess the sensitivity of results to non-negligible battery degradation costs.

5. Scenarios

We define eight different cases as indicated by Table 3. They bear some similarity to scenarios used by Göransson et al. (2010). The ‘Baseline’ (BL), which does not include any electric vehicles, serves as a point of reference. In the ‘Uncontrolled Loading’ (UL) scenario, we exogenously assign the daily vehicle recharging requirement of the PIEV fleet to the evening hours between 4pm and 8pm (1 GWh per hour). In a stylized way, UL represents the behavior of vehicle owners which plug in their cars for recharging when they get home from work (compare Galus et al., 2010; Göransson et al., 2010). Furthermore, we define

\[(\sum f \cdot st_{cap,f,PIEV})\]

Tomic and Kempton (2007), Lund and Kempton (2008), and Ekman (2011) argue that PIEV could provide much-needed flexibility for integrating fluctuating renewable generators into the electricity system. The numbers used in our analysis, however, indicate that the potential of electric vehicles for integrating renewables should not be overestimated: the battery capacity not required for average daily driving of one million vehicles is only 9 GWh. For comparison: the installed German wind capacity of 2009 was around 25 GW, i.e. vehicle batteries would be completely loaded within less than half an hour during periods with high wind feed-in.
Table 3: Overview of scenarios

<table>
<thead>
<tr>
<th></th>
<th>PIEV resources</th>
<th>Player in charge of PIEV fleet</th>
<th>Market power assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>-</td>
<td>-</td>
<td>Loading exogeneous (non-optimal)</td>
</tr>
<tr>
<td>UL</td>
<td>Loading only</td>
<td>NoGen</td>
<td>Price taker (\theta_{NOGEN} = 0)</td>
</tr>
<tr>
<td>LO1</td>
<td>Loading only</td>
<td>NoGen</td>
<td>Strategic (\theta_{NOGEN} = 1)</td>
</tr>
<tr>
<td>LO2</td>
<td>Loading only</td>
<td>NoGen</td>
<td>Strategic (\theta_{RWE} = 1)</td>
</tr>
<tr>
<td>LO3</td>
<td>Loading only</td>
<td>RWE</td>
<td>Strategic (\theta_{RWE} = 1)</td>
</tr>
<tr>
<td>LS1</td>
<td>Loading and storage</td>
<td>NoGen</td>
<td>Price taker (\theta_{NOGEN} = 0) (\theta_{RWE} = 0)</td>
</tr>
<tr>
<td>LS2</td>
<td>Loading and storage</td>
<td>NoGen</td>
<td>Strategic (\theta_{NOGEN} = 1) (\theta_{RWE} = 1)</td>
</tr>
<tr>
<td>LS3</td>
<td>Loading and storage</td>
<td>RWE</td>
<td>Strategic (\theta_{RWE} = 1)</td>
</tr>
</tbody>
</table>

different cases with controlled vehicle loading, which differ with respect to the availability of unused battery capacity for grid storage. In the ‘Loading Only’ (LO) cases, the PIEV fleet only represents additional, dispatchable load. In the ‘Loading and Storage’ (LS) cases, it also brings additional storage capacity to the market, which can be used for arbitrage. Note that there may be barriers to implementing this option due to technical and institutional constraints. In contrast to PIEV storage, pumped hydro storage is available in all scenarios.

Cases also differ with respect to the players being in charge of PIEV operations. It may either be the NoGen player, which does not own any electricity generation capacity, or an oligopolistic generator. The scenarios in which the NoGen player carries out PIEV operations in a non-strategic way (LO1, LS1) represent, on the one hand, a situation in which several PIEV service providers act as price takers on the electricity market (just like the Fringe player among the generating firms). On the other hand, LO1 and LS1 also represent cases in which individual car owners recharge their vehicles in a decentralized, cost-minimizing way. In LO2 and LS2, the NoGen player carries out PIEV operations as a centralized, strategic player that anticipates the market’s reactions to its decisions. We could think of it as a monopolistic service provider that has con-
tracted the whole PIEV fleet.9 In LO3 and LS3, a strategic generating firm has a monopoly on PIEV operations. We chose RWE as an illustrative example due to the company’s recent activities in the electric vehicle business.

6. Results

6.1. Price effects

Figure 1: Electricity prices for different cases over a characteristic day

Figure 1 shows the effect of electric vehicles on electricity prices for a characteristic day (Tuesday) and a selection of cases. We find the highest evening peak prices in the uncontrolled loading case (UL) because of additional electricity demand during these hours. In the case of controlled loading (LO1), vehicles are being recharged in periods with the lowest prices. Compared to the Baseline, market prices in LO1 thus increase slightly in off-peak periods.10 In the LS1 case, in which excess battery capacity can be used for grid storage, batteries are loaded during off-peak periods and discharged in the periods with the highest

9 The LO1 and LS1 cases are conceptually related to scenarios in which the price-taking Fringe generator controls vehicle operations. We obtain the same results for NoGen and for Fringe being in charge of PIEV operations, with the exception of different producer rents.

10 Additional model runs indicate that PIEV fleets much larger than one million vehicles could be recharged with the existing German power plant fleet without increasing peak prices, if loading is carried out in a controlled way.
prices in order to maximize arbitrage profits. As a result, prices are smoother than in LO1.

6.2. Welfare effects

Figure 2 indicates welfare changes compared to the Baseline in different cases. In the uncontrolled loading case (UL), the introduction of PIEV into the market leads to an increase in producer profits because of higher peak prices. In contrast, consumer rent decreases.\(^\text{11}\) We find the same effect for the cases with controlled vehicle loading (LO1-LO3), although to a much lower extent. Accordingly, the introduction of PIEV harms electricity consumers less if they are loaded in a controlled way. Interestingly, if a strategic generator is in charge of PIEV operations (LO3), consumer rent and overall welfare are slightly higher than in the cases LO1 and LO2. This is because being in control of additional dispatchable load has a market power-mitigating effect on the oligopolistic generator. In LO3, RWE strategically decreases market prices in periods of vehicle loading by increasing its generation with low-cost technologies.\(^\text{12}\)

\(^{11}\)As discussed in section 3, we only examine consumer surplus in the power market, but abstract from possible rents of vehicle owners.

\(^{12}\)This effect is also visible in the player’s first-order condition: note the negative sign for
If excess battery capacity of the PIEV fleet can be used for grid storage, we find very different welfare effects. In LS1-3, producers overall suffer from the introduction of PIEV due to the price-smoothing effect of additional storage capacity in the market. In contrast, consumer surplus and overall welfare increase substantially. Consumers now benefit from the PIEV fleet despite the fact that overall demand increases, as the price-driving effect of additional demand is outweighed by the price-smoothing effect of additional storage. In particular, consumers benefit from the decreasing effect of storage on peak prices, which has a larger effect than price increases in off-peak hours, as demand is higher in peak hours. In LS3, the strategic generating firm RWE withholds some PIEV storage capacity, which results in slightly higher peak prices compared to LS1 and LS2. At the same time, RWE strategically increases generation in periods of storage loading, which leads to substantially lower prices during these periods. As a result, consumer surplus and overall welfare are slightly higher in LS3 compared to LS1 and LS2.13

During the two weeks modeled here, overall welfare increases between €2.7-3.2 million in LS1-3 compared to UL, whereas consumers are €5.2-5.8 million better off. A rough extrapolation of these values to a whole year leads to overall yearly welfare gains in the range of €70-83 per vehicle, and yearly consumer benefits of around €135-151 per vehicle. Yet these PIEV-related welfare effects are small compared to welfare losses related to strategic electricity generation. Comparing the Baseline to a scenario with perfectly competitive generation ($\theta^\text{gen}_{f,t} = 0$ for all players), the assumed oligopolistic market structure leads to welfare losses of around €62 million over the two modeled weeks.

Figure 3 shows producer rent changes of single firms compared to the Baseline. All players are better off in the uncontrolled loading case (UL) compared

\[\varphi^{\text{load}}_{j,t} \] in equation (6a). The finding is in line with the theoretical work by Allaz and Vila (1993), according to which forward contracted demand causes a strategic firm to increase output, which benefits this firm, but harms its competitors. Bushnell et al. (2008) examine this effect in detail for restructured power markets.

13Again, the market power-mitigating effect of storage loading is indicated by the negative sign of $\varphi^{\text{gen}}_{f,t}$ in equation (6a).
Figure 3: Producer rent changes compared to Baseline over 14 days

to controlled loading (LO1-3). In LO3, RWE manages to increase its profit compared to LO1-2 by strategically adjusting generation in off-peak periods, whereas all other generating firms suffer. If excess PIEV battery capacity can be used for storage (LS1-3), the respective operator makes a sizeable arbitrage profit, while all other producers suffer from the price-smoothing effect of storage. However, the social welfare gain of PIEV operations in LS1-3 is around two times higher than the respective profit increase of the PIEV operator. Accordingly, players are not able to fully internalize PIEV-related welfare gains.

Cases also differ with respect to the costs of providing the electricity required for daily vehicle recharging. Figure 2 shows that vehicle loading costs are much lower in all cases of controlled loading compared to the uncontrolled UL case. This is because PIEV operators in LO1-3 and LS1-3 charge their vehicles with cheap off-peak electricity. Average loading costs in these cases are around € 0.04/kWh. With an assumed average electricity consumption of around 20 kWh/100km (compare Sioshansi et al., 2010), energy costs of electric vehicles would be around only € 1/100km. Although this value does not include taxes, distribution, infrastructure costs, and retailer profits, it indicates that the electricity required for electric vehicles could be supplied at very low costs.
6.3. Effects on electricity generation

Figure 4: Additional generation compared to Baseline over 14 days

Figure 4 shows that the introduction of electric vehicles increases electricity generation in all cases compared to the Baseline because of additional demand. Generation is generally higher in the cases in which batteries are used for arbitrage (LS1-3), as the decreasing effect of storage on peak prices leads to additional demand in these periods. We find the highest increases in generation for the cases in which an oligopolistic generator controls the PIEV fleet (LO3 and LS3). In these cases, RWE increases generation during periods of vehicle and storage loading in order to strategically decrease market prices.

Figure 4 also indicates variations in the mix of additional generation among different cases. In the uncontrolled loading case (UL), most additional generation is provided by hard coal, as this is the technology with the lowest costs that is largely available in the evening hours between 4pm and 8pm. In the cases with controlled loading, vehicle recharging is carried out during nighttime. In these periods, some lignite capacity is available, such that the amount of lignite increases in all cases with controlled loading compared to UL. We find the largest increase in lignite generation in the scenarios in which the strategic player RWE is in charge of vehicle operations. In particular, RWE substantially
increases its lignite generation in LS3 in order to strategically decrease market prices during the periods of vehicle recharging and battery loading.

In contrast to Göransson et al. (2010), we do not find that electric vehicles increase the feed-in of wind power. In all model runs, hourly wind generation is equal to the historic feed-in pattern of the modeled two weeks. A PIEV fleet could only increase wind power feed-in, if there was some wind curtailment in the Baseline. For example, wind curtailment is required if overall demand is lower than wind generation, or if there are severe short-term ramping constraints. However, there is no curtailment in the Baseline during the modeled 336 hours. Accordingly, PIEV do not increase overall wind generation. We acknowledge that our assumption of perfect foresight over the whole modeled period leads to a systematic under-estimation of wind curtailment requirements. Nonetheless, we consider our findings to be largely representative for the situation in Germany in 2009, as there were only very few periods of excess wind supply, which furthermore were largely restricted to specific regions. Consequently, it is unlikely that electric vehicles would have substantially increased wind feed-in in Germany. However, this situation might change in the future. If installed wind generation capacity increases further, cases of excess wind supply will become more frequent.

Controlled PIEV loading also smoothes generation patterns of conventional technologies. This effect is expressed by a lower number of binding ramping constraints. In the LO cases, the additional dispatchable load of PIEV decreases the number of binding ramping constraints by around 5% compared to the Baseline over 14 days. In the LS cases, the number decreases up to 15% because of the smoothing effect of additional storage capacity in the market.14 Figure 7 in the Appendix shows the overall pattern of electricity generation, vehicle

14Note that ramping-related costs are only indirectly included in our analysis by means of shadow prices $\lambda_{r,i,t}^{u,v}$ and $\lambda_{r,i,t}^{d,v}$. An explicit consideration of ramping-related costs, for example due to part load inefficiencies or ramping-related depreciation, would require a bottom-up modeling approach with individual power plants and a mixed integer problem formulation. Including such costs might increase the positive effects of PIEV fleets on overall welfare.
loading, and storage utilization for LS1 over two weeks.

Summing up, controlled loading of electric vehicles will increase the utilization of least-cost generation technologies, which tend to be emission-intensive in Germany. Most notably, lignite generation increases. While this effect is already described, for example by Sioshansi et al. (2010), we find evidence that it may be even stronger in imperfect electricity markets. If an oligopolistic generating firm is controlling PIEV operations, generation with emission-intensive low-cost technologies may increase even stronger compared to cases in which other players are in charge of the PIEV fleet. Accordingly, the emission performance of electric vehicles in imperfect electricity markets may be worse than previously thought.

6.4 Storage utilization and sensitivity to battery degradation costs

So far, we assume zero variable costs of battery storage ($vst_{PIEV} = 0$). Yet utilizing vehicle batteries for arbitrage may lead to battery degradation costs. As battery degradation heavily depends on battery technology, the depth of discharge, and the kind of loading and discharging cycles, it is difficult to provide a solid number for variable storage costs of future PIEV fleets. For older battery types, Tomic and Kempton (2007) assume values between 80-90 US-$/MWh.

Figure 5: PIEV storage output depending on storage operator and battery degradation costs over 14 days
For lithium-ion batteries, Andersson et al. (2010) assume depreciation costs of 30-100 €/MWh. These costs may decrease substantially with improved battery technology. We thus perform sensitivity analyses for different battery degradation costs \(vstc_{PIEV} \). Figure 5 shows battery storage utilization for values of 0, 5, 10, 20 and 50 €/MWh. It can be seen that the use of PIEV batteries for arbitrage decreases substantially with increasing degradation costs. For 10 €/MWh, only around half the storage capacity is used compared to the case with zero variable storage costs (LS1). For 50 €/MWh, hardly any battery storage is used for arbitrage in all cases.

In addition, battery storage utilization depends on the player being in charge of PIEV operations. A strategic player (LS2) without generation assets always utilizes less storage capacity than a price-taking one (LS1). This is because of the price-smoothing effect of storage: a strategic player withholds some storage capacity in order not to smooth prices too much, which in turn increases arbitrage profits (compare Schill and Kemfert, 2011). This effect is more pronounced if PIEV operations are concentrated with a strategic generating firm. Such a firm is even less interested in smoother prices, as they would decrease peak-load profits of all other generation assets. Accordingly, PIEV storage utilization is lowest in the LS3 cases. In our model, RWE hardly uses any storage if battery degradation costs are larger than 10 €/MWh.

As shown in Figure 6, variable storage costs also have welfare implications, as lower storage utilization leads to less smooth prices. Accordingly, the beneficial impact of electric vehicles on consumer rents and overall welfare decreases with higher battery degradation costs. For \(vstc_{PIEV} = 50 \), welfare results are close to the LO cases, in which arbitrage with vehicle batteries is assumed to be impossible. For \(vstc_{PIEV} = 0 \) and \(vstc_{PIEV} = 5 \), the LS3 case - in which the oligopolistic generating firm RWE controls the PIEV fleet - leads to desirable consumer rent outcomes. This is because of the previously described market power-mitigating effect of storage loading on the strategic generator. Interestingly, consumers are much worse off in LS3 compared to LS1 and LS2 for \(vstc_{PIEV} = 10 \) and \(vstc_{PIEV} = 20 \). In these cases, RWE hardly uses any
battery storage, as arbitrage profits are too small compared to the decreasing effect of storage on peak prices and the related decrease in profits of RWE’s other generation assets. As a result, consumers hardly benefit from the additional battery storage capacity in the market. In contrast, the NoGen player still finds it profitable to carry out some arbitrage in the cases of $v_{stc_{PIEV}} = 10$ and $v_{stc_{PIEV}} = 20$, as this player does not own any generation capacity. Accordingly, prices are smoother in LS1 and LS2 compared to LS3, and consumers are better off.

Drawing on these results, we conclude that storage utilization and welfare outcomes of the LS cases depend substantially on battery degradation costs. Higher variable storage costs generally decrease arbitrage opportunities. Current battery degradation costs may thus impose serious obstacles to utilizing PIEV fleets for arbitrage in Germany. This corresponds to the findings of Peterson et al. (2010) for different U.S. markets. Moreover, there are additional fixed costs for setting up bi-directional loading and discharging infrastructure, which we neglect in this analysis. As a consequence, the price-smoothing effect of PIEV grid storage and the consumer benefits outlined in section 6.2 may not materialize. Other markets with higher revenue streams like the provision
of regulating power may be more promising for PIEV operators than arbitrage (compare Andersson et al., 2010).

The analysis also shows that the player in charge of PIEV operations has a large impact on consumer surplus in some cases. Yielding control over PIEV batteries to a single strategic generating firm may lead to undesirable results from a consumer perspective, despite the market power-mitigating effects of vehicle recharging and storage loading described earlier.

6.5. Discussion of limitations

The analysis focuses on Germany and neglects possible interactions with other European countries. While including neighboring countries is beyond the scope of this article, we briefly discuss some implications for the results presented above. Considering the European interconnection in the model would lead to additional generation capacity being available for vehicle loading in both peak and off-peak times. Accordingly, both the welfare-enhancing effect of controlled vehicle loading and the benefits of additional storage capacity may be slightly overestimated in our model. However, the extent to which foreign generation capacity can be utilized for German vehicle operations depends on the load situations in other countries and is furthermore limited by transmission constraints. In addition, other countries like France also plan large-scale deployment of electric vehicles. As vehicles are likely to be loaded during similar periods in different countries, the effects determined by our model may be reinforced. At the same time, an adequate representation of the European interconnection requires a load flow model, which would greatly complicate the numerical solution process. Given these considerations, we conclude that focusing on Germany is reasonable in this context.

Furthermore, it should be noted that we draw on today’s generation portfolio for analyzing the market effects of a fleet of 1 million PIEV, which is projected to be on the road only by the year 2020. Generators may anticipate additional power demand caused by electric vehicles, such that installed power generation capacity changes accordingly until 2020. Yet projecting PIEV-related shifts in
the generation structure is highly speculative from today’s point of view. This is particularly true in the context of rapidly changing investment incentives in the German power market, which are a result of large-scale renewable energy expansion and the nuclear phase-out in the wake of the Fukushima reactor disaster. In the light of these uncertainties, drawing on today’s generation portfolio appears to be a sensible approach for analyzing the general market effects of plug-in electric vehicles.

7. Conclusions

We study the interaction of electric vehicles and imperfectly competitive electricity markets with a game-theoretic Cournot model, which we apply numerically to Germany. We find that uncontrolled vehicle recharging, for example by individual vehicle owners, increases already existing evening peak loads and prices. In contrast, players able to respond to hourly wholesale market prices will carry out vehicle recharging in off-peak periods. If unused PIEV battery capacity can be used for arbitrage, this will smooth electricity prices, as batteries will be loaded in off-peak periods and discharged in peak periods.

These price effects have direct welfare implications. In general, the introduction of PIEV increases generator profits and decreases consumer surplus in the power market because of additional electricity demand. These welfare distortions, however, are much lower in the case of optimal loading compared to uncontrolled loading. We thus conclude that individuals or service providers that are responsible for recharging electric vehicles should be enabled to respond to hourly market prices. If vehicle batteries can be used for arbitrage, welfare effects are reversed: generator profits decrease, while consumer surplus and overall welfare increase substantially. The analysis indicates that the additional storage capacity of a PIEV fleet has potentially larger welfare implications in an imperfect electricity market than its additional demand. Moreover, storage-related welfare gains in the power market – although moderate – can be considered an additional benefit of electric vehicles that complements other advantages like
lower emissions or lower oil import dependency. However, a sensitivity analysis indicates that using excess vehicle battery capacity for arbitrage is only viable if variable storage costs are negligible. Current real-world battery degradation costs may seriously diminish arbitrage opportunities and related welfare gains. Providing regulating power may be a more profitable strategy for PIEV operators than arbitrage.

If vehicles operations are controlled by a strategic generating firm, we find two effects with different welfare implications. On the one hand, there is a market power-mitigating effect of vehicle loading which benefits consumers. On the other, strategic generators tend to under-utilize PIEV storage capacity, which has negative consumer rent implications. All things considered, it is not possible to make a clear recommendation on which player should be in charge of PIEV operations. However, our analysis shows that the player controlling the vehicle fleet is of minor importance in most cases, as long as electric vehicle recharging is carried out in a controlled way. Furthermore, the potential welfare distortions related to different players being in charge of the PIEV fleet are small compared to the welfare effects of market power exertion with conventional generation technologies. Electric vehicle fleets are thus unlikely to be a relevant source of market power in Germany, no matter who controls the fleets. Accordingly, economic regulation of PIEV operations is currently not required with respect to the electricity market. However, there may be potentials for market power exertion on markets for PIEV services. For example, firms could exploit natural monopolies related to charging infrastructure or billing standards. Future research should focus on these market power potentials.

Finally, we find that controlled loading of electric vehicles increases the utilization of low-cost generation technologies, which tend to be emission-intensive. CO₂ emissions of future electric vehicles should thus be calculated drawing on emission-intensive generation technologies rather than on the average power plant mix. Additional storage capacity further increases low-cost generation. These effects are particularly pronounced if an oligopolistic generator is in charge of PIEV operations. In the light of ambitious climate policy targets, we thus
conclude that a shift towards electric mobility has to be accompanied by a complementary expansion of low-emission, renewable electricity generation.

References

8. Appendix

8.1. Sets, indices, parameters and variables

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Players with $f \in F$</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Generation technologies with $i \in I$</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Storage technologies with $j \in J$</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Time with $t \in T$, $\tau \in T$</td>
<td>hours</td>
</tr>
<tr>
<td>D</td>
<td>Time with $d \in D$</td>
<td>days</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
</tr>
<tr>
<td>d_{0t}</td>
</tr>
<tr>
<td>p_{0t}</td>
</tr>
<tr>
<td>$\text{vldaily}_{f,d}$</td>
</tr>
<tr>
<td>$\text{st}_{i,j}$</td>
</tr>
<tr>
<td>$\text{st}_{i,j}$</td>
</tr>
<tr>
<td>$\text{st}_{i,j}$</td>
</tr>
<tr>
<td>$\xi_{i,j}^{\text{up}}$</td>
</tr>
<tr>
<td>$\xi_{i,j}^{\text{down}}$</td>
</tr>
<tr>
<td>vgc_{i}</td>
</tr>
<tr>
<td>$\text{vstc}_{i,j}$</td>
</tr>
<tr>
<td>$\theta_{i,t}^{\text{gen}}$</td>
</tr>
<tr>
<td>$\theta_{i,t}^{\text{load}}$</td>
</tr>
<tr>
<td>$\theta_{i,t}^{\text{st}}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Π_{f}</td>
</tr>
<tr>
<td>p_{t}</td>
</tr>
<tr>
<td>$x_{f,i,t}$</td>
</tr>
<tr>
<td>X_{t}</td>
</tr>
<tr>
<td>$\text{vload}_{f,t}$</td>
</tr>
<tr>
<td>$\text{stout}_{f,j,t}$</td>
</tr>
<tr>
<td>$\text{stin}_{f,j,t}$</td>
</tr>
<tr>
<td>$\lambda_{f,i,t}^{\text{gen}}$</td>
</tr>
<tr>
<td>$\lambda_{f,i,t}^{\text{up}}$</td>
</tr>
<tr>
<td>$\lambda_{f,i,t}^{\text{down}}$</td>
</tr>
<tr>
<td>$\lambda_{f,i,t}^{\text{vldaily}}$</td>
</tr>
<tr>
<td>$\lambda_{f,j,t}^{\text{st}_{i,j}}^{\text{out}}$</td>
</tr>
<tr>
<td>$\lambda_{f,j,t}^{\text{st}_{i,j}}^{\text{in}}$</td>
</tr>
<tr>
<td>$\lambda_{f,j,t}^{\text{st}_{i,j}}^{\text{up}}$</td>
</tr>
<tr>
<td>$\lambda_{f,j,t}^{\text{st}_{i,j}}^{\text{lo}}$</td>
</tr>
<tr>
<td>$\theta_{f,t}^{\text{g}_{i,t}}$</td>
</tr>
<tr>
<td>$\theta_{f,t}^{\text{v}_{i,t}}$</td>
</tr>
<tr>
<td>$\theta_{f,t}^{\text{st}_{i,j}}$</td>
</tr>
<tr>
<td>$\theta_{f,t}^{\text{st}_{i,j}}$</td>
</tr>
<tr>
<td>crent_{t}</td>
</tr>
<tr>
<td>$\text{prent}_{f,t}$</td>
</tr>
</tbody>
</table>

Table 4: Sets, indices, parameters and variables
8.2. The mixed complementarity problem

\[0 \leq v_{g_{i}} + \lambda_{f_{i,t}}^{\text{gen}} + \lambda_{f_{i,t}}^{\text{rup}} - \lambda_{f_{i,t+1}}^{\text{rup}} - \lambda_{f_{i,t}}^{\text{rdo}} + \lambda_{f_{i,t+1}}^{\text{rdo}} - p_t \left(1 - \sum_{i \in I} \varphi_{f_{i,t}}^{\text{gen}} - \varphi_{f_{t}}^{\text{load}} \frac{\varphi_{f_{t}}^{\text{load}}}{\sigma} + \sum_{j \in J} (\varphi_{f_{j,t}}^{\text{out}} - \varphi_{f_{j,t}}^{\text{in}}) \right) \]
\[\perp x_{f_{i,t}} \geq 0, \forall f, i, t \] (6a)

\[0 \leq \lambda_{f_{j,t}}^{\text{vldaily}} + \lambda_{f_{j,t}}^{\text{stin}_{f_{j,t}}^{\text{EV}_{f_{j,t}}}} + p_t \left(1 - \sum_{i \in I} \varphi_{f_{i,t}}^{\text{gen}} - \varphi_{f_{t}}^{\text{load}} \frac{\varphi_{f_{t}}^{\text{load}}}{\sigma} + \sum_{j \in J} (\varphi_{f_{j,t}}^{\text{out}} - \varphi_{f_{j,t}}^{\text{in}}) \right) \]
\[\perp v_{load_{f_{i,t}}} \geq 0, \forall f, t \] (6b)

\[0 \leq v_{\text{stc}_{j}} + \sum_{t=1}^{T} \lambda_{f_{j,t}}^{\text{stout}_{f_{j,t}}} - \sum_{t=1}^{T-1} \lambda_{f_{j,t}}^{\text{stup}_{f_{j,t}}} - p_t \left(1 - \sum_{i \in I} \varphi_{f_{i,t}}^{\text{gen}} - \varphi_{f_{t}}^{\text{load}} \frac{\varphi_{f_{t}}^{\text{load}}}{\sigma} + \sum_{j \in J} (\varphi_{f_{j,t}}^{\text{out}} - \varphi_{f_{j,t}}^{\text{in}}) \right) \]
\[\perp \text{stout}_{f_{j,t}} \geq 0, \forall f, j, t \] (6c)

\[0 \leq \lambda_{f_{j,t}}^{\text{stin}_{f_{j,t}}} - \sum_{t=1}^{T-1} \lambda_{f_{j,t}}^{\text{stlo}_{f_{j,t}}} - \sum_{t=1}^{T} \lambda_{f_{j,t}}^{\text{stup}_{f_{j,t}}} + \sum_{j \in J} \eta_{f_{j,t}} \]
\[+ p_t \left(1 - \sum_{i \in I} \varphi_{f_{i,t}}^{\text{gen}} - \varphi_{f_{t}}^{\text{load}} \frac{\varphi_{f_{t}}^{\text{load}}}{\sigma} + \sum_{j \in J} (\varphi_{f_{j,t}}^{\text{out}} - \varphi_{f_{j,t}}^{\text{in}}) \right) \]
\[\perp \text{stin}_{f_{j,t}} \geq 0, \forall f, j, t \] (6d)
0 \leq -x_{f,i,t} + x_{f,i} \quad \perp \lambda_{f,i,t}^{gen} \geq 0, \forall f, i, t \quad (6e)
0 \leq -x_{f,i,t} + x_{f,i,t-1} + \xi_{f,i}^{up} \quad \perp \lambda_{f,i,t}^{rup} \geq 0, \forall f, i, t \quad (6f)
0 \leq -x_{f,i,t-1} + x_{f,i,t} + \xi_{f,i}^{down} \quad \perp \lambda_{f,i,t}^{rdo} \geq 0, \forall f, i, t \quad (6g)
0 = -\sum_{t \in d} vload_{f,t} + vldaily_{f,d}, \quad \lambda_{f,d}^{vldaily} \text{ free}, \forall f, d \quad (6h)
0 \leq -x_{f,i,t} + x_{f,i} \quad \perp \lambda_{f,i,t}^{st} \geq 0, \forall f, i, t \quad (6i)
0 \leq -x_{f,j,t} + x_{f,j} \quad \perp \lambda_{f,j,t}^{out} \geq 0, \forall f, j \neq PIEV, t \quad (6j)
0 \leq -x_{f,j,t} + x_{f,j} \quad \perp \lambda_{f,j,t}^{st} \geq 0, \forall f, j \neq PIEV, t \quad (6k)
0 \leq -\sum_{\tau=1}^{t} x_{f,j,\tau} + \sum_{\tau=1}^{t-1} x_{f,j,\tau \eta_{st,j}} \quad \perp \lambda_{f,j,t}^{stlo} \geq 0, \forall f, j, t \quad (6l)
0 \leq -\sum_{\tau=1}^{t} x_{f,j,\tau \eta_{st,j}} + \sum_{\tau=1}^{t-1} x_{f,j,\tau} + x_{f,j} \quad \perp \lambda_{f,j,t}^{stup} \geq 0, \forall f, j, t \quad (6m)
0 = X_t - d_{0t} \left(\frac{p_t}{p_{0t}} \right)^{-\sigma}, \quad p_t \text{ free}, \forall t \quad (6n)

Equations (6a-6d) include market shares \(\theta_{f,i,t}^{gen} \), \(\theta_{f,t}^{vload} \), \(\theta_{f,j,t}^{out} \), and \(\theta_{f,j,t}^{st} \) as defined in (7a-7d). They indicate a player’s ability to raise prices beyond marginal costs. (6a-6n) also include market power parameters \(\theta_{f}^{gen} \), \(\theta_{f}^{vload} \), and \(\theta_{f}^{st} \). By exogenously assigning the values 0 or 1, we can ‘switch’ off and on market power for specific firms regarding generation, PIEV recharging, and storage.

\[
\theta_{f,i,t}^{gen} = \frac{x_{f,i,t}}{X_t}, \forall f, i, t \quad (7a)
\theta_{f,t}^{vload} = \frac{vload_{f,t}}{X_t}, \forall f, t \quad (7b)
\theta_{f,j,t}^{out} = \frac{stout_{f,j,t}}{X_t}, \forall f, j, t \quad (7c)
\theta_{f,j,t}^{st} = \frac{stin_{f,j,t}}{X_t}, \forall f, j, t \quad (7d)
\]

Equations (6a-6d) include a standard Cournot result: In case of positive generation market shares \(\theta_{f,i,t}^{gen} \), market prices exceed the sum of marginal gen-
eration costs and shadow prices of player f. The larger $\vartheta_{f,i,t}^{gen}$, the larger is the player’s ability to raise prices beyond marginal costs. Whereas this is a common feature of Cournot models, we follow the approach of Schill and Kemfert (2011) by adding storage-related market shares $\vartheta_{f,t}^{out}$ and $\vartheta_{f,t}^{in}$. In addition, we introduce the PIEV-related market share $\vartheta_{f,t}^{vload}$. Note that positive market shares $\vartheta_{f,i,t}^{gen}$ and $\vartheta_{f,t}^{out}$ allow a player raising prices beyond marginal costs, as they enter with positive signs. In contrast, positive $\vartheta_{f,t}^{vload}$ and $\vartheta_{f,t}^{in}$ have a price-decreasing effect, as they enter with a negative sign. The higher these market shares of a player, the larger its interest in low prices during the periods of vehicle recharging and/or storage loading. Electric vehicle loading activities thus mitigate a strategic electricity generator’s incentives to exert price-driving market power during the periods of vehicle loading.
Figure 7: Generation, PIEV loading, and storage utilization over 14 days