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Abstract

This paper aims at improving the application of the learning curve, a
popular tool used for forecasting future costs of renewable technologies in
integrated assessment models (IAMs). First, we formally discuss under
what assumptionsthe traditional (OLS) estimates of the learning curve
can deliver meaningful predictions in IAMs. We argue that the most
problematic of them is the absence of any effect of technology cost on its
demand (reverse causality). Next, we show that this assumption can be
relaxed by modifying the traditional econometric method used to estimate
the learning curve. The new estimation approach presented in this paper
is robust to the reverse causality problem but preserves the reduced form
character of the learning curve. Finally, we provide new estimates of
learning curves for wind turbines and PV technologies which are tailored
for use in IAMs. Our results suggest that the learning rate should be
revised downward for wind power, but possibly upward for solar PV.
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1 Introduction
Predicting the costs associated with climate mitigation strategies, and the trade-
offs between different political interventions to curb CO2 emissions, depends
heavily on assumptions about future technology developments and costs (Tavoni
et al. 2012, Kriegler et al. 2014). The Integrated Assessment Models (IAMs)
which are used for ex-ante policy evaluation embed assumptions about the evo-
lution of the performance and costs of mitigation technologies which are mostly
taken as exogenous. The effect of induced innovation has been introduced in
some models (Messner, 1997; van der Zwaan et al., 2002, Goulder and Mathai
2000, Fisher-Vanden and Ho 2008), 1 often resorting to the use of learning-
by-doing approaches. However, more effort is needed to correctly endogenize
technological progress and forecast cost reductions in different low-carbon tech-
nologies. To this end, modellers can build on insights from economic theory and
on estimates provided by empirical analysis of cost reductions.

Learning-by-doing dynamics, which stem from the empirical observation that
as experience in a given technology increases, costs tend to fall, have been
successfully embedded in most IAMs due to the straightforward modelling as-
sumptions they require. The process of learning is described in IAMs using
the so-called “learning curve”, namely a simple relation that links cumulated in-
stalled capacity of capital embodying a given technology, such as wind turbines
or solar photovoltaic (PV) panels, to installation costs of such technology.

The simplicity of the learning curve framework represents its strength but
also its weakness. While easily implemented in IAMs, the learning curve frame-
work is criticized by many as a simple reduced form relation, and one that does
not establish a causal link between choice variables and cost reductions (Nemet
2006, Nordhaus 2009). Most notably, from an econometric point of view esti-
mates of the learning rate (the slope of the learning curve) may be biased due
to reverse causality and omitted variable bias. Reverse causality arises if costs
reductions have themselves an effect on installed capacity. Omitted variable
bias arises if an important determinant of costs is excluded from the estimation
of the learning curve. The IAM community replies to such concerns by arguing
that as long as the aim of learning curve in climate models is to forecast changes
in installation costs rather than to explain their determinants, the reduced form
relation is all that is needed (Wiesenthal et al., 2013).

This paper contributes to this strand of literature by proposing a formal
analytical model which sheds light on the learning curve debacle. We start by
arguing that estimation of the true causal effect in a learning curve framework,
while of great interest in and of itself, is not necessarily what is needed for IAMs.
The learning curve equation in IAMs and in empirical analysis used to calibrate
IAMs should not be interpreted as describing the causal impact of experience
on technology costs, rather as reduced forms of a richer model, which could
encompass several forces, such as learning by doing, learning by searching (i.e.
accumulation of R&D knowledge) and dynamics of market structure. However,

1For a review technical change in climate economy models see Loeschel (2002)
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we show and discuss the assumptions which are necessary to ensure that the
OLS learning curve estimates can be used in IAMs. These are: the absence of
reverse causality, the correct specification of demand for installed capacity in
IAMs, a linear relationship between capacity and costs, and two assumptions
on the stationarity of the series, as detailed below. We claim that some of these
assumptions appear to be unrealistic and as such they limit the applicability of
the learning curve in IAMs.

Our analytical model suggests a solution that allows for the use of the learn-
ing curve estimates in IAMs if the assumptions on the absence of reverse causal-
ity and misspecification are relaxed. This solution does not sacrifice the simplic-
ity of the learning curve model, rather it to modifies the econometric approach
used to estimate it. We develop a new estimation approach dedicated to the
learning curves used in IAMs, which is robust to the reverse causality problem
but preserves the reduced form character of the learning curve. Conversely, we
are not yet able to propose a simple solution to relax the remaining assumptions
on which the use if learning curve model in IAMs rests, namely linearity and
stationarity. Such assumptions cannot be relaxed without replacing the learn-
ing curve with a more sophisticated model. This would increase accuracy of the
estimates but also increase complexity and thus complicate the use of learning
curves in IAMs. We however believe that by providing a precise description
of these last two assumptions, we open an important debate on the trade offs
associated with developing a more robust but possibly significantly more com-
plex model. Finally, we apply our proposed estimation method to the case of
learning in two key low carbon technologies, wind power and solar PV.

The rest of paper is organized as follows. Section 2 provides a brief review
of the relevant literature. Section 3 presents our analytical framework, while
Section 4 delves into the workings of the learning curve model. Section 5 details
the main assumptions on which the use of the learning curve in IAMs rests,
and Section 6 presents our new estimation approach. Section 7 discusses our
empirical results, and Section 8 concludes, highlighting important implications
and future research avenues.

2 The Debate on the Learning Curve
Wright (1936) is the first to have translated the concept of learning in the field of
economics. In his study of aircrafts industry, he postulated that experience, as
proxied by past production, could help explain reduction in production costs. A
similar approach was taken by Searle and Goody (1943) for shipbuilding indus-
try. The empirical relation between cumulating experience on efficiency growth
has been formalized theoretically by Arrow (1962) and Rosenberg (1982) with
the “learning-by-doing” approach. This gave raise to the very first generation of
endogenous growth models explaining long-run economic growth.

On the empirical side, the learning curve became one of the key tools to fore-
cast decrease in technology costs (Zachman et al. 2014). The initial approach
was that of estimating a reduced form relationship between costs and installed
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capacity of the form:

ln (C) = α0 + αK ln (K) + ε

where C is the installation costs (or installation price), K is the cumulated
installed capacity, αK is the slope of the learning curve, α0 is a constant and
ε is the error term. The slope can be translated into a learning rate, which
indicates percentage decrease in costs associated with a doubling of capacity:
Learning Rate = 1− 2−α. Since learning rates cannot be assumed equal across
technologies, different studies focused on different technologies. Zimmerman
(1982) provided learning rate for nuclear power generation, Joskow and Rose
(1985) repeated the exercise for the coal-burning generation units. More re-
cently, researchers have focused on low carbon technologies such as wind and
solar, which are considered key components of green growth and climate change
mitigation (see for instance McDonald and Schrattenholzer, 2000 and Lindman
and Söderholm, 2012).

The learning curve framework has also been widely used in IAMs with the
aim of assessing the costs of mitigation under different policy scenarios. In
IAMs, the prediction of the future installation costs of non-carbon technologies
are paramount both to determine the future energy mix and to evaluate the costs
of different climate change mitigation policies. In these models, the learning
curve has been often used as a simple tool to form predictions on installation
costs using predictions on cumulated capacity supplied by the model themselves.

While the learning curve gained substantial popularity, some authors ques-
tion its empirical basis. The empirical correlation between technology deploy-
ment and its cost is not evidence a causal relation between the two. Two are the
main criticisms raised in the literature in this respect. First, the learning curve
disregards other factors that could explain reductions in costs, such as invest-
ments in research and development (so-called ‘learning-by-searching’), fall in
material costs or increasing returns to scale. Nemet (2006), for instance, studies
what factors are responsible for the costs reductions of PV panels. He concludes
that learning-by-doing effects explain about 10% of the total costs reduction,
while the rest is due to other factors. As a result of this criticism, several
authors (among others Klaassen et al., 2005 and Söderholm and Sundqvist,
2007) amended the basic learning curve framework to include the most impor-
tant missing factor: the stock of knowledge accumulated in the R&D process.
The new curve, labelled the “two-factor learning curve”, assumes that the log
of installation costs is a weighted sum of the log of cumulated capacity (which
proxies for experience) and the log cumulated public R&D investments (which
proxy for the knowledge stock).

The second major problem pointed out by the critics of the learning curve
is that of reverse causality. The positive correlation between installation costs
and cumulated capacity observed in the data may simply reflect the causal ef-
fect of cost reductions on investment in capacity. Nordhaus (2008) presents a
simple model which shows that if installation costs are driven by an exogenous
trend, OLS estimates are biased and do not capture the true causal effect of ca-
pacity growth on reduction in costs. Söderholm and Sundqvist (2007) suggest
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using an instrumental variable approach to estimate the learning rate correctly.
Söderholm and Klaassen (2006) also explore the simultaneity problem with an
instrumental variable approach; however they instrument only the installation
costs in the equation determining cumulated capacity. Kohler et al. (2006)
suggest that the endogeneity problem could be resolved with panel data econo-
metric methods. We follow this suggestion in our study.

The community of IAMs modelers responded to the learning curve criticism
with two arguments (Wiesenthal et al. 2013). First, they argue that the one
factor learning curve is a useful simplification of reality, one that captures rela-
tively well the process under scrutiny and is extremely useful in advising policy
making and design. They argue that other modeling aspects of IAMs embed
similar levels of uncertainty and that the reduced form relationship between
cost reductions and increased experience (capacity) is not among the ones that
suffer from the most severe problems in this respect. In our opinion, this argu-
ment is weak, as it confounds model uncertainty with its bias. Moreover, the
criticism regarding reverse causality is well-grounded in economic theory, which
predicts that as a result of cost decrease demand for a given good (or, in this
case, technology, and hence installed capacity) will increase.

The second argument presented by IAMs modelers is, in our opinion, more
profound. The modelers note that the aim of IAMs is not a description of
economic forces, rather the formation of predictions about future technology
costs, energy mix and costs of climate mitigation. The learning curve in IAMs
is not meant to provide insights on the role of learning by doing in reducing
installation costs - rather, in the words of Wiesenthal et al. (2013) , “the learning
curve groups several underlying drivers of cost reduction in one factor that
matches empirical data”.

Following this second argument, in this paper we argue that the fact that
learning rates may not measure the true causal effect of cumulated increases
on installation costs does not constitute an sufficient argument to abandon the
learning curve equation in IAMs altogether. We shed some light on the debate
surrounding the use of learning curve estimates to calibrate IAMs by proposing
a formal analytical model which shows whether, and under what conditions,
OLS estimates of the learning rates can be safely used in IAMs. We find that,
under some conditions, omitted variable problem does not prevent a meaningful
application of the learning curve in IAMs. In contrast, the possibility of reverse
causality does constitute a serious limitation. In addition, we find that the
use of the learning curve in IAMs rests on three additional assumptions: the
assumption of a linear relationship between capacity and costs, the stationarity
of the series and the correct specification of the demand for installed capacity
in the model.

By providing a precise description of each of these core assumptions, we
open a debate on the trade-offs associated with developing a more robust but
significantly more complex model. We argue that main source of concern is
not the simplicity of the learning curve model, rather the econometric approach
used to estimate learning rates. OLS gives rise to biased estimates, and hence
does not provide reliable calibration for IAMs because the very restrictive as-
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sumptions on which it relies are not likely to be satisfied. As mentioned in the
introduction, our analytical framework suggests that the reverse causality and
misspecification error problems can be resolved in a relatively simple way by
replacing OLS with a more appropriate estimation technique for learning rates.
We use such approach, which is robust to the reverse causality problem but
preserves the reduced form character of the learning curve, to provide new esti-
mates of learning curves for wind turbines and PV panels. Our results suggest
that the learning rate utilized in the IAMs should be revised downward for wind
power, but possibly upward for solar PV.

3 The Analytical Framework
To understand the economic forces that shape the learning curve we need to
model the demand and supply curves of the market for a renewable technology.
In this section we present a simple, yet reasonably general dynamic model which
guides us in this respect. We first show how demand for capacity, as suggested
by economic theory, depends on technology installation costs (Section 3.1). We
then characterize the interdependence of installation costs and cumulated ca-
pacity (Section 3.2). For simplicity we present here only a two period model,
while we detail the infinite horizon model, which gives rise to almost identical
predictions, in Appendix A1.

3.1 The Demand for Capacity
In this subsection, we use a simple economic model to derive the demand for a
renewable technology. The model will serve in sections 4-6 as a prosthesis that
can mimic the behaviour of IAMs.

Let C denote the technology installation cost (in terms of dollars per MW),
K the cumulated installed capacity of the renewable technology (in terms of
MW) in period 1, I the new capacity installed in period 1, Y (.) the energy
production function, P the price of energy (in terms of dollar per MWh). We
use K ′, C ′ and P ′ to denote capacity, installation costs and energy price in
period 2. We also useβ to denote the representative firm’s (or central planner’s)
discount rate. The objective function of a firm (central planner) producing
energy from the renewable technology is:

V (C,K) = max
I
{PY (K)− CI + β (P ′Y (K ′) + C ′K ′)} (1)

subject to K ′ = (1− δ)K + I and Y (K) = Kα. The first order condition
of?firm’s optimization problem is:

β
(
P ′K ′α−1 + C ′

)
= C

If energy price is expected to grow at rate gP , while technology costs are
expected to fall at rate gC , then

β
(
α (1 + gP )PK ′α−1 + (1 + gC)C

)
= C
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Rearranging and taking logs:

k = − 1

1− α
c+

1

1− α
p+ f̃ (β, gC , gP ) + constant

where k, c and p stand for ln (K ′), ln (C) and ln (P ) respectively and f̃ is a
generic functions.

Since the constant term includes gC and gP , which may depend on policies,
we shall write

k = − 1

1− α
c+

1

1− α
p+ f (policy) (2)

As mentioned, an identical prediction could be derived from the infinite
horizon model (see Appendix A1). Similar predictions can also be derived from
any IAM which is set up as to maximize the value function of the form given in
equation (1).

In reality, observed cumulated capacity is going to differ from the one pre-
dicted by the model due, for instance, to model misspecification error. For
this reason, we need to include the error term in the equation. In vector form,
Equation 2 can be represented by

k = ωc+ γz + ε (3)

where vector z contains the (log) price of energy, the interest rate and the
effect of the policy stringency.

Based on equation (2) we could impose restrictions on parameters ω and γ:
e.g. the coefficient on energy price should be the negative of the coefficient on
installation costs. However, we do not impose such restrictions to allow for a
more general structure of the model. We do so because some IAMs may have
different structures than the one described with (1), but still include an equation
similar to (3). Thus, we want equation (3) to be as general as possible.

3.2 The Linear Technology Model
Let r be the vector of factors that determine the installation cost of the renew-
able technology, which include public and private R&D investments, experience
- usually proxied by cumulated installed capacity - and material prices. We will
call the elements in r ={r1, r2, r3} the direct drivers of installation cost. These
direct drivers depend themselves on other factors, which we refer to as the in-
direct drivers, for instance price of energy, policies, supply of researchers and
engineers or demand for materials by other sectors. The set of indirect drivers
can include those factors which are used in IAMs to determine installed capac-
ity. Conversely, the factors which are not included in IAMs, but have an impact
on the elements in r, e.g. supply of engineers or business cycle, are gathered in
vector t. This structure is pictured in Figure 1.

Our model is linear, thus each direct driver of installation cost, ri is a linear
function of elements in z and t, i.e. ri =

∑
j δijzj +

∑
m νimtm, where j and m
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C 
Instalation costs 

r1 
e.g. learning by doing 

r2 
e.g. learning by searching 

r3 
e.g. material prices 

z1 
e.g. energy price 

z2 
e.g. policy 

z3 
e.g. interest rate 

t1 
e.g. business cycle 

Figure 1: The Structure of the General Linear Technology Model

are indices for factors included in z and t . Thus,

c =
∑
i

ri (z, t) =
∑
i

∑
j

δijzj +
∑
k

νiktk


The reduced form of this equation is

c =
∑
j

δjzj +
∑
k

νktk

where δj =
∑
i δij and νk =

∑
i νik

In vector notation,
c = δz + νt (4)

3.3 The Data Generating Process
Throughout the paper we assume that equation (3) and (4) constitute the true
representation of reality. The data we observe is assumed to be generated by
this system. In econometric terminology, we take (3) and (4) as a full description
of the Data Generating Process (DGP).

In reality, the DGP is partly hidden for IAMs modelers. Hence, we assume
that they understand and accurately calibrate the value function (1) and the
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first order condition (2) associated with it. Conversely, they are likely not
able to fully uncover and model the drivers of the technological progress which
reduce the costs of the renewable technology. Instead, they have to rely on the
symbiosis of equation (2) and the learning curve, which they can estimate from
the data available to them.

In the following two sections we examine what predictions this symbiosis
produces if the data are generated by the DGP. In section 4 we show that,
under some conditions, the symbiosis could indeed deliver correct predictions.
In Section 5, we explore in detail what assumptions on the DGP are necessary
to ensure that the symbiosis gives rise to such meaningful predictions.

The focus of our exercise, which is meant to mimic the endeavor of IAMs
modellers, is on predicting changes in installation costs resulting from an in-
crease in one of the factors captured in vector z - typically we will consider
an increase in the energy price. Using our knowledge about the DGP, we can
derive what is the the best prediction of installation costs, c, if we are given
information on the realized values in vector z:

E (c|z) = δz + νE (t|z) =
(
δ + νE (t|z) z′ (zz′)

−1
)
z (5)

If vectors z and t contain only one factor each (which will be the case in
some simplified models we consider below), then this could be simply restated
as:

E (c|z) =

(
δ + ν

Cov (t, z)

V ar (z)

)
z (6)

4 How does the Learning Curve Work?
In this section we show two things. First, under specific conditions, the estima-
tion of the learning curve using traditional OLS techniques and the use of the
estimated parameters in IAMs may produce valid predictions. We draw a simple
numerical example (Scenario I) to portray the role of the learning curve and its
estimation in the formation of IAMs’ predictions. Second, we also show that,
under clearly specified assumptions, the traditional one-factor learning curve
can produce valid predictions even if in reality cost reductions are not due to
learning-by-doing, but rather to other forces which are not modelled within the
IAMs . We illustrate the intuition behind this result in ’Scenario II’.

To facilitate illustration and focus on the intuition, we assume that there
are only two forces that can potentially influence technology costs reductions:
learning-by-doing and learning-by-searching. Thus the two elements in r are
experience k, which can be measured with cumulated installed capacity and the
knowledge stock h, measured with the cumulated R&D investment,. We assume
that experience and knowledge stock depend only on price of energy thus vector
z contains only one variable, the log of price, and z = p. We also assume that all
factors in vector t are constant implying that νt = t where t is a constant . As a
result we can express cumulated capacity and knowledge stock as k = δkpp+νkt
and h = δhpp + νht. Finally we assume no mispecification error (ε = 0). As
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a result of this restrictions, we can describe the DGP with the system of two
equations:

k = ωc+ γp (7)

c = αkk + αhh = δpp+ νt (8)

where δp = αkδkp + αhδhp and ν = αkνk + αhνh. Note that, since t is
constant, Cov (t, p) = 0 and therefore the true evolution of c as a function of z
must follow:

E (c|p) = δp (9)

4.1 The OLS estimate of the learning rate
The traditional approach to estimate he learning rate takes the form

cτ = αkτ + ητ (10)

where ητ denotes the error term in the econometric model. The OLS esti-
mator of the learning rate is then

α̂ =
Ĉov (k, c)

V̂ ar (k)

where Ĉov (k, c) =
∑
τ

(
kτ − k

)
(cτ − c) and V̂ ar (k) =

∑
τ

(
kτ − k

)2
.

Since we assumed that our DGP is restricted to equations (7) and (8), the
reduced form relation between c and k observed in data is

c =
δ

γ + δω
k +

γ

γ + δω
t

Hence, simple calculations show that, if the data are generated by our DGP,
the estimate of the learning curve slope generated by the OLS method must be
equal to

α̂ =
δ

γ + δω

4.2 Implementation in the IAM
Suppose now that a IAM tries to explore what are the implications of a one
percent increase in energy price, p, on renewable technology costs. If the IAM
includes equation (1) (or its long/infinite horizon equivalent), its solution must
satisfy equation (7). Furthermore, if the model includes the learning rate esti-
mated by OLS , the solution must also satisfy

c =
δ

γ + δω
k + constant (11)
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If we combine these two conditions, we find that the solution will satisfy

c = δp+ constant

The model predicts that a one percent increase in energy prices (induced
for example by increase in the price of CO2 emission permits) generates a δ%
reduction in the installation cost of renewable technology. This is exactly in
line with the true dynamics in this economy described with equation (9).Note
that our assumptions so far do not imply the existence of learning-by-doing.
Rather, with the two examples below, we show that the learning curve can de-
liver results in line with reality regardless of whether cost reductions are driven
by learning by doing (αk 6= 0 and αh = 0), learning by searching (αk = 0 and
αk 6= 0) or both (αk 6= 0 and αk 6= 0). In the first example, the estimation of the
learning curve allows to identify the true learning-by-doing effect. In the second
example, the estimation of the learning curve slope does not provide informa-
tion about the true learning rate. However this does not prevent the learning
curve from delivering meaningful predictions which could be used to evaluate
policies.When learning-by-doing plays no role, and conversely cost reductions
are due to learning-by-searching (αk = 0 and αk 6= 0), the estimated slope of
the learning curve cannot be interpreted as informing on the causal effect of
experience on cost. But we argue that also in this case, the learning curve is a
useful tool to predict technology costs in IAMs. Changes in cumulated capacity
carry a signal about the underlying economic forces, such as changes in prices
or policies. Whenever IAMs suggest that in one period installed capacity are
high, we can infer that prices in this period are also high (or policy is more
stringent). In this circumstance we shall expect high R&D investment and low
technology cost. Consequently we do want the learning cuve to have negative
slope even if the true learning rate is zero.

The econometric estimates of the learning curve slope which are fed into
IAMs do not have to, and in fact should not, capture only the direct causal
effect of experience on cost. Rather, they have to capture the effect of all
factors, which have the same determinants as cumulated capacity. The analysis
above shows that, under some circumstances which we will discuss in detail in
the subsequent sections, simple OLS estimator meets this requirement.

Scenario I
Consider a world in which learning-by-doing is the sole driver of technology costs
reduction. An increase in installed capacity brings accumulation of experience
which in turn reduces costs. Specifically, in this example we assume that ∆c =
−0.1∆k2. Cumulated Capacity does not depend on the price of energy, but we
assume that it is not affected by changes in the installation costs (i.e we assume

2In various scenarios we consider we assume some specific values of the parameters. How-
ever, as we demonstrate in the mathematical analysis, the general results do not depend on
the values of these parameters (unless this is very clearly stated).
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c - log of installation costs
k - log of cumulated capacity
p - log of energy price

The Data Generating Process:
∆c = −0.1∆k (learning by doing)
∆k = 2∆p− 0 ∗∆c (demand for capacity)

p k c
period 1 +10% +20% -2%

observed slope of the learning curve: 0.1

period 2 +20% +40% -4%

Integrated Assessment Model:
equations:
c = −0.1k + constant (learning by doing)
k = 2p+ constant (demand for capacity)

predictions:
p k c

period 2 +20% +40% -4%

Table 1: The Data Generating Process and IAM’s predictions in Scenario I.

that ∆k = 2∆p− 0 ∗∆c)3.
Suppose that period 1 (which could be a multi-year period) witnesses a

10% increase in energy price. Such increase in energy price gives rise to a
20% increase in installed capacity, which results, due to learning effects, in a 2%
reduction in installation costs. Further suppose that in period 2 the government
introduces a tax that increases price of energy by 20%. This produces a 40%
growth of installed capacity, followed by a 4% drop in costs. Given this, if at
the beginning of period 2 scientists were requested to evaluate the impact of a
tax (i.e. the impact of an increase in price) on installation costs, they would use
observations from period 1 and conclude that a 1% capacity growth is associated
with 0.1% reduction in technology costs. Thus, they correctly identify the size
of the learning rate. The researchers may also use the model which includes the
objective function specified in (1). If they calibrate the model accurately, the
model solution must satisfy the first order condition:

k = 2p

3In light of our discussion in section 3.1, this is a strong assumption. However, we do
it as it greatly facilitates the exposition of the role of learning curve estimation in forming
predictions in IAM.
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This equation is going to be accompanied by the learning curve:

c = 0.1k

To satisfy both equations, the solution to the model must therefore imply
that

c = −0.2p

Clearly, the researchers will correctly predict that a tax that increases en-
ergy price by 20% must produce a 4% cost reduction, in accordance with the
dynamics in the scenario.

Scenario II
In scenario II we shall consider another world. There is no learning-by-doing and
so installation costs are unaffected by growing cumulated capacity. However, the
costs can be reduced by accumulation of R&D knowledge (thus, if h denotes the
log of the cumulated R&D investment, we assume here that ∆c = −∆h−0∗∆k).
The knowledge stock is affected by energy prices, namely an increase in energy
price stimulates research and the growth of knowledge (∆h = ∆p ). Cumulated
capacity depends negatively on installation cost and positively on energy price
(∆k = 2∆p− 2∆c ).

Suppose that in the first period price increases by 10%. The increase in price
has two effects: first, it incentivizes capacity building, which as a result grows
by 20% and, second, it incentivizes R&D investment. Higher R&D leads to
faster technological progress and produces a 10% decrease in installation costs.
The drop in costs incentivizes further capacity building, which now grows by
a further 20%. Thus, the total change in capacity over the period is 40%. In
period 2, the price of energy, following the tax increase, grows by 20%. The story
follows exactly the dynamics in period 1, except that all growths are scaled up:
costs are reduced by 20% and total capacity growth is 80%.

As in the previous scenario, at the beginning of the first period scientists are
asked to evaluate the effect of a price increase (namely, a tax) on technology
costs. Based on the observations in the first period, they find that the slope of
the learning curve is 0.25 (40% increase in capacity coincided with the 10% cost
reduction). If the demand structure in IAM is specified and calibrated correctly,
the first order condition in IAM will be given by k = 2p− 2c+ constant. This
equation and the estimated learning curve (c = 0.25k+ constant) jointly imply
that ∆c = −∆p. Thus, scientists would predict a 20% cost reduction after a
20% increase in the price of electricity - in line with reality.

The two examples above show that the reduced form learning rates can be
useful for IAMs. The two scenarios we described however have very different
implications: one has learning, the other one does not. In the first case, the
learning rates capture reality, in the second case they simply capture other forces
at work which are not directly modelled in IAMs. If we depart from the stylized
examples above, and relax some of the assumptions on which they are based,
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c - log of installation costs
k - log of cumulated capacity
h - log of cumulated R&D investment
p - log of energy price

The Data Generating Process:
∆c = −∆h− 0 ∗∆k (learning by searching only)
∆k = 2∆p− 2∆c (demand for capacity)
∆h = ∆p (demand for research)

p k h c
period 1 +10% +40% +10% -10%

observed slope of the learning curve: 0.25

period 2 +20% +40% +20% -2%

Integrated Assessment Model:
equations:
c = −0.25k + constant (learning by doing)
k = 2p− 2c+ constant (demand for capacity)

predictions:
p k h c

period 2 +20% +80% n/a -20%

Table 2: The Data Generating Process and IAM’s predictions in Scenario II.
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the learning curve estimates can give rise to significantly biased predictions in
IAMs. In the next section, we describe in deatils the (strong) assumptions on
which the learning rates estimated as customary in the literature rest and their
implications for use in IAMs.

5 When does the Learning Curve Works
In this section we provide a formal and intuitive discussion of the assumptions
that are necessary to ensure that the use of OLS estimates of the learning rate in
IAMs deliver meaningful predictions, as is the case in the two stylized examples
above. The assumptions are listed here and discussed in detail below.

Assumption 1. The Absence of Reverse Causality.

Any variation that influences technology cost, c, but is not predited by the IAM
has no effect on cumulated capacity. This means that either all elements in vec-
tor t are constant (for every k, V ar(tk) = 0) or, alternatively, that installation
costs has no effect on cumulated capacity (ω = 0).

Assumption 2. Stationarity of the Relation between Factors Con-
trolled and Uncontrolled in IAMs.

The relation between those drivers which are accounted for in IAMs and those
which are not is constant over time. Put differently, for any pair j and k
,Cov (zj , tk) is stationary.

Assumption 3. The Misspecification Errors are constant.

Misspecification errors do not vary over time, i.e. V ar (ε) = 0

Assumption 4 The Stationarity of the Relation between Factors ex-
plicitely modelled in IAMs.

One of these three conditions must be satisfied:

(i) All factor that are explicitly modelled in a IAM (that is, all factors included
the z vector) are collinear, i.e. z = πz where π is a vector of constants
and z is a scalar.

(ii) For every pair of factors (i, j) included in the z vector, δi
γi

=
δj
γj
. Thus in

vector notation, δ = ηγ, where η can be any scalar.

(iii) All factors included in the z vector have exactly the same effect on k and
on c, i..e. δ = ιd and γ = ιg where ι is a vector of ones and g and d are
constant scalars.
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Assumption 5. The Linearity of the DGP.

All the parameters in the DGP are stationary, i.e. δ, ν, ω and γ do not vary
over time.

5.1 Absence of Reverse Causality
Notice that in Section 4 we assumed that factors in vector t were constant. This
clearly does not describe reality. In addition to the price of energy, policy strin-
gency and the interest rate, there are number of other factors that determine
technology costs and that fluctuate over time in a random fashion. Innova-
tions are rarely deterministic, their number and their value are both random.
Similarly, the price of materials fluctuates over time in a random fashion. This
implies that the inclusion of the three factors included in vector z is not sufficient
to determine the level of costs without any prediction error.

The presence of this error can result in serious complications in estimating
the learning curve. If in the DGP ω 6= 0, any shock in t (e.g. the unexpected
arrival of a successful innovation) followed by a shock to cost, would promote
growth of installed capacity. This would produce a correlation betweeen the
two variables in the data, which is not meant to be captured in the learning
curve. In IAMs, the learning curve has to capture only the effect of experience
and factors that have the same determinants as expereince on technology cost.
The reverse causality, i.e. the effect of cost on capacity is already captured in a
different equation in IAM, namely equation (2). Hence, such effects should not
be accounted for twice.

To illustrate this point with the formal model, suppose that there is only one
factor in t, which we label t. We also assume that vector z contains only one
variable. We allow for t to vary over time, that is V ar (t) ≥ 0. In this section
we still assume that Cov (z, t) = 0 (we discuss this assumption in section 5.2).
The DGP can be summarized then as4

k = ωc+ γz (12)

c = δz + t (13)

In this case, the OLS estimate of the learning curve’s slope is going to deliver

α̂ =
Ĉov (c, k)

V̂ ar (k)
=

δ

γ + δω
(1 + Γ)

where Γ = γω/δ V ar(t)V ar(k) . Thus the estimated learning curve is:

c =
δ

γ + δω
(1 + Γ) k

4Note that since t has only one factor, ν can be normalized to unity.
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Combining this equation with the IAM’s first order condition (12) we find that

c =
(1 + Γ)

1− δω/γΓ
δz

Comparing this equation with the true relation between c and z stated in
equation (13), we conclude that the IAM can deliver predicitons that are in line
with reality if and only if Γ = 0, i.e. if and only if V ar (t) = 0. If V ar (t) > 0,
Γ > 0 and the effect of z on c is exagerated. We illustrate this logic with the
example below.

Scenario III
Consider a world similar to the one in Scenario II. There is no learning-by-
doing, so installation costs are not affected by changes in capacity. However,
cost does depend on the stock of knowledge ∆c = −∆h + 0 ∗ ∆k. Assume
also that, in constrast to Scenario II, the evolution of that knowledge is totally
random. As before, capacity depends on installation costs and on energy price
∆k = −2∆c+ 2∆p.

In period 1, energy price increases by 10%. Thus capacity increases by 20%.
In the same period, a (random) discovery leads to a 10% drop in installation
costs. This leads to a further 20% increase in capacity, so overall capacity grows
by 40% in period 1. In period 2 a 20% tax increase leads to a 40% increase
of capacity. As in period 2 there is no change in knowledge, installation costs
remain unchanged.

At the end of period 1, scientists conclude that a 40% increase in capacity is
associated with a 10% drop of installation costs. They estimate a “learning rate”
equal to 0.25. Suppose they also know - from other sources - that the elasticity
of capacity with respect to energy price is 2. As a result they correctly predict
a 40% increase in capacity after 20% tax, but wrongly forecast a 10% reduction
in installation costs, that according to their calculations should follow due to
the learning effect.

Before we move to more elaborated scenarios, we can derive an optimistic
conclusion from the three scenarios presented so far: scientists are able to obtain
a meaningful estimate of the “learning rate” as long as they base their analysis
solely on those instances in which capacity has been affected exclusively by
the exogenous shocks. This conclusion is going to be a starting point for the
derivation of the robust estimator presented in the following section.

5.2 Stationarity of the Relation between Controlled and
Uncontrolled Factors.

Assumption 2 states that the covariance between factors in z and factors in
t must be costant over time. Note that this assumption becomes redundant
if Assumtpion 1 holds under constancy of t. On the contrary, Assumption 2

17



gains importance if Assumption 1 is satisified because ω = 0. In this case the
estimated learning curve becomes:

c =

(
δ + γ2

Ĉov (z, t)

V̂ ar (k)

)
k

γ

If we combine this with the first order condition included in the IAM, ((12)
with ω = 0), we find that the prediciton of the IAM must satisfy:

c̃ =

(
δ +

Ĉov (z, t)

V̂ ar (z)

)
z̃

where c̃ and z̃ are the future predictions of c and z.
We can compare this with the true functional relationship between c and z,

which can be derived from the DGP as

E (c̃|z̃) =

(
δ +

Cov
(
z̃, t̃
)

V ar (z̃)

)
z̃ (14)

Thus, the model would correctly predict reality only if Ĉov (z, t) = Cov
(
z̃, t̃
)
,

that is if the covariance does not change over time.

5.3 Absence of Misspecification Error
In this subsection we demonstrate that the use of OLS to estimate the learning
rates produces biased results if misspecification error varies over time, i.e. if
V ar (ε) 6= 0. Misspecification error arises if observed cumulated installed ca-
pacity is determined by different factors than those used to predict cumulated
installed capacity in IAMs. In our framework, it implies that, while IAMs as-
sume k = δz, in reality (in the DTP) the true cumulated capacity is generated
by the function k = δz + ε, where ε could be a random variable.

To understand the intuition of why variation in ε could cause a problem recall
that in IAMs capacity serves as a signal informing on the level prices or policies,
which through various channels, shape the cost of technology. To calibrate
correctly these interdependences, we have to rely on the assumption that also
the capacity observed in the data is a clear signal of underlying economic forces.
The presence of ε introduces noise into this signal. If the amount of this noise
is substantial, or, equivalently, if observed capacity does not respond to changes
in prices or policies as well as the level of capacity generated in IAMs, empirical
estimation will suggest that capacity is a poor predictor of costs, although in
fact it is not.

For simplicity, we maintain Assumptions 1 (with V ar (t) = 0), 4 and 5 . In
this case, the OLS estimate of the learning curve’s slope is going to deliver

α̂ =
Ĉov (c, k)

V̂ ar (k)
=

δ

γ + δω
(1 + Ω)
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where Ω = − V ar(ε)
V ar(k) . In analogy to subsection 5.2, the combination of the

estimated Learning Curve with the IAM’s first order condition implies:

c =
(1 + Ω)

1− δω/γΩ
δz

Thus, again, the use of estimated learning rates in IAMs can deliver predici-
tons that are in line with reality only if Ω = 0, i.e. if V ar (ε) = 0. The intuition
behind this result is explained with the following example:

Scenario IV
Imagine that the reduction in installation costs is driven by the accumulation
of knowledge through an R&D process (as in scenario II, we assume here that
∆c = −∆h− 0 ∗∆k). Suppose that the knowledge stock depends on the price
of energy, ∆h = ∆p. In contrast, cumulated capacity does not always react to
changes in price - e.g. if the price increase comes after a long period of stability,
investors will not react immediately as they wish to ensure that higher prices
are not temporary. IAMs do not take into account the delay in responses and
they predict that ∆k = ∆p

Suppose that in period 1 energy price increase by 20%. This leads to a 20%
increase in the knowledge stock and a 20% reduction in installation costs. How-
ever, in period 1 investors do not respond to the price increase and cumulated
capacity does not grow. Hence, as researchers observe no immediate correlation
between c and k, they conclude that the learning rate is zero.

If researchers specified the equation of demand for capacity in IAM as k =
p, IAMs prediction on cumulated capacity would carry relevant information
about energy prices. Since prices drive research and the level of installation
costs, this information about capacity could be successfully used to predict cost
reductions. In our example researchers do not exploit this possibility. After
period 1, they switch off the learning curve due to the learning rate of zero In
period 2, researchers are asked to evaluate the effect of tax, which increases price
by 10%. As the calibrated learning curve is flat, they report that technology
costs are going to stay constant. In reality the cost would drop by 10%.

5.4 The Stationarity of the Relation between Controlled
Factors

In Section 4, we have assumed that vector z contains only one variable (namely
the price of energy). However, even our simplified model set up to mimic IAM
in Section 3 predicts that there are at least two other factors that should be
included in the model and which have an effect on investment in capacity: policy
stringency and the interest rate. If we allow the vector z to containt more than
one factor, we will have to introduce additional assumptions for the learning
curve to produce valid results. The relation between different factors in z must
be constant, that is all the factors must be perfectly collinear. The simple
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intuitive reason for this requirement is that the univariate learning curve does
not allow us to separately identify the effect of each factor in z on costs . Below
we clarify this point using our theoretical framework.

Imagine that vector z contains two variables, z1 and z2. Assume that As-
sumptions 3 and 5 hold. In addition, assume that ω = 0 and νt is constant.
These last two assumptions simplify the structure significantly, but still allow
us to portray the problem associated with multiple z’s. The DGP restricted in
this way can be summarized with

k = γ1z1 + γ2z2 + constant (15)

c = δ1z1 + δ2z2 + constant (16)

The estimates of the slope between technology costs and cumulated capacity
using data that are generated by this DGP gives rise to

α̂ =
Ĉov (c, k)

V̂ ar (k)
=
δ1γ1V̂ ar (z1) + δ2γ2V̂ ar (z2) + (δ1γ2 + δ2γ1) Ĉov (z1, z2)

γ21 V̂ ar (z1) + γ22 V̂ ar (z2) + γ1γ22Ĉov (z1, z2)

Combining the estimated learning curve with equation (15) (which is known
to the researchers, as we assumed they have correctly specified the value function
in their IAM) implies:

c = α̂k =

=
δ1γ1V̂ ar (z1) + δ2γ2V̂ ar (z2) + (δ1γ2 + δ2γ1) Ĉov (z1, z2)

γ21 V̂ ar (z1) + γ22 V̂ ar (z2) + γ1γ22Ĉov (z1, z2)
(γ1z1 + γ2z2 + constant)

This reduces to the true equation (16) only in three instances: when the
factors in z are collinear: z1 = πz2, when z1has exactly the same impact on k
and c as z2 i.e. if δ1 = δ2 and γ1 = γ2 or when δ1

γ1
= δ2

γ2
(Please see Appendix

A2 for details). The intuition behind this result is explained with the following
example.

Scenario V
Suppose that, as in Scenario II, costs can be reduced only by learning-by-
searching and the accumulation of R&D knowledge (hence, we assume ∆c =
−∆h − 0 ∗ ∆k). The knowledge stock is affected by energy prices, namely an
increase in prices stimulates research and the growth of knowledge (∆h = ∆p ).
Cumulated capacity also depends positively on energy prices and, in addition,
can be affected by interest rates (∆k = 2∆p − 2∆R). As a result, cumulated
capacity confounds two signals: one of price and one of interest rates.

Suppose that in period 1, price increases by 20% and the interest rate by
10%. This resultes in a 20% increase in cumulated capacity. An increase in price
has leads to a 20% increase in the knowledge stock. As a result, installation
costs drop by 20%. By looking at the increase in cumulated capacity and the
decrease in costs, scientists conclude that the slope of the learning curve is 1. At
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the beginning of period 2, scientists expect that the increase in energy price will
continue at the rate of 10% per period. Scientists wish to evaluate the effect of
this price increase on installation costs. If their IAMs are calibrated well, they
will predict a 20% increase in cumulated capacity. Furthermore, employing
the learning curve with the estimated slope, they will predict a 20% drop in
installation costs. In reality, a 10% increase in price leads to a 10% increase in
knowledge stock and 10% reduction in installation costs.

Turning away from the example, suppose that Z is the matrix that contains
all the demeaned observations of variables in z that are available at the time
of estimation of the learning curve. Let Z̃ be the matrix with the expectations
about future values of z’s. If we allow for more than two factors in vector z and
allow ω 6= 0 (althought maintining Assumptions 1, 3 and 5), it can be shown
that estimating the learning curve with the data generated by (3) and (4) and
combining it with the correctly specified equation (3) must satisfy

E
(
c|Z̃,Z

)
=

(ωδ + γ)Z′Zδ′

(ωδ + γ)Z′Zγ′
Z̃γ′ + constant

where apostrophe denotes the transpose of the matrix or vector. If factors
in z are collinear, i .e. if z = πz1 where π is a weighting vector with π1 = 1,
then Z = (z1π)

′ (where z1 is a vector of demeaned observations on z1) and

E
(
c|Z̃,Z

)
=

[(ωδ + γ)π′] [z′1z1] [πδ′]

[(ωδ + γ)π′] [z′1z1] [πγ′]
z̃1 [πγ′] + constant

where objects in the square brackets are scalars. This reduces to

E
(
c|Z̃,Z

)
= Z̃δ′ + constant

which corresponds exactly to the functional relation associated with the the
DGP. A similar result is obtained if δ = ηγ and if δ = ιd and γ = ιg where η, d
and g are scalars.

Note that if learning-by-doing is the sole determinant of technology costs
and if the true value of the learning rate is 1 − 2−α, then indeed δ = ηγ with
η = α

1−αω , and the assumption is satisfied. However, if one wishes to preserve the
reduced form of the learning curve and to allow technology cost to be shaped by
other precesses than learning-by-doing, then the assumption is fairly restrictive,
especially if one wants to avoid restricting the parameters δ and γ. This means
that it may be particularly problematic if one wishes to perform a policy exercise
within a IAM. If one wishes to explore the effect of a rapid increase in policy
stringency, it is difficult to assume that the relation betwen policy and price
will stay the same as before the policy shock. It seems that the only way to
relax this assumption is to replace the learning curve model with a multivariate
regression similar in form to (4). The estimated reduced form model could be
included directly in the IAM. The disadvantage of such approach is the loss of
generality of the model: since every IAM contains different set of variables in
vector z, the regression and its estimates would not be universal.
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6 A Two Stage Estimator of the Learning Rate.
In this section, we present a novel approach to estimate the learning curve
parameter for use in IAMs. As discussed in Section 5.1, focusing on the part
of cumulative capacity generated by exogenous factors can help overcoming the
biggest issue we have identified, namely reverse causality. Suppose that in the
regression (10) instead of using observed data on cumulative installed capacity
we use its projections based on explanatory variable, z, that is

k∗ = β̂z

where β̂ is an OLS estimator of the coefficient β in the regression k = βz+ξ.
Using the framework presented above we can compute β̂ as follows:

β̂ =
Cov (k, z)

V ar (z)
= ωδ + γ + ω

Cov (z, t)

V ar (z)

If instead of using actual values k, we use its projections k∗, the estimator
of the learning curve becomes:

α̌ =
Cov (c, k∗)

V ar (k∗)
=

=
δ + Cov(z,t)

V ar(z)

γ + δω + Cov(z,t)
V ar(z) ω

Combining our new learning curve c = α̌k with the IAMs first order condition
k = ωc+ γz implies:

c̃ =

(
δ +

Cov (z, t)

V ar (z)

)
z̃

which is exactly the same as (6).
More generally, as long as we maintain assumptions 2, 4 and 5, we could

construct the fitted values as
k̂ = β̂z

where β̂ = (Z′Z)Z′k, Z is a matrix of demeaned observations of z and k is
a vector of demeaned observations of installed capacity.

In this case estimating the learning curve with the usual OLS estimator, but
replacing observed with the fitted values of installed capacity brings:

α̌ =
[
((δω + γ)Z′ + ωνT′)Z (Z′Z)

−1
Z′ (Z (δ′ω + γ′) + ωTν′)

]−1
∗

((δω + γ)Z′ + ωνT′) (Z (δ′ω + γ′) + ωTν′)

Lets use c̃, k̃ and z̃ to denote future levels of c, k and z predicted in IAMs.
It can be shown that employing the learning curve c̃ = α̌k̃ together with the
IAMs first order condition k̃ = ωc̃+ γz̃ must satisfy
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c̃ =
(
δ + ν (Z′Z)

−1
Z′T

)
z̃

The expected value of the prediction is therefore

E (c̃|z̃,Z) =
(
δ + νE (T′Z|Z) (Z′Z)

−1
)
z̃

which is exactly the same as (5) if E (Z′T|Z) = E
(
Z̃′T̃|Z̃

)
, which is ensured

by assumption 2.

7 (More) Consistent Estimates of the Learning
Rate.

In this section we present the results of our suggested estimation approach for
the learning rates of two key low carbon technologies which are featured in
IAMs.

We focus on wind turbines and solar PV panels. Our dataset covers the
period 1990 - 2012 for the 34 OECD countries. Energy prices and data on cu-
mulated installed capacity are from the International Energy Agency Statistics.
Data on installation costs for the wind turbines and solar PV technologies come
the Berkeley Lab and Mints (2014) 5, respectively, and refer to the prices of
wind turbines and PV panels in the US. In addition, we include a policy index
describing the stringency of renewable energy policies. This is constructed by
identifying different policy indexes implementing in any give countries and giv-
ing each implemented instrument a value of one. The policy index is then the
sum of the single instruments at any give time. This indicator ranges from 0 to
a theoretical maximum of 10 (for details on the index, please see Bosetti and
Verdolini, 2013).

We follow the procedure described in Section 6 above. Specifically, we first
regress (the log of) cumulated installed capacity on (the log of) energy prices
and on the policy index (which constitute our vector z). Since for this stage
panel data for all countries and variables are available, we use the Fixed Effect
estimator. From the regression we get the fitted values of installed capacity for
all 34 countries. We aggregate them to obtain total fitted cumulated capacity for
each year. This fitted cumulated capacity is then used as an explanatory variable
in the second stage regression where (global) installation costs is the dependent
variable. The OLS estimate from this second stage estimator is effectively a two
stage least squares estimate which has been described in Section 6.

Results for wind are reported in Table 3 (first stage) and Table 4 (second
stage). The first stage regressions for wind technology suggest that policy strin-
gency and energy prices are significant determinants of cumulated capacity. The

5accessed from http://emp.lbl.gov/publications/2012-wind-technologies-market-report
and http://emp.lbl.gov/publications/tracking-sun-vii-historical-summary-installed-price-
photovoltaics-united-states-1998-20
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regression with full specification indicates that 1% increase in energy price pro-
duces a 3.5% growth in cumulated capacity. The effect of policy stringency is
statistically significant, but economically less pronounced - an additional policy
leads to half percent increase in capacity.

The results of the second stage regression suggest that the simple OLS es-
timator is indeed biased upward. The two stage estimate of the learning curve
predicts a 3.7% learning rate (which corresponds to the coefficient of -0.053) if
vector z includes the price of energy and the policy index. It drops further -
to -1.5% (i.e. the learning rate becomes negative) - if the vector includes only
energy price, but this result is not statistically significant. Table 4 also reports
Model 4 for comparison, which is the simple OLS estimates of the learning rate
using our sample. In line with the previous findings in the literature, for the
period 1990-2012 an implied learning rate for wind power is 4.4%. This estimate
is significantly below the estimates of the learning rates for wind technologies
available in the literature. However, this is entirely due to the longer time-frame
under consideration in our analysis. In fact, Table 5 shows that if we drop the
observations after 2007 (hence eliminating the period when installation prices
are heavily affected by the upward trend in prices of materials), the estimated
OLS learning rate is 16.5%. This last results from is line with the estimates
available in the literature. However, even in this case the learning rate esti-
mated using our procedure would be significantly lower, equal to 12.2% in the
full specification case. Taking this evidence together, our approach would sug-
gest that the current learning rates for wind used in IAMs should be revised
downward. This is due to both our new approach and to the fact that learning
seems to have slowed down in the more recent years.

Focusing on solar PV, results of the first and second stage estimation are
presented in Tables 6 and Table 7, respectively. Similar to the case of wind, the
first stage regression indicates that energy prices and policy stringency are the
significant determinants of cumulated capacity. Moreover, our models suggest
that the learning rate is higher than the that estimated with the OLS estimator:
while the OLS estimates predicts a 12% learning rate (which corresponds o
the coefficient of -0.169), the learning rate predicted by our model with full
specification (Model 3) predicts a 19% learning rate (which corresponds to the
coefficient of -0.254).

The analysis in the previous section suggests that the OLS and the two stage
estimates are different because the latter is not subject to reverse causality and
misspecification biases. Section 5.1 shows that reverse causality leads to an
overestimation of the learning rate for IAMs. The misspecification bias should
in turn give rise to an underestimation of the learning rate. Our results suggests
that in case of wind technology the former effect dominantes. The price of wind
turbines appears to have substantial influence on installed capacity. This effect
contributes to the correlation between the two variables and biases the estimates
of the learning rate upward. This might be due to the fact that wind power
is a more mature technology which is almost competitive with traditional fossil
generating technologies. In case of solar PV technology, the misspecification
bias dominates. This suggest that, in addition to policy and price of energy,
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Model 1 Model 2 Model 3
Energy price 9.89*** 3.50***

0.93 0.93
Policy Index 0.69*** 0.56***

0.06 0.07
R-squared 0.12 0.40 0.41
F stat. 402.3 1083.4 626.3

Number of Clusters 32 32 32
Observations 588 588 588

Table 3: First stage regression results for wind turbines technology. Standard
errors clustered at the level of countries below the coefficients.

Model 1 Model 2 Model 3 Model 4
Fitted Cum. Cap. 0.001 -.076** -0.053*

0.048 .032 0.029
Observed Cum Cap. -.063**

0.030
R-squared 0.00 0.22 0.14 0.17

Observations 22 22 22 23

Table 4: Second stage regression results for wind turbines technology. Time-
frame: 1990-2012. Standar errors below the coefficients

there are other important determinants of demand for photovoltaic panel or
that the response of the demand to policy and price changes is delayed.

8 Conclusions
This paper lists and formally describes some instances in which the learning
curve delivers biased results if OLS estimates of the learning rates are used to
calibrate IAMs. For each instance, we are able to characterize the direction of
the bias. The first instance is when exogenous change in costs of a technology
(e.g. due to change in material prices) promotes a change in installed capacty.

Model 1 Model 2 Model 3 Model 4
Fitted Cum. Cap. -.165 -.183*** -.187***

.255 .040 .043
Observed Cum Cap. -.221***

.045
R-squared 0.03 0.63 0.61 0.65

Observations 14 14 14 15

Table 5: Second stage regression results for wind turbines technology. Time-
frame: 1990-2004. Standar errors below the coefficients.
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Model 1 Model 2 Model 3
Energy price 9.87*** 6.19***

1.34 1.54
Policy Index 0.53*** 0.32***

0.06 0.07
R-squared 0.28 0.26 0.39
F-stat. 359.1 349.5 274.0

Observations 457 457 457

Table 6: First stage regression results for PV panels technology. Standard errors
clustered at the level of countries below the coefficients.

Model 1 Model 2 Model 3 Model 4
Fitted Cum. Cap. -0.268*** -0.342*** -0.254***

0.063 0.026 0.031
Observed Cum Cap. -.169***

0.012
R-squared 0.48 0.90 0.76 0.89

Observations 22 22 22 23

Table 7: Second stage regression results for PV panels technology. Timeframe:
1990-2012. Standard errors below the coefficients.

If we estimate the learning curve using simple OLS, we wrongly attribute this
correlation to the effect of installed capacity change on installation costs change
and, as a result, the estimate is biased upward. The second instance is the
presence of misspecification error, which will generally bias the learning rate
downward. The third instance occurs when IAMs include more than one de-
terminant of installed capacity. For example, suppose that the history high
interest rate played a major role in determining the technology costs through
promoting capacity building and R&D investment, while IAMs would predict
that the primary promoter of learning by doing is energy price. Then the sym-
biosis of estimated learning curve and IAM brings biased results if the effect of
the price is different than the effect of interest rate. The fourth instance could
arise due to non-linearities. For example, if the earning rate is decreasing with
cumulated capacity, then the future effect of cumulated capacity on installation
costs should be lower than in the past.

We show that the learning curve can be robust to the first and the second
problems if the traditional OLS estimator of the learning rate is replaced with
a more appropriate two-stage approach. The key property of this approach is
that it ensures that the estimates of the learning curve do not capture the effect
of technology costs on cumulated capacity.

Finally, we update the estimate of the learning curves for wind turbines and
photovoltaic panels using this novel methodology. Our estimates of the learning
rate for the wind turbines are substanrtially lower than the previous estimates.

26



In turn, our estimates suggests that the learning curve for the PV panels has
larger slope than the one implied by the traditional estimator.

We also argue that the assumptions on the linear relationship between ca-
pacity and costs and on the stationarity of the series cannot be relaxed without
replacing the learning curve with a more sophisticated model. This would in-
crease accuracy of the estimates at the cost of increased complexity, complicat-
ing the implementation of learning curves in IAMs. Further exploring trade offs
between these two opposing forcing will be the focus of future research efforts.

.
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Appendix

A1 Infinite Horizon Model
Let k denote the cumulated capacity of wind turbines, I - flow of new capacity
in one period, c - a turbine installation cost, y - wind energy production and ,
p - its price. The objective function of a firm producing energy from wind (or a
central planner) is:

V (C,K) = max
I
{PY (K)− CI + βV (C ′,K ′)} (17)

subject to K ′ = (1− δ)K + I and Y (K) = Kα or simply

V (C,K) = max
I
{PKα − C (K ′ − (1− δ)K) + βV (C ′,K ′)} (18)

The first order condition to firm’s optimization problem is

βVK′ (C ′,K ′) = C

Using the envelope theorem we can determine the derivative of the objective
function with respect to installed capacity:

VK = αPKα−1 + (1− δ)C + β (1− δ)VK (C ′,K ′)

We assume that the firms expects the price of energy and installation costs
to grow (or decline) at the constant rates gP and gC . If capital is on its balanced
growth path, then

VK (C ′,K ′) =
βα (1 + gP ) (1 + gK)

α−1

1− βα (1 + gP ) (1 + gK)
α−1

(1− δ)
PKα−1+

β (1− δ) (1 + gC)

1− β (1− δ) (1 + gC)
C

Combining this with the first order conditions we get:

βαgP g
α−1
K

1− βαgP gα−1K (1− δ)
PKα−1 +

β (1− δ) (1 + gC)

1− β (1− δ) (1 + gC)
C = C

where gK is the growth of capital. Simpltfying and taking logs:

k = − 1

1− α
c+

1

1− α
p+ constant

where

constant = − 1

1− α
ln

(
1− 2β (1− δ) (1 + gC)

1− β (1− δ) (1 + gC)

1− βαgP gα−1K (1− δ)
βαgP g

α−1
K

)
implying that gK = − 1

1−αgC + 1
1−αgP
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A2 Conditions for section 5.3
The first possibility is that z1 = πz2, then

c =
(δ1 + δ2π) (γ1 + γ2π)

(γ2π + γ1)
2 (γ1 + πγ2) z1 + constant

which simplifies to

c = (δ1 + δ2π) z1 = δ1z1 + δ2z2

The second instance is when z1has exactly the same impact on k and c as
z2 i.e. if δ1 = δ2 and γ1 = γ2. Then

=
δ1γ1V̂ ar (z1) + δ1γ1V̂ ar (z2) + 2δ1γ1Ĉov (z1, z2)

γ21 V̂ ar (z1) + γ21 V̂ ar (z2) + γ212Ĉov (z1, z2)
(γ1z1 + γ1z2 + constant)

= δ1 (z1 + z2) + constant = δ1z1 + δ2z2 + constant

The third instance is when zi’s impact on k is the same as its impact on c
i.e. δ1 = γ1 and δ2 = γ2. Then

c =
γ21 V̂ ar (z1) + γ22 V̂ ar (z2) + γ1γ22Ĉov (z1, z2)

γ21 V̂ ar (z1) + γ22 V̂ ar (z2) + γ1γ22Ĉov (z1, z2)
(δ1z1 + δ2z2 + constant) =

= δ1z1 + δ2z2
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